
Reprint of pp.55-70 in Advances in Cryptology-EUROCRYPT'92 Proceedings, LNCS 658, Springer-Verlag, 1993.

Hash Functions Based on Block Ciphers

Xuejia Lai and James L. Massey

Signal and Information Processing Laboratory

Swiss Federal Institute of Technology

CH{8092 Z�urich, Switzerland

Abstract. Iterated hash functions based on block ciphers are treated. Five
attacks on an iterated hash function and on its round function are formulated.
The wisdom of strengthening such hash functions by constraining the last
block of the message to be hashed is stressed. Schemes for constructing m-bit
and 2m-bit hash round functions fromm-bit block ciphers are studied. A prin-
ciple is formalized for evaluating the strength of hash round functions, viz.,
that applying computationally simple (in both directions) invertible transfor-
mations to the input and output of a hash round function yields a new hash
round function with the same security. By applying this principle, four attacks
on three previously proposed 2m-bit hash round functions are formulated. Fi-
nally, three new hash round functions based on an m-bit block cipher with a
2m-bit key are proposed.

1 Introduction

This paper is intended to provide a rather rounded treatment of hash functions that

are obtained by iterating a round function. Section 2 examines the possible attacks on

such iterated hash functions, considers relations between the security of an iterated

hash function and the security of its hash round function, and points out the wisdom

of strengthening the hash function by constraining the last block of the message to

be hashed.

In Section 3, we consider hash round functions constructed from secret-key block

ciphers. In particular, we consider the problems of constructing m-bit hash round

functions and 2m-bit hash round functions from m-bit block ciphers. A principle is

formalized for evaluating the strength of hash round functions, viz., that applying

computationally simple (in both directions) invertible transformations to the input

and output of a hash round function yields a new hash round function with the same

security. To demonstrate this principle, we present four attacks on three previously

proposed 2m-bit hash round functions. Finally, three new hash round functions based

on an m-bit block cipher with a 2m-bit key are proposed.

1

2 Iterated hash functions and attacks

A hash function is an easily implementable mapping from the set of all binary se-

quences of some speci�ed minimum length or greater to the set of binary sequences

of some �xed length. In cryptographic applications, hash functions are used within

digital signature schemes and within schemes to provide data integrity (e.g., to detect

modi�cation of a message).

An iterated hash function is a hash function Hash(�) determined by an easily com-

putable function h(�; �) from two binary sequences of respective lengths m and l to a

binary sequence of length m in the manner that the message M = (M1;M2; :::;Mn),

whereMi is of length l, is hashed to the hash value H = Hn of length m by computing

recursively

Hi = h(Hi�1;Mi) i = 1; 2; ::n; (1)

whereH0 is a speci�ed initial value. We will writeH = Hash(H0;M) to show explicitly

the dependence on H0. The function h will be called the hash round function. Such

a recursive construction of hash functions has been called the \meta-method" by

Merkle [13], see also [4, 15]. For message data whose total length in bits is not a

multiple of l, one can apply deterministic \padding" [7, 13] to the message to be

hashed by (1) to increase the total length to a multiple of l.

For iterated hash functions, we distinguish the following �ve attacks:

1. Target attack: Given H0 and M , �nd M 0 such that M 0 6=M but Hash(H0;M
0)=

Hash(H0;M):

2. Free-start target attack: GivenH0 andM , �ndH 0

0 andM
0 such that (H 0

0;M
0) 6=

(H0;M) but Hash(H 0

0;M
0) = Hash(H0;M):

3. Collision attack: Given H0, �nd M and M 0 such that M 0 6= M but

Hash(H0;M
0) = Hash(H0;M):

4. Semi-free-start collision attack: Find H0, M and M 0 such that M 0 6= M but

Hash(H0;M
0) = Hash(H0;M):

5. Free-start collision attack: Find H0, H 0

0, M and M 0 such that (H 0

0;M
0) 6=

(H0;M) but Hash(H 0
0;M

0) = Hash(H0;M):

Remark. In applications where H0 is speci�ed and �xed, attacks 2, 4 and 5 are not

\real attacks". This is because the initial value H0 is then an integral part of the

hash function so that a hash value computed from a di�erent initial value will not be

accepted. However, if the sender is free to choose and/or to change H0, attacks 2,

4 and 5 can be real attacks, depending on the manner in which the hash function is

used. Note that the free-start and semi-free-start attacks are never harder than the

attacks where H0 is speci�ed in advance.

For an m-bit hash function, brute-force target attacks, in which one randomly

chooses an M 0 until one hits the \target" H = Hash(H0;M); require about 2m com-

putations of hash values. It follows from the usual \birthday argument" that brute-

force collision attacks require about 2m=2 computations of hash values. In particular,

2

for hash round functions with l � m so that all 2m hash values can be reached with

one-block messages, brute-force target attacks require about 2m computations of the

round function h while brute-force collision attacks require about 2m=2 computations

of the round function h. We will say that the computational security of the hash

function is ideal when there is no attack substantially better than brute force.

