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Abstract. Cryptography has two goals (secrecy and/or authenticity) and the security that it
affords can be of two kinds (theoretical or practical); this implies a natural four-fold division

of cryptography that is adopted in this paper.

Shannon’s theory of theoretical secrecy is

presented via a combinatorial approach. A similar approach is used to present Simmons’theory
of theoretical authenticity. Practical security rests on the foundation of one-way functions and
their variants. These functions are described, and illustrations are given of how they can be
used to obtain practical secrecy and/or practical authenticity. Both private-key and public-key
cryptographic methods are treated within a common analytical framework.

1. INTRODUCTION

The traditional goal of the communications engineer
is to ensure that the message delivered to the destina-
tion is the same message as that originally produced by
the information source. The enemy is noise. The cryp-
tographer by contrast has two distinct goals: secrecy
and/or authenticity. He may seek to ensure that the
message is intelligible only to the intended recipient —
the enemy is the “eavesdropper” who overhears the
transmitted signals. He may seek instead (or also)
to ensure that the identity of the sender and the in-
tegrity of the message can be unmistakably verified by
the recipient - the enemy is the “spoofer” who can
originate, or tamper with, transmitted signals.In fact,
it is a fairly recent realization that secrecy and authen-
ticity are quite distinct goals. In classical or private-
key cryptography these two concepts were closely in-
tertwined. Secrecy depended on the message being
unintelligible to any recipient who did not know the
secret key; authenticity depended on the inability of
anyone without knowledge of the secret key to produce
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a cryptogram that would decipher to an intelligible
message. It was only with the introduction of public-
key cryptography by Diffie and Hellman (1976) that
it became clear that secrecy and authenticity did not
always go hand-in-hand.

The first comprehensive mathematical treatment of
secrecy systems was given by Shannon (1949). We
shall follow Shannon’s lead in distinguishing between
two types of cryptographic security, “theoretical” or
“practical” to use Shannon’s terminology, but we shall
widen their usage to include authenticity as well as
secrecy. Theoretical security means that security which
the cryptographic system provides against an enemy
who has unlimited computational resources available
to him. Practical security means that provided against
an enemy with finite computational resources. A sys-
tem is theoretically secure if it is impossible to break
regardless of how much effort the enemy cryptanalyst
expends. A system is practically secure if its breaking
requires a computational effort beyond this enemy’s
means.

The first half of this paper is concerned with the
theoretical security of cryptographic systems. Shan-
non’s (1949) theory of theoretical secrecy is described
via a combinatorial approach. A similar combinatorial
approach is used to outline some salient features of the
still-developing theory of theoretical authenticity.
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The second half of this paper treats the practical
security of cryptographic systems. To this end, we en-
large Diffie and Hellman’s (1976) catalog of one-way
functions and their variates so as to be able to treat
public-key systems and private-key systems within a
common framework. With the introduction of each
such species of one-way functions, we give illustra-
tions showing how such a function can be used to
provide practical secrecy and/or authenticity.

2. THEORETICAL SECRECY

Shannon’s (1949) model of a general secrecy system
is shown in Fig. 1. We shall assume that the cryp-
togram Y is a binary sequence of length N and that
the key Z is a binary sequence of length K. We shall be
less specific in general about the form of the plaintext
message X, assuming only that there are 2 different
valid values of X (so that, at least in principle, X
could be coded into a binary sequence of length M)
and we shall let A denote this set of valid messages.

D U [ |x
= tnorypter pros————-""—-- '""]Heuyp(cr = DeslinationJ

Fig. 1 - Shannon’s Model of a General Secrecy System

Shannon (1949) used the term perfect secrecy to
describe the situation when the enemy cryptanalyst in
Fig. 1 can do no better than to guess X without
bothering to study the cryptogram Y, i.e., when X
and Y are statistically independent. It is surprisingly
easy (in principle) to realize perfect secrecy systems.

