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Abstract

Welch's bound for a set of M complex equi-energy sequences is considered as a
lower bound on the sum of the squares of the magnitudes of the inner products
between all pairs of these sequences.  It is shown that, when the sequences are binary
(±-1 valued) sequences assigned to the M users in a synchronous code-division
multiple-access (S-CDMA) system, precisely such a sum determines the sum of the
variances of the interuser interference seen by the individual users.  It is further
shown that Welch's bound, in the general case, holds with equality if and only if the
array having the M sequences as rows has orthogonal and equi-energy columns.    For
the case of binary (±-1 valued) sequences that meet Welch's bound with equality, it is
shown that the sequences are uniformly good in the sense that, when used in a S-
CDMA system, the variance of the interuser interference is the same for all users.  It is
proved that a sequence set corresponding to a binary linear code achieves Welch's
bound with equality if and only if the dual code contains no codewords of Hamming
weight two.  Transformations and combination of sequences sets that preserve
equality in Welch's bound are given and used to illustrate the design and analysis of
sequence sets for non-synchronous CDMA systems.

1  Introduction

The aim of this paper is to show the central role played by Welch's bound [1] in the
synthesis and/or analysis of sequence sets or multi-sets (in which the same sequence
can appear more than once) for use in code-division multiple-access (CDMA) systems.

Section 2 motivates the interest in the sum of the squares of the magnitudes of
the inner products between the sequences in a sequence (multi-)set by showing that
this sum determines the sum of the variances of the interuser interference
experienced by the individual users in a synchronous CDMA (S-CDMA) system.
Welch's bound on the sum of the magnitudes of the squares of the inner products
between the sequences in a complex sequence (multi-)set is introduced in Section 3
where the apparently new necessary and sufficient condition for equality is derived.  It
is further shown that (multi-)sets of equi-energy sequences that achieve Welch's
bound with equality enjoy an interesting "uniformly good" property that, for the S-



user is the same for all users.  Section 4 treats the construction of sequence sets from
binary linear codes and gives the necessary and sufficient condition for such a
sequence set to achieve equality in Welch's bound.  In Section 5, transformations and
combination of sequence (multi-)sets are considered that preserve equality in Welch's
bound and that are useful in synthesizing and/or analyzing sequence (multi-)sets for
use in non-synchronous CDMA systems.  Section 6 contains some concluding
remarks.

2  Synchronous CDMA Systems

In most spread-spectrum multiple-access systems of the CDMA type, each of the users,
say user i, is assigned a binary (±1 valued) spreading sequence of length L, say

x(i)  =  [x1(i), x2(i), ... , xL(i)],

where L is the spreading factor of the spread-spectrum system.  The binary (±1 valued)
data sequence

... , B-1(i), B0(i), B1(i), ...

of user i is then expanded to a binary (±1 valued) sequence at L times the original data
rate by using the original data symbols to control the polarity of the spreading
sequence x(i).  Each component of the expanded binary (±1 valued) data symbol

Bk(i) x(i)  =  [Bk(i) x1(i), Bk(i) x2(i), ... , Bk(i) xL(i)]

is called a chip. In this manner, one creates the binary (±1 valued) sequence

...  , B-1(i) x(i),  B0(i) x(i),  B1(i) x(i),  ...

that forms the input to the modulator of user i.  This modulator might, for instance,
be a binary phase-shift-keyed modulator, and all users would use the same carrier
frequency.

In a synchronous CDMA (S-CDMA) system, all users are in exact synchronism
(relative to the receiver) in the sense that not only are their carrier frequencies and
phases the same, but also their expanded data symbols are aligned in time.  With the
usual assumption of additive white Gaussian noise, this implies that the demodulator
output for the k-th data symbol interval can be written as the L-chip sequence

rk  =  ∑
j=1

M
 Bk(j) x(j)  + nk                                                    (2.1)

where the L-chip noise sequence

nk  =  [nk1, nk2, ... ,nkL],



random variables, each with mean 0 and variance 1/γ, where γ is the signal-to-noise
ratio defined as the received energy of an expanded data symbol divided by the two-
sided noise power spectral density of the additive white Gaussian noise.