In the following discussion, we consider some relations between the security of

an iterated hash function and the strength of its hash round function. By an attack

on the hash round function we mean an attack in which all the involved messages

contain only one block. For example, a target attack on the round function h reads:

given H0 and M1, �nd M 0

1 such that M 0

1 6= M1 but h(H0;M
0

1) = h(H0;M1). Once

a target attack on the round function yields M 0

1, then, by \attaching" the message

blocks M2; :::;Mn of the given message to M 0

1, one obtains success in a target attack

on the iterated hash function. Similar arguments hold also for other types of attacks.

Proposition 1 For an iterated hash function, any attack on its round function im-

plies an attack of the same type on the iterated hash function with the same compu-

tational complexity.

It should be noted that the converse of the statement of Theorem 1 is not true

in general. There may be attacks on the iterated hash function that are easier than

attacks on the round function alone, as the following three examples show.

Example 1 (Long message attack.) For an m-bit iterated hash function, given

an n-block message M = (M1;M2; :::;Mn), there is a target attack which takes about

C =

(
2m

n
+ n for n � 2m=2

2 � 2m=2 for n > 2m=2

computations of the round function. [Essentially the above result for n � 2m=2 is due

to Winternitz [23].]

Proof. First we consider the case n � 2m=2. For the given M , we compute Hi =

h(Hi�1;Mi) for i = 1; ::; n and store these values. Then we compute H� = h(H0;M
�

1)

repetitively with randomly chosen M�
1 . After computing 2m

n
values for H�, the prob-

ability that H� = Hi for some i; 1 � i � n; is

1� [(1� 2�m)n]
2m

n = 1 � (1� 2�m)2
m

� 1 � e�1 � 0:63;

which shows that fewer than 2m

n
computations of round function will usually su�ce.

The message M 0 = (M�

1 ;Mi+1; : : : ;Mn) hashes to the same value H as the message

M , and total number of computations of the round function is about 2m

n
+ n. The

probability that M 0 =M is negligible.

For n > 2m=2, we compute and store only H1;H2; : : : ;H2m=2 . Then 2m=2 random

choices of M�

1 will yield a \match" of some H� with some Hi, 1 � i � 2m=2; with

probability about 0.63. 2

For an iterated hash function, one can always do the following \trivial" free-start

attacks.

3

Example 2 (Trivial free-start attacks.) Consider a messageM = (M1;M2) that

hashes to H with initial value H0. Then, for the initial value H1 = h(H0;M1), the

\truncated" message M 0 = M2 hashes also to the value H = h(H1;M2). That is, a

free-start target attack can always be done if the message contain more than one block.

Similarly, one can do a trivial free-start collision attack.

The following attack using a \�xed-point" of the hash round function was proposed

in [16].

Example 3 (A trivial semi-free-start collision attack based on a `�xed

point'.) If the hash round function h has a recognizable \�xed point", i.e., if one

can somehow �nd (H;M) such that H = h(H;M), then there is a trivial semi-free-

start collision attack since, starting with the initial value H0 = H, the \di�erent"

messages M =M and M 0 = (M;M) both hash to the same value H.

Note that in the trivial free-start and semi-free-start attacks and in the \long-

message" attack described in the above three examples, one breaks the iterated hash

function without breaking its round function. Such attacks are based on the fact that,

for an iterated hash function of the form (1), the attacker can take advantage of the

fact that a falsi�ed message can have a length di�erent from that of the given genuine

message. This problem can be overcome by the following strengthening of iterated

hash functions, which was proposed independently by Merkle[13] and by Damgaard[4]:

Merkle-Damgaard Strengthening (MD-strengthening) For the iterated hash

function, specify that the last block Mn of the \message" M = (M1;M2; :::;Mn) to

be hashed must represent the length of the \true message" in bits, i.e., the length of

the unpadded portion of the �rst n� 1 blocks.

Using arguments similar to those in [4, 13, 17], one can show that:

Proposition 2 Against a free-start (target or collision) attack, an iterated hash func-

tion with MD-strengthening, HashMD, has roughly the same computational security as

its hash round function.

In the previous discussions we have considered the security of an iterated hash

function and the security of its round function against an attack of the same type.

Now we consider how to relate \non-real" free-start target attacks to \real" target at-

tacks. The following result shows that, for an iterated hash function, when a \random

inverse" of the hash round function can be found with less than the ideal maximum of

about 2m computations, then there always exists a target attack on the hash function

that is better than the brute-force target attack.

Proposition 3 (A meet-in-the-middle target attack by \working back-

wards".) Let HashMD be an m-bit iterated hash function with MD-strengthening

4

and with round function h. If, for most H in the range of h, it takes about 2s compu-

tations of h to �nd a new solution (H 0;M 0) of H = h(H 0;M 0) for which H 0 appears to

be essentially randomly chosen and if the unconstrained portion of messages contains

at least two blocks, i.e., n � 1 � 2, then there exists a target attack on HashMD that

takes about 2� 2
m+s
2 computations of h.