Example 1: Suppose that A consists of 2" binary
sequences of length 7, where of course n = M. [In
binary-coded English text, n = 5M would be typi-
cal.] Consider the so-called “one-time pad” system in
which Z has length K = n, all 2" keys are equiprob-
able, and

Y = XeoZ (1

where & denotes component-wise addition modulo 2.
For every x € A and every binary sequence y of
length n, it follows from (1) that there will be exactly
one key z that will cause x to be encrypted into y.

Thus P(Y = y | X = x) = 2 " independently
of x and hence X and Y are statistically independent.
The system gives perfect secrecy! That the enemy
cryptanalyst might as well guess X without looking
at Y is perhaps more obvious to the communications
engineer after noting that (1) is equivalent to saying
that Y is what is received when X is transmitted
through a binary symmetric channel (BSC) with cross-
over probability 1/2, i.e., with zero capacity.
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The one-time pad requires 1 bit of secret key for

each binary digit of the plaintext. If the 2V different
plaintexts were equally likely and if A were the set
of binary sequences of length M (as would be the
case for perfect data compression of some information
source), then the one-time pad requires 1 bit of secret
key for each bit of plaintext information. It is almost
obvious, and Shannon (1949) has proved, that this
is the minimum amount of secret key in any perfect
secrecy system.

It should be noted that Shannon’s perfect secrecy
assumes that the enemy cryptanalyst is limited to a
ciphertext-only attack and, moreover, that the only
ciphertext which this enemy knows is the single cryp-
togram that he is trying to break. [Actually, Shannon
assumed that the secret key would be changed after
each encryption or, equivalently,, that what we are
considering as a single plaintext message X is actually
the concatenation of all messages that are enciphered
before the key is changed.] It is instructive to extend
Shannon’s theory to the case where the enemy crypt-
analyst can make a known-plaintext attack. We shall
say that this enemy can make a known-plaintext attack
of order L in case that he knows L valid and distinct
plaintext-cryptogram pairs for the key Z in effect for
the cryptogram Y that he wishes to decipher. [Note
that an order 0 known-plaintext attack is a ciphertext-
only attack.] Of course, if Y happens to be one of
the L known cryptograms, this enemy can certainly
decipher Y, and otherwise he can be sure that X is
not one of the L known plaintexts; at best he can
say no more. It thus seems natural to say that the
cryptosystem provides perfect secrecy against an or-
der L known-plaintext attack if (1) it provides such
perfect secrecy for an order L — 1 attack and (2)
for each specification of the distinct known plaintext-
cryptogram pairs (x, ), (X2, ¥2), - -+, (X., yr), the
enemy cryptanalyst can do no better than to guess at
X without further consideration of Y when he is told
that Y is not one of the L known cryptograms.

This definition is equivalent to saying that the sys-
tem offers perfect secrecy against an order L known-
plaintext attack just when for every i, 0 </ < L, and
for every choice of (x|, y,), (X2, ¥2), - .., (X;, ¥;), as
pairs consistent with at least one key, X and Y are
statistically independent when all probabilities are con-
ditioned on the event that the key Z be consistent with
these L chosen plaintext-cryptogram pairs. We now
show that it is easy (in principle) to construct a sys-
tem that yields perfect secrecy against the extreme of a
known-plaintext attack of order 2" — 2 [if the enemy
knows 2M — 1 distinct plaintext-cryptogram pairs, he
can always decrypt Y.

Example 2: Again suppose that the set of plaintexts A

consists of 2™ binary sequences of length n, where of
course n = M. Let B denote the set of all 2" binary
sequences so that A CB. Consider the “symmetric
group” S of all (2")! substitutions on B, i.e., all the
invertible mappings from B to itself, and suppose that
the key Z is used to choose one of these substitutions
as the enciphering function so that each of the (2")!
substitutions is equally likely. The key length K then is
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For any choice of (x, y)), (x5, ¥3), ..., (x;, ¥;), Whe-
re Xy, Xz, ..., X; are all distinct as also are y,, y,, ...,
Vi, there are exactly (2” — /)! substitutions in S for
which these 7 pairs are valid plaintext-cryptogram pa-
irs; moreover, these are all the invertible functions

fromB — {x, ...,x;Jto B — {y,...,¥]. Thus,
for every x& B — (x|, ..., x;] and every y & B -
}yl, ---’yi}’

P(Y = y|X = x, Z consistent with

0 W1 e (G, 1)) = ) (3)

2"~

which shows that the system provides perfect secrecy.