Proof. For given M and H0, let the results of the �rst two iterations be

H1 = h(H0;M1); H2 = h(H1;M2):

We show how to �nd two message blocks (M 0

1;M
0

2) that hash to H2 by a \meet-in-the-

middle" attack. Then replacing the �rst two blocks (M1;M2) in the given messageM

by (M 0

1;M
0

2), we obtain a message M 0 of the same length as, but di�erent from, M

that hashes to the same H.

First, we compute G1 = h(H0;M
0

1) for 2
m+s
2 randomly chosen M 0

1's; then we �nd

2
m�s
2 pairs (G0

1;M
0

2) such that H2 = h(G0

1;M
0

2) and G0

1 appears essentially randomly

chosen. The attack succeeds if some G1 and some G0

1 take on the same value. Thus,

the attack succeeds with probability

1� [(1� 2�m)2
m+s
2]2

m�s
2 = 1� (1� 2�m)2

m

� 1� e�1 � 0:63;

as follows from the facts that the probability of choosing M 0

1 so that G1 will not

equal G0

1 is 1 � 2�m, that there are 2
m+s
2 independent chances to choose M 0

1 so that

G1 will \miss" a particular G0

1, and there are 2
m�s
2 independently chosen values of

G0

1 to miss. Both the \forwards" computation for computing values of G1 and the

\backwards" computation for computing values of G0

1 take 2
m+s
2 computations of the

round function h. 2

The method used in the above proof of attacking an iterated hash function by

\working backward" [1, 22] has been used to attack several proposed iterated hash

functions [15, 22]. The above result shows that if the hash round function does not

have ideal computational security against a free-start target attack, then the iterated

hash function cannot achieve ideal computational security against a target attack.

Proposition 2, together with the argument used to prove Proposition 3, implies:

Proposition 4 Suppose that the unconstrained portion of messages must contain at

least two blocks, i.e., n�1 � 2. Then an iterated hash function with MD-strengthening,

HashMD(�), has ideal computational security against a target attack if and only if its

hash round function h(�; �) has ideal computational security against a free-start target

attack.

Proof. Suppose the round function h has ideal computational security against a

free-start target attack. Then Proposition 2 shows that HashMD(�) has the same ideal

security against a free-start target attack. But a target attack without free start is no

easier than a free-start target attack so that HashMD(�) also has ideal computational

security against a target attack.

5

Conversely, if for an m-bit hash round function h, a free-start target attack takes

less than 2m computations, then Proposition 3 implies a target attack on HashMD

with less than 2m computations. 2

From the above two propositions, we see that MD-strengthening creates secure

iterated hash functions from secure round functions. In particular, the trivial free-

start and semi-free-start attacks and the long-message target attack in the above

examples cannot be used to attack an iterated hash function with MD-strengthening.

Such considerations suggest an obvious implementation principle for iterated hash

functions, viz., that iterated hash functions should be used only with MD-strengthening.

In the following discussion, whenever the security of an iterated hash function is

considered, we always mean the security of the hash function with MD-strengthening.

Because of Proposition 4 and Proposition 2 and because one generally desires that

the hash function be strong enough to provide protection against free-start attacks,

the problem of constructing secure hash functions reduces to the problem of con-

structing hash round functions that are secure against free-start attacks, which will

be considered in the next section.

3 Hash round functions based on block ciphers

In the following discussion, we consider schemes for constructing hash round functions

from a block cipher. In what follows, we write Y = EZ(X), for an m-bit block cipher

E with k-bit key, to mean that the m-bit ciphertext Y is computed from the m-bit

plaintext X and k-bit key Z. Based on the discussion in the last section, we consider

only attacks on the hash round function or equivalently, attacks on the iterated hash

function with MD-strengthening.

3.1 Some m-bit hash round functions

Davies-Meyer (DM) scheme: The DM-scheme was proposed independently by

Davies and by Meyer, cf. [5, 11, 22]. This scheme can be used with any block cipher.

The message blockMi that is hashed in each step of this scheme has length l equal to

the key length k of the block cipher, i.e., l = k. The hash round function is given by

h(Hi�1;Mi) = EMi(Hi�1)�Hi�1 (2)

and is illustrated in Fig.1 where here and hereafter � denotes bit-by-bit modulo-two

addition.

� -Hi

6
Mi (l = k bits)

EqHi�1
?--

Figure 1: The hash round function of the DM-scheme. The small box indicates the
key input to the block cipher.

6

The DM-scheme with MD-strengthening is generally considered to be secure in

the sense that, if the block cipher has no known weakness, then no attack better than

the brute-force attacks is known, i.e., the free-start target attack on h takes about 2m

computations and the free-start collision attack on h takes about 2m=2 computations.

In particular, with MD-strengthening, none of the attacks mentioned in the three

examples of the last section can be e�ectively used against an iterated hash function

based on the DM-scheme. The DM-scheme is currently under consideration as an ISO

standard [7].

A proposed m-bit hash round function using a block cipher with m-bit

block and 2m-bit key: This method is based on a block cipher with block-length

m and key-length k = 2m. For example, one could use the block cipher PES [8] or

its improved version IPES [9]. For such a cipher with k = 2m, we will write Y =

EZa;Zb(X) to mean that the m-bit ciphertext is computed from the m-bit plaintext

X and two m-bit subkeys Za and Zb. The proposed hash round function is given by

h(Hi�1;Mi) = EHi�1;Mi(Hi�1)

and is illustrated in Fig. 2. We have been unable to �nd an attack on this hash

E

66

-

M1

HiHi�1
-r

Figure 2: A proposed m-bit hash function based on an m-bit block cipher with a
2m-bit key.

function better than the brute force attack when the underlying block cipher has no

known weakness.

3.2 Construction of 2m-bit hash round functions

When the block length m of a block cipher is 64 (which is the case for many practical

block ciphers), one can obtain a 64-bit iterated hash function by using the DM-scheme.

The \brute-force" collision attack on any 64-bit hash function has complexity about

232, which is certainly too small in many applications. Thus, several e�orts [2, 13, 14,

18, 20] have been made to construct a 2m-bit hash function based on an m-bit block

cipher by modifying the (apparently secure) DM-scheme. This will be considered in

the following sections.

3.3 A principle for evaluating hash round functions and four

attacks on three 2m-bit hash round functions

In this section, we point out an obvious (once the 5 attacks have been formulated)

but useful principle for evaluating the security of a hash round function, viz. that

7

applying any simple (in both directions) invertible transformations to the input and

to the output of the hash round function yields a new hash round function with the

same security as the original one. [A similar principle has been used by Meier and

Sta�elbach in [12] to classify nonlinearity criteria for cryptographic functions]. For

example, for a block cipher with block length equal to key length, it follows from this

principle that the hash round function (2) of the DM-scheme has the same security

as the following hash round function proposed in [11]

h(Hi�1;Mi) = EHi�1(Mi)
L
Mi;

since this hash round function di�ers from that in (2) only by a \swapping" of the

input blocks Hi�1 and Mi.

To demonstrate this principle, we present four \meet-in-middle" attacks on three

2m-bit hash round functions based on an m-bit block cipher with an m-bit key. The

basic purpose of these three schemes is to construct a 2m-bit hash function based

on an m-bit block cipher by modifying the (apparently secure) DM-scheme (2). We

now show that these 2m-bit hash round functions are in fact weaker than the m-bit

hash round function of the DM-scheme. More precisely, for each scheme, we present

a free-start target attack that takes only about 2m=2 (instead of the ideal maximum

22m) computations of the round function. [Recall that the free-start target attack on

the m-bit hash round function in the DM-scheme has complexity 2m.]

3.3.1 The Preneel-Bosselaers-Govaerts-Vandewalle (PBGV) scheme.

The PBGV scheme was proposed in [18]. In this scheme, which uses an m-bit block

cipher with an m-bit key, a 2m-bit hash value H = (Hn; Gn) is computed from a

2mn-bit message (L1; N1; L2; N2; :::; Ln; Nn) and a 2m-bit initial value (H0; G0). In

each round, two new m-bit values Hi and Gi are computed from the two previous

m-bit values Hi�1 and Gi�1 and from the two m-bit message blocks Li and Ni as

follows:
Hi = ELi�Ni

(Hi�1�Gi�1)�Li�Hi�1�Gi�1

Gi = ELi�Hi�1
(Ni�Gi�1)�Ni�Hi�1�Gi�1

(3)

for i = 1; 2; : : : ; n.

The round function for the PBGV-scheme produces the output pair (h; g) from

the inputs (h0; g0; l; n) in the manner

h = El�n(h0�g0)�l�h0�g0
g = El�h0

(n�g0)�n�h0�g0:
(4)

By applying the simple and simply inverted transformations

(h; g) �! (h; f) = (h; h�g) (5)

on the output and

(h0; g0; l; n) �! (h00; g
0

0; l
0; n0) = (h0�g0; g0�n; l�n; n); (6)

8

on the input, we obtain the round function illustrated in Fig.3 that computes (h; f)

from the input (h00; g
0

0; l
0; n0) in the manner

h = El0(h00)�l
0�n0�h00

f = El0�h0
0
�g0

0
(g00)�El0(h

0

0)�l
0:

(7)

?- - -

6- ?

?- --

6

�

�

� �h00

g00

l0 a
a�

f

r = l0�h00�g
0

0

?
l0�n0

h

Figure 3: The transformed function used to attack the PBGV round function.

Because the transformations (5) and (6) are both easy to compute and easy to

invert, it follows from our principle that an attack on the round function (7) has the

same complexity as an attack on the round function (4).