We see from (2) that to provide perfect secrecy
against a known-plaintext attack of order 2” — 2 our
proposed system requires about 2" bits of key for
each binary digit of the plaintext! In fact, we can
adapt Shannon’s proof for the ciphertext-only situa-
tion to show that our proposed system uses the min-
imum amount of secret key when M = n and the

2M plaintext messages are equally likely. The “trick”
is just to note that if the system gives perfect secrecy
against a known-plaintext attack of order 2" — 2, then
the sequence of all 2M distinct plaintext messages, in
any order, is equally likely to result in all possible se-

quences of the 2V distinct corresponding cryptograms.
Thus, the sequence of cryptograms only is useless to
the enemy cryptographer in determining the order of
the plaintext messages. But there are (2¥)! such or-
derings, and hence log2(2M!) bits of information can

be sent with perfect secrecy if the enemy can observe
only ciphertext.

Thus, Shannon’s lower bound for perfect secrecy of
one bit of key per bit of information in the plaintext
demands that

K > ﬁog2<2M!H . (4)

By a similar argument, it follows that any cryp-
tosystem that gives perfect secrecy against a known-
plaintext attack of order L must have a key size satis-

fying

>
v

Mog. TTM — iy =
ng}})( i) 5)

i

(L + )M .

We have seen that the lower bound of (5) is attain-

able when L = 0and L = 2™ — 2, the extreme
values; presumably one can achieve, or come very
close to, this lower bound for all L, but we will not
try to prove this. Our aim is merely to show that per-
fect secrecy against a known-plaintext attack requires
an enormous amount of secret key, this amount in-
creasing linearly with the number of known plaintext-
cryptogram pairs.

3. THEORETICAL AUTHENTICITY

The theory of authenticity is a recent and still in-
complete one. The initial study appears to be that
of Gilbert, MacWilliams and Sloane (1974), extended
later by Fak (1979). Simmons (1981, 1984 and 1985)
has placed this work in a more general setting and
developed a more systematic theory. Our treatment
here will be in the spirit of Simmons’ work, but we
have altered his approach somewhat to enhance the
parallels between the theory of authenticity and Shan-
non’s theory of secrecy.

Our model of a general authenticity system is shown
in Fig. 2 in which we have retained as far as possible
the notation and terminology that we used with Fig.
1. The crucial difference between Figs.1 and 2 is
that it is now the enemy cryptanalyst who chooses
the “cryptogram” Y that reaches the destination. We
have used a dotted line in Fig. 2 to indicate that
we will not always assume that this enemy knows the
legitimate cryptogram Y.

Mesaage| X ) ¥ Enemy ¥ . X Pest ination
Source [nctypterl» Cryptanalyst Decrypter Jestinati

1 SECURE CHANNEL ———

z
Key
Source

Fig. 2 - Model of a General Authenticity System

Simmons distinguishes between two different types
of fraud the enemy cryptanalyst might seek to per-
petrate, viz. impersonation and substitution. By im-
personation, he means that, without knowledge of Y
(and indeed there may not even be a valid cryptogram
Y), the enemy tries to form a signal Y that is a valid
cryptogram for the key Z in effect. The probability,
P, of successful impersonation is the measure of the
enemy’s success. Note that impersonation succeeds
even when the enemy happens to form the legitimate
cryptogram Y, in case there happens to be such a
cryptogram. By substitution, Simmons means that,
knowing the valid cryptogram Y, the enemy tries to
form a signal Y, different from Y, that is also a valid
cryptogram. The enemy’s success is measured by the
probability, Py, of a successful substitution.