A free-start target attack on the PBGV round function with complexity

about 2m=2: In this attack, we show how to �nd a \random inverse" of (7), i.e., we

show how, for given (h; f), to �nd (h00; g
0

0; l
0; n0) satisfying (4) for which (h00; g

0

0) appears

randomly chosen.

1. Choose an arbitrary constant c0.

2. For the given h, compute a = El0(h
0

0)�l
0 for 2m=2 randomly chosen values of h00

and corresponding l0 such that h00�l
0 = c0.

3. For the given f , compute a� = Er(g
0

0)�f for 2m=2 randomly chosen values of g00
and corresponding r such that g00�r = c0:

The probability that some a and some a� take on the same value is about 0.63. For

such (g00; r; a = a�; h00; l
0); we obtain a solution (h00; g

0

0; l
0; n0) for (7) by computing

n0 = a�l0�h00�l
0�h. 2

[A recent result of Preneel [19] gives a free-start target attack on the PBGV round

function that requires only the computation of one decryption with the block cipher.]

A target attack on the PBGV round function with complexity about

2m: In this attack, we �nd, for the given (h0; g0) and (h; g), a message block (l; n)

satisfying (4). We will use the notation of Fig.3.

From (5) and (6), we see that (h; f) and h00 are determined by the given (h0; g0)

and (h; g). We randomly choose l0, then compute

a = El0(h
0

0)�l
0;

n0 = a�h00�h;

9

r = l0�h00�g
0

0 = l0�h00�g0�n
0

and

g00 = Dr(a�f);

where Dz(y) denotes the result of deciphering y with key z.

After 2m such computations, g00�n
0 will take on the given value g0 with probability

0.63. Then using (5) and (6), we obtain a solution (l; n) for (4). 2

3.3.2 The �rst Quisquater-Girault (QG-I) scheme.

The QG-I scheme was proposed in the Abstracts from Eurocrypt'89 [20]. It also ap-

peared in a draft ISO standard [6], see also [15]. However, this scheme was dropped

from the recent version of the draft ISO standard CD10118 [7]. [In unpublished work,

Coppersmith pointed out to its inventors some weakness of this scheme [21]. In the sub-

sequent Proceedings paper [21], a \weaker" round function was used, but with additional

functional strengthening.] Similarly to the PBGV-scheme discussed above, the QG-I

scheme is based on an m-bit block cipher with an m-bit key. A 2m-bit hash value

(Hn; Gn) is computed from a 2mn-bit message (L1; N1; L2; N2; :::; Ln; Nn) and a 2m-bit

initial value (H0; G0). In each round, two new m-bit values Hi and Gi are computed

from the two previous m-bit values Hi�1 and Gi�1 and from the two m-bit message

blocks Li and Ni as follows:

Wi = ELi(Gi�1�Ni)�Ni�Hi�1

Hi = Wi�Gi�1

Gi = ENi(Wi�Li)�Hi�1�Gi�1�Li

(8)

for i = 1; 2; : : : ; n:

The round function of the QG-I scheme produces the output pair (h; g) from the

input (h0; g0; l; n) in the manner

h = El(g0�n)�n�h0�g0
g = En (El(g0�n)�n�h0�l)�h0�g0�l:

(9)

We will consider the pair (h; f) = (h; h�g) illustrated in Fig.4 and de�ned by

h = El(g0�n)�n�h0�g0
f = h�g = En (El(g0�n)�n�h0�l)�El(g0�n)�l�n:

(10)

- - - -

?

6

- - -
6

?- -

?

��

��

�l�n
l�c
l
6

?
n

h

fa

h0

g0�n q q

q

Figure 4: The pair (h; f) used in the attack on the QG-I scheme.

10

A free-start target attack on the QG-I scheme with complexity about

2m=2: In the following we show that, for any given (h; f), one can �nd, in about 2m=2

decrypting computations for the block cipher, a solution (h0; g0; l; n) satisfying (10)

by a \meet-in-the-middle" attack.

We will use the notation shown in Fig.4. Let c be a �xed m-tuple.

1. Randomly choose values for a and choose n such that a�n = c. Then, for the

given value of f , compute h00 = a�Dn(a�f): Repeat this process 2m=2 times to

obtain 2m=2 values for (h00; n) with randomly chosen values for h00.

2. Randomly choose l and compute h�0 = h�(l�c)�Dl(l�c): In 2m=2 computations,

one obtains 2m=2 values for (h�0; l) with randomly chosen values for h�0.

Note that both h00 and h�0 are m-bit blocks so that some h00 and some h�0 obtained

as above will take on the same value with probability about 0.63. Thus, we can

�nd (h00; h
�

0; l; n) such that h00 = h�0. (Note that the constraint that l�c�l�n = a is

automatically satis�ed.) From the obtained (l; n), compute g0 = Dl(l�c)�n. Then

the resulting (h0; g0; l; n) is the desired solution. 2

3.3.3 The LOKI Double Block Hash (DBH) function.

The block cipher LOKI, proposed in [2], is a DES-like 64-bit block cipher with a 64-bit

key. In [2], a 128-bit iterated Double Block Hash (DBH) function based on the cipher

LOKI was proposed, but this scheme can in fact be used for any m-bit block cipher

with an m-bit key. In LOKI DBH, a 2m-bit hash value (Hn; Gn) is computed from

a 2mn-bit message (L1; N1; L2; N2; :::; Ln; Nn) and a 2m-bit initial value (H0; G0). In

each round, two new m-bit values Hi and Gi are computed from the two previous

m-bit values Hi�1 and Gi�1 and from the two current m-bit message blocks Li and

Ni as follows:
Wi = ELi�Gi�1(Gi�1�Ni)�Ni�Hi�1

Hi = Wi�Gi�1

Gi = ENi�Hi�1(Wi�Li)�Hi�1�Gi�1�Li

(11)

for i = 1; 2; : : : ; n.

The LOKI DBH round function was derived from the hash round function of the

QG-I scheme (8) by the bitwise addition modulo 2 of the previous hash value blocks

(Hi�1 and Gi�1) to the current message blocks (Li and Ni) to obtain the key inputs

for the two LOKI encryptions. This was done to avoid some attacks derived from the

`weak key' of the underlying cipher. By applying our security evaluation principle, we

obtain the following free-start target attack on the LOKI DBH round function that

has complexity only about 2m=2.

The round function for the LOKI DBH produces the output pair (h; g) from the

input (h0; g0; l; n) in the manner

h = El�g0(g0�n)�n�h0�g0
g = En�h0 (El�g0(g0�n)�n�h0�l)�h0�g0�l:

(12)

11

By applying the transformation

(h; f) = (h; h�g) (13)

on the LOKI DBH output pair (h; g) and applying the transformation

(h0; g0; l
0; n0) = (h0; g0; l� g0; n� g0) (14)

on the LOKI DBH inputs (h0; g0; l; n); we obtain the function illustrated in Fig.5 that

computes (h; f) from the inputs (h0; g0; l0; n0) in the manner

h = El0(n0)�n0�h0
f = En0�h0�g0(h�l

0)�h�l0�h0:
(15)

- - -? ��
6

n0 q -

?
� - -?�

h0

f

h

6
r = n0 � h0 � g0

-l0

6
?- -�

?
ho

q

q

Figure 5: The new function used to attack the LOKI DBH round function.

A free-start target attack on the LOKI DBH with complexity about

2m=2: In the following, we show that, for any given (h; f), one can �nd, in about

2 � 2m=2 encrypting computations for the block cipher, a solution for (h0; g0; l; n)

satisfying (10) by a \meet-in-the-middle" attack.

Because the transformations (13) and (14) are both easy to compute and easy to

invert, it follows from our principle that �nding a solution (h0; g0; l; n) of (12) for a

given (h; g) is computationally the same as �nding a solution (h0; g0; l
0; n0) of (15) for

a given (h; f). This can be done in about 2� 2m=2 encryptions as we now show.

1. Choose an arbitrary value for l0.

2. For the given h and the chosen l0, compute h0 = h�n0�El0(n
0) for 2m=2 randomly

chosen values of n0.

3. For the given h; f and the chosen l0, compute h�0 = Er(h�l0)�h�l0�f for 2m=2

randomly chosen values of r (= n � h0 � g0).

The probability that some h0 and some h�0 take on the same value is about 0.63. For

h0 = h�0, by computing g0 = r�n0�h0, we obtain a solution (h0; g0; l0; n0) for (15). 2

Remark. We have given three free-start target attacks on three hash round func-

tions in this section. The \real" target attacks (with speci�ed initial value) will usually

be more di�cult. For example, when m is 64 bits, a target attack on the 128-bit hash

function LOKI DBH obtained by combining the above attack with the attack used

in the proof of Theorem 3 will take about 2
128�32

2 = 280 computations. A similar

conclusion holds also for the QG-I scheme hash function.

12

3.4 Complexity of known attacks on 2m-bit hash functions

We consider here some known 128-bit iterated hash functions based on two uses of

an m = 64-bit block cipher with key-length k = 64 or k = 56 in each round. All

these schemes can be considered as slight modi�cations of the 64-bit DM-scheme

hash round function. The complexities of known attacks on these hash functions are

listed in Table 1. We assume that all the iterated hash functions are used with MD-

strengthening and that the underlying block cipher has no known weakness (such as

weak keys).

h(�; �) PBGV GQ-I LOKI-DBH Merkle
; 12 M-S

; 13 ideal

(m;k)
; 1 (64,64) (64,64) (64,64) (64,56) (64,56) (64,k)

target 264
; 2 280

; 5 280
; 9 2112 281

; 14 2128

f-s target o(1)
; 3 232

; 6 232
; 10 2112 254

; 15 2128

collision 232
; 3 264 264 256 254 264

semi-f-s col. 232
; 3 232

; 7 264 256 254 264

f-s coll. o(1)
; 4 o(1)