Let B denote the set of all possible cryptograms,

i.e., the set of all 2" binary sequences of length N.
By analogy to the terminology for secrecy systems, we
shall use the term “perfect” to describe authenticity
systems where the enemy can do no better than to
choose Y randomly and uniformly from B (with of
course the restriction that Y # Y when the enemy is
to attempt a substitution). A paradox arises, however.
Suppose that there is no redundancy in the system, i.e.,
that N = M so that every binary sequence of length
N is a valid cryptogram for every key. The enemy
cannot avoid succeeding in either impersonation or
substitution, i.e., P, = 1 or P¢ = 1, regardless of
his strategy. But he can nonetheless do no better than
random guessing of Y since this too always succeeds.

ALTA FREQUENZA
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Thus, we are forced to say that the authenticity system
is “perfect” even though it provides no protection
against fraud whatsoever! In fact, we see in general
that uniform random guessing will yield

Py = 2M/2N = MW 6)
or

Py = 2M — /2N - 1) (7)

for impersonation or substitution, respectively. Thus,
“perfect” systems will indeed provide good protection
against fraud when and only when N — M islarge, i.e.,
when there is much redundancy in the system. Hence,
we shall say that an authenticity system provides per-
fect type-(N, M) protection against impersonation or
substitution when the enemy cryptanalyst can do no
better than the random guessing performance (6) or
(7), respectively.

Example 3: The one-time pad of Example 1 with
K = N has the property that, for any choice X =
x of plaintext, the cryptogram Y is equally likely
to be any of the 2V = 2" sequences in B. Thus
an enemy seeking to impersonate can do no better
(nor worse) than (6) - the system provides perfect
type-(N, M) security against impersonation. If the
enemy knows a valid cryptogram y, however, this
reduces the number of possible keys Z consistent with
Y = y to 2M as there are 2™ possibilities for X in
(1). By first guessing one of these keys then using
it to form a cryptogram Y (different from Y), the
enemy’s probability for successful substitution will
satisfy Pg = 2~ and hence will certainly exceed (7)
if N = 2M . But the enemy may be able to do much
better if the set 4 of plaintexts has special structure.
For instance, if A is the set of codewords inan (N, M)
linear block code, he can add an arbitrary non-zero
codeword x’ to the known cryptogram y to form
Y = yex' = xex @Z. Becausex ®x’ is another
codeword, Y is a valid cryptogram and hence Pg =
1. In this case, the one-time pad offers no security
whatsoever against substitution.

The following example illustrates a system that prov-
ides perfect protection against impersonation but no
secrecy whatsoever.

Example 4: Suppose that A is the set of binary se-
quences of length M and that the “cryptogram” Y is
just the concatenation of the plaintext X with the key
Z,ie.,Y = (X,Z). Notethat N = M + K. We
can consider Z to be the “signature” that the sender
appends to his message. Without knowing Y, the
enemy can do no better than to choose an arbitrary
plaintext and guess at the signature Z. Thus (6) holds
and the system provides perfect type-(N, M) security
against impersonation. However, it clearly offers no
protection against substitution.

The next example illustrates an authenticity system
that provides perfect protection against substitution.

Example 5: Suppose that the plaintext message X is
a single binary digit, i.e., M = 1. Consider the set

of all 2V (2" — 1)/2 distinct unordered pairs {yy, ¥} of
binary sequences of length N . Suppose that the key Z
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2
is used to choose one of these pairs for the enciphering
function in the manner that Y is the lexicographically
first of the pair when X = 0 and Y is the other

element of the pair when X = 1. The key length
then, assuming N >1, is
K = Flog2 NN — 2l = 2N - 1. (8)

The system clearly provides perfect type-(N, 1) pro-
tection against impersonation. Moreover, knowing
a valid cryptogram y, the enemy cryptographer can
do no better than to guess the single other valid cryp-
togram randomly from B — {y}. Thus, the system also
offers perfect type-(IN, 1) protection against substitu-
tion. This system also provides perfect secrecy against
a ciphertext-only attack, but a single bit of key would
have sufficed to achieve this perfect secrecy!

Before developing the theory of authenticity fur-
ther, we generalize the above definitions as follows.
We shall say that the enemy cryptanalyst makes a

spoofing attack of order L (where 0 < L < 2MY in the
case where he knows L distinct valid cryptograms for
the key Z for which he seeks to form a fraudulent
cryptogram. The enemy succeeds just when Y is a
valid cryptogram for this key and is not one of the L
already known cryptograms. If the enemy randomly

and uniformly chooses Y from the remaining 2V — L
elements of B, his success probability is

Ps, = ¥ —Ly/@2Y - L). (9)

[Notice that an impersonation attempt is a spoofing
attack of order 0 and that a substitution attempt is
a spoofing attack of order 1.] We shall say that
an authenticity system provides perfect type (N, M)
protection against a spoofing attack of order L when
the enemy can achieve a success probability Pg; no
better than (9). Equivalently, letting B, denote the
subset of B consisting of the 2M valid cryptograms
when Z = z, we can say that the system gives perfect
protection against a spoofing attack of order L if and
only if

Py, 1 €EB;|yi €Bz; 1l si=<L) =

=M —L)y/2Y - L) (10)

for all choices of yy, 3, ..., ¥1 +1 as distinct elements
of B. This makes it clear that the probability distribu-
tion on X plays no role in determining whether the
authenticity system is perfect, as the distribution for
Z completely determines that for Bz .

In our treatment of authenticity systems, we have
tacitly been using an assumption that we now make
explicit, namely, that the encipherment is determinis-
tic. In other words, we assume that there is a func-
tion f such that Y = f(X, Z) or, equivalently, that
#(B,) = 2M for all keys z where #(.) denotes the
cardinality of the indicated set. If the encipherment is
random so that at least one plaintext x may encipher
as two or more valid cryptograms under the same key

z, then there will be an average of more than oM _ 1
valid cryptograms that do not decipher to the same
plaintext as any of the L known cryptograms. Thus
even random guessing will do better than (9). In fact
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(6), (7) and (9) hold for random guessing when and
only when the enciphering is deterministic.

Recall that there are 2% possible keys Z. However,
as illustrated in Examples 2 and 5, we do not insist that
all possible keys actually be used, i.e., that all possible
keys have non-zero probability. We shall use the term
an allowed key to mean a key z with P(Z = z) > 0.
We now can state our first major result for theoretical
authenticity.

Proposition 1: An authenticity system with equiprob-

able allowed keys provides perfect type-(N, M) prot-

ection against a spoofing attack of order L if and only

if n(y1, Y25 .- +» YL +1), the number of allowed keys z

such that y;, ¥,, ..., ¥ 4 are all cryptograms for the

key z, is the same number for all choices of y;, y,
.., Y1+ as distinct element of B.

To prove this proposition, we first note that the
assumption of equiprobable allowed keys implies

Py... € By | y, € By l=i<L) =
_ n()’l,---,)’L,)’LH)‘ (1
n(,)’ly---,)"L) .

Suppose that the system is perfect. Then (10) re-
quires that the right side of (11) must have the same
value for all choices of yy, ..., ¥i, Y. +1 as distinct
elements of B. But n(y, ..., ¥, ;1) is a symmetric
function of its arguments.

This implies from (11) that if y;, ..., y, 4+, and

yl', . yi L can be reordered to differ only in their
last element, then 7 (yy, ..., Yy +1) = BV 5 -+
yL+l)‘

But a sequence y 1, . yi'ﬂ that differs from
Vi, « .. Y1+ in the last two elements after reordering
will differ from some such yl', ce yi " only in the
last element after reordering.

Thus n (v, - Yo +1) = 0,5 ...y, ) also.

An iteration of this argument shows that every choice
of ¥, ..., ¥+ as distinct elements of B must yield
the same value of n(yy, ..., Y1 +1)-

Conversely, suppose that there is an integer n; .
such that n(yy, ..., ¥. +1) = np 4+ for all choices of
Y1s -+ Vi 41 as distinct elements of B. Because any
one key z such that {y|, ..., y.} € B, is such that

V1, ... v, y] € B, for exactly 2Y — L choices of

y not in {yy, ..., ¥, }, it follows that

M —LYn(yy, .. yL) = S TIPS T S
Y& {,"1 ,,,,, YL

By hypothesis, each of the 2N — L terms in the sum
on the right equals #; ., so that

N —

g (12)

nWy, ..oy) = ny 4+

and thus n(y, ..., y;) also has a constant value, say
n; , for all choices of yi, ..., y, as distinct elements
of B. But (11) and (12) combine to give (10), which
proves that the authenticity system is perfect.