; 8 232
; 11 256 227

; 16 264

leng(Mi) 128 128 128 7 64 l
; 17

; 1: m: block-length, k: key-length of the underlying cipher;

; 2: see last section;

; 3: recent results of Preneel [19];

; 4: a free-start collision attack is no harder than a free-start target attack;

; 5: from the free-start target attack
; 6 and Proposition 3;

; 6: see last section;

; 7,8: see [16];

; 9,10: same as ; 5,6;

; 11: same as ; 4;

; 12: Merkle's scheme [13]: hash-code is of length 112 bits; this scheme appears to have ideal

security; however, each round can `digest' only 7 bits of message;

; 13: Meyer-Schilling's scheme [14]: 128-bit hash code, but round output has length 108 bits;

; 14,15: each round output (two blocks) has length 108 bits; a free-start target attack on one (54-

bit) block takes about 254 computations; then use Proposition 3; see also [14];

; 16: collision is achieved on one (54-bit) block.

; 17: see next section.

Table 1: Complexity of known attacks on some hash round functions.

3.5 Proposed schemes for block ciphers with k = 2m

The study of previously proposed hashing schemes (see Table 1) suggests that it is

di�cult, if not impossible, to build a 2m-bit hash round function with ideal computa-

tional security that can \digest" in each round at least m bits of message by two uses

of an m-bit block cipher with an m-bit key. However, if an m-bit block cipher with

13

a 2m-bit key is available, then there are more possibilities to construct a possibly

secure 2m-bit hash round function. In the following, we propose two 2m-bit hash

round functions that use an m-bit block cipher with a 2m-bit key and that appear to

be secure.

Tandem DM: We refer to our �rst proposed 2m-bit hash function as the Tandem

DM scheme because it is based on cascading two DM-schemes as in (2). The round

function of the Tandem DM scheme is shown in Fig.6. In each iteration, two new

- -

?
6
?

-

- -�

�-

-

6

q

q q Hi

Gi

Hi�1

Gi�1

Mi
Wiq

?

6

Figure 6: The Tandem DM 2m-bit hash round function based on an m-bit block
cipher with a 2m-bit key.

m-bit values Hi and Gi are computed from the two previous m-bit values Hi�1 and

Gi�1 and from an m-bit message block Mi as follows:

Wi = EGi�1;Mi(Hi�1)

Hi = Wi�Hi�1

Gi = Gi�1�EMi;Wi(Gi�1):

Abreast DM We next propose the Abreast DM scheme in which two DM-schemes

are used side-by-side. The hash round function is illustrated in Fig.7. In each round,

two new m-bit values (Hi; Gi) are computed from the two previous m-bit values

(Hi�1; Gi�1) and from an m-bit message block Mi as follows:

Hi = Hi�1�EGi�1;Mi(Hi�1)

Gi = Gi�1�EMi;Hi�1(Gi�1)

where G denotes the bit-by-bit complement of G.

6

-

!!!!

�

�-

- ?

6

Mi

Hi

Gi
q

q

�
��

�
��PPPPPP
?

q

-

-Hi�1

Gi�1
b-

Figure 7: The Abreast DM 2m-bit hash round function based on an m-bit block
cipher with a 2m-bit key. The circle indicates that the input to the lower encrypter
is bitwise complemented.

14

Remarks: 1. The Tandem DM and the Abreast DM schemes were constructed on

the following consideration. The round function h consists of two subfunctions h1 and

h2:

(Hi; Gi) = h(Hi�1; Gi�1;Mi) = [h1(Hi�1; Gi�1;Mi); h2(Hi�1; Gi�1;Mi)];

both of which have the same inputs. Thus, to attack h (in a free-start target or free-

start collision attack) implies that one must attack both h1 and h2 simultaneously. If

the subfunctions h1 and h2 are so `di�erent' that an attack on one subfunction provides

no help in attacking the other subfunction and if both h1 and h2 are equivalent (in

the sense of security) to the apparently secure DM-scheme, then we can expect that

an attack on h will have complexity equal to the product of the complexities of the

attacks on h1 and on h2. In the proposed Tandem DM and Abreast DM schemes, the

subfunctions h1 and h2 are chosen to be as \di�erent" as possible.

2. The Abreast DM scheme gives a 2m-bit hash function that is at least as strong

as the m-bit DM-scheme. [This is true also for the Meyer-Schilling scheme [7, 14].]

3. Our investigations to this point have shown no weakness in either of these

two new proposed 2m-bit hash round functions, i.e., we have been unable to �nd any

attacks better than brute-force attacks when the underlying cipher is assumed to have

no weakness. We should point out, however, that our Tandem DM and Abreast DM

schemes use two m-bit block encryptions for each block of m message bits in order to

compute a �nal hash value of length 2m bits.

Acknowledgements

The authors are grateful to Prof. F. Piper, Dr. R. Rueppel and the anonymous ref-

eree for informing them about recent developments related to ISO standard CD10118.

The authors would like in particular to thank B. Preneel for his many useful com-

ments on this paper. This research was supported by the Swiss Commission for the

Advancement of Scienti�c Research, Research Grant KWF 2146.1.

References

[1] S. G. Akl, \On the Security of Compressed Encodings", Advances in Cryptology-

CRYPTO'83, Proceedings, pp. 209-230, Plenum Press, New York, 1984.

[2] L. Brown, J. Pieprzyk and J. Seberry, \LOKI { A Cryptographic Primitive for Au-

thentication and Secrecy Applications", Advances in Cryptology { AUSCRYPT'90,

Proceedings, LNCS 453, pp. 229-236, Springer-Verlag, 1990.

[3] Data Encryption Standard, FIPS PUB 46, National Tech. Info. Service, Spring�eld,

VA, 1977.

[4] I. B. Damgaard, \A Design Principle for Hash Functions", Advances in Cryptology-

CRYPTO'89, LNCS 435, pp. 416-427, Springer-Verlag, 1990.

[5] R. W. Davies and W. L. Price, \Digital Signature { an Update", Proc. International

Conference on Computer Communications, Sydney, Oct 1984, Elsevier, North-Holland,

pp. 843-847, 1985.

15

[6] I.S.O. DP 10118, Hash-functions for Digital Signatures, I.S.O., April 1989.

[7] ISO/IEC CD 10118, Information technology { Security techniques { Hash-functions,

I.S.O., 1991.

[8] X. Lai and J. L. Massey, \A Proposal for a New Block Encryption Standard", Advances

in Cryptology-EUROCRYPT'90, Proceedings, LNCS 473, pp. 389-404, Springer-

Verlag, Berlin, 1991.

[9] X. Lai, J. L. Massey and S. Murphy, \Markov Ciphers and Di�erential Cryptanaly-

sis", Advances in Cryptology-EUROCRYPT'91, Proceedings, LNCS 547, pp. 17-38,

Springer-Verlag, Berlin, 1991.

[10] S. M. Matyas, \Key Processing with Control Vectors", Journal of Cryptology, Vol. 3,

No. 2, pp. 113{136, 1991.

[11] S. M. Matyas, C. H. Meyer and J. Oseas, \Generating Strong One-way Functions

with Cryptographic Algorithm", IBM Technical Disclosure Bulletin, Vol. 27, No. 10A,

pp. 5658-5659, March 1985.

[12] W. Meier, O. Sta�elbach, \ Nonlinearity Criteria for Cryptographic Functions",

Advances in Cryptology - EUROCRYPT'89, Proceedings, LNCS 434, pp. 549-562,

Springer-Verlag, 1990.

[13] R. C. Merkle, \One Way Hash Functions and DES", Advances in Cryptology-

CRYPTO'89, Proceedings, LNCS 435, pp. 428-446, Springer-Verlag, 1990.

[14] C. H. Meyer and M. Schilling, \Secure Program Code with Modi�cation Detection

Code", Proceedings of SECURICOM 88, pp. 111-130, SEDEP.8, Rue de la Michodies,

75002, Paris, France.

[15] C. J. Mitchell, F. Piper and P. Wild, \Digital Signatures", Contemporary Cryptology

(Ed. G. Simmons), pp. 325-378, IEEE Press, 1991.

[16] S Miyaguchi, K. Ohta and M. Iwata, \Con�rmation that Some Hash Functions Are Not

Collision Free", Advances in Cryptology-EUROCRYPT'90, Proceedings, LNCS 473,

pp. 326-343, Springer-Verlag, Berlin, 1991.

[17] M. Naor and M. Yung, \Universal One-way Hash Functions and Their Cryptographic

Applications", Proc. 21 Annual ACM Symposium on Theory of Computing, Seattle,

Washington, May 15-17, 1989, pp. 33-43.

[18] B. Preneel, A. Bosselaers, R. Govaerts and J. Vandewalle, \Collision-free Hashfunc-

tions Based on Blockcipher Algorithms." Proceedings of 1989 International Carnahan

Conference on Security Technology, pp. 203-210.

[19] Private communication, B. Preneel to X. Lai, June 1992.

[20] J. J. Quisquater and M. Girault, \2n-bit Hash Functions Using n-bit Symmetric Block

Cipher Algorithms", Abstracts of EUROCRYPT'89.

[21] J. J. Quisquater and M. Girault, \2n-bit Hash Functions Using n-bit Symmetric

Block Cipher Algorithms", Advances in Cryptology-EUROCRYPT'89, Proceedings,

LNCS 434, pp. 102-109, Springer-Verlag, Berlin, 1990.

[22] R. S. Winternitz, \Producing One-Way Hash Function from DES", Advances in

Cryptology-CRYPTO'83, Proceedings, pp. 203-207, Plenum Press, New York, 1984.

[23] R. S. Winternitz, \A Secure One-way Hash Function Built from DES", Proc. 1984

IEEE Symposium on Security and Privacy, Oakland, 1984, pp. 88-90.

16