Note that our proof of Proposition 1 actually showed
that the constancy of n(y,, ..., ¥, +1) implies the con-
stancy of n(yy, ..., y;) for 1=i <L as well. Thus, we
have established the following fact.

Proposition 2: An authenticity system with equiprob-
able allowed keys that provides perfect type-(N, M)
protection against a spoofing attack of order L also
provides such perfect protection against spoofing at-
tack of order i for0<i<L.

It follows from iteration of (12) that, in a perfect
system with equiprobable keys,

2N — L)

(13
oM — L) )

np

where n; is the number of allowed keys consistent with
every choice of y;, y3, ..., y; as distinct elements of
B, so that nj is just the total number of allowed keys.
But L < 2™ and n; ,,=1; thus taking logarithms in
(13) gives the following bound on key size.

Proposition 3: An authenticity system with equiprob-
able allowed keys that provides perfect type-(N, M)
protection against a spoofing attack of order L must
have a key size K satisfying

K

v

I_L lo 2N_i-| =~
,.§0 BV (14)

(L +1)(N-M).

U

Remark: In fact the bound of Proposition 3 holds
regardless of whether the allowed keys are equally
likely since, in a perfect system, n(yy, ..., yp +1) =1
for all choices of y,, ..., ¥+ as distinct elements
of B and this is enough to ensure that the number of
allowed keys must be at least as great as the right side
of (13) whenn; ,; = 1.

The “signature” system of Example 4 has key size
K = N — M and thus meets the bound (14) with
equality for perfect protection against impersonation
(L =0).

[The M = 1 bit of plaintext system of Example 5
also meets the bound (14) with equality for perfect
protection against substitution (L = 1) as can be seen

from (8)].
It is easy to meet the bound (14) with equality at the
other extreme L = 2M — 1.

N

. 2 .
Example 6: Consider the oM possible sets of M

distinct elements of B. Consider an authenticity sys-
N

. 2
tem with ny = oM allowed keys where each one of

these sets is the set of cryptograms for one key.

The mapping from plaintexts to cryptograms can be
chosen in any convenient or desirable way. If the al-
lowed keys are equally likely, it follows from Proposi-
tion 1 that the system offers perfect type-(N, M) prot-

ection against a spoofing attack of order L = oM _1.

We may choose the key size K to be
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it is easy to generate algorithms E, and D, that easily
compute f, and f ;l’ respectively, but (2) even when
given without computational cost the values f, (x) for
any presented values of x, it is computationally un-
feasible for virtually all y in the domain of f, to find

S '(y) without knowledge of z. Note that an inver-
tible trapdoor one-way function is also a keyed one-
way function, since one may use the algorithm E; to
compute for one’s self the values f,(x) for any desired
arguments x. The converse is not true, however, be-
cause to be told f.(x) for any desired arguments x is
not equivalent to knowing an algorithm for computing

Sz

It should be obvious that a keyed one-way function
can be used to make a private key cryptosystem that is
computationally secure against a chosen-plaintext at-
tack, and indeed conversely. The family of functions
Jf; constituting the data encryption standard (DES)
published by the U.S. National Bureau of Standards
(1977) seems to be such a keyed one-way function;
the DES key z is a binary sequence of length 64. [In
fact it is somewhat remarkable that no one has yet an-
nounced a successful chosen-plaintext attack against
DES as the number of keys, 2°¢ = 10'7, is only a trifle
too many to thwart an exhaustive cryptanalysis.] Our
point to be made here in closing is that the conceptual
clarity provided by one-way function concepts need
not be confined to public key cryptography alone, we
can and probably should use these concepts to enhance
understanding of private key cryptography as well.
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