In a conventional CDMA receiver, the sequence rk is further processed
separately for each user in the manner that, say for user i, rk is matched-filtered (or
"correlated") with the spreading sequence x(i) of that user to produce the detection
statistic Sk(i) for the data symbol Bk(i).  Mathematically, matched filtering is just the
operation of computing the inner product so that

Sk(i)  =  〈rk, x(i)〉  =  ∑
l=1

L
 rkl xl(i)

where

rk  =  [rk1, rk2, ... , rkL].

With the help of (2.1) and the fact that

〈x(j), x(j)〉   =  L                                                           (2.2)

for all j, the data symbol detection statistic for user i becomes

Sk(i)  =  L Bk(i)  +  ∑
j=1
j≠ i

M
 Bk(j) 〈x(j), x(i)〉   +  ηk(i),                               (2.3)

where

ηk(i)  =  〈nk, x(i)〉   =  ∑
l=1

L
 nkl xl(i)

is a Gaussian random variable with mean 0 and variance L/γ that is independent of
the data symbols.  Because the data symbols of the M users are themselves statistically
independent and each has mean 0 and variance 1, the sum

ξk(i)  =  ∑
j=1
j≠ i

M
 Bk(j) 〈x(j), x(i)〉                                                 (2.4)

in (2.3), which represents the interuser interference experienced by user i, has mean 0
and variance

σ2(i)  =  ∑
j=1
j≠ i

M
 |〈x(j), x(i)〉|2.                                                  (2.5)



It is common in the analysis of CDMA systems to make the so-called Gaussian
assumption that the interuser interference experienced by user i is a Gaussian random
variable; the central-limit theorem ensures that this assumption is generally valid
when the number M of users is large.

Summarizing, we have seen that, in a conventional S-CDMA system, the
detection statistic for the data symbol Bk(i) of user i can be written as

Sk(i)  =  L Bk(i)  +  ξk(i)  +  ηk(i)                                             (2.6)

where ξk(i) and ηk(i), under the Gaussian assumption, are independent zero-mean
Gaussian random variables.  The noise ηk(i) has variance L/γ, while the interuser
interference ξ k(i) has variance given by (2.5), which we write here in the more
convenient form

σ2(i)  =  ∑
j=1

M
 |〈x(j), x(i)〉|2  -  L2.                                           (2.7)

It follows that the sequence design problem for S-CDMA, when a conventional
receiver is used and when the system is judged by the worst interuser interference
σ2wc experienced by any user, can be phrased as follows:

Problem 1:  Choose the binary (±1 valued) sequences x(1), x(2), ... , x(M) of length L to
minimize

σ2wc  =  maxi σ2(i)  =  maxi ∑
j=1

M
 |〈x(j), x(i)〉|2  -  L2.                         (2.8)

The optimally fair solution to Problem 1 will result from a solution, when it exists, to
the following problem.

Problem 2:  Choose the binary (±1 valued) sequences x(1), x(2), ... , x(M) of length L to
minimize

σ2TOT  =  ∑
i=1

M
 ∑
j=1

M
 |〈x(j), x(i)〉|2  -  M L2                                   (2.9)

over all choices of such sequences and then (if possible) to satisfy the further condition
that, for 1 ≤ i ≤ M,

σ2(i)  =  ∑
j=1

M
 |〈x(j), x(i)〉|2  -  L2  =  

1
M  σ2TOT.                            (2.10)

It is primarily this second problem that we will address in the remainder of this
paper.  To place our later results into better perspective, we first consider here the



Condition for No Interuser Interference:  The binary (±1 valued) length L sequences
x(1), x(2), ... , x(M) give σ2TOT  =  0 [and hence also σ2(i)  =  0 for 1  ≤  i  ≤  M] if and only if
x(1), x(2), ... , x(M) are orthogonal, i.e., if and only if

〈x(j), x(i)〉  =  0,  all i ≠ j.

Proof:                             ∑
i=1

M
 ∑
j=1

M
 |〈x(j), x(i)〉|2  ≥  ∑

i=1

M
 |〈x(i), x(i)〉|2  =  M L2

with equality if and only if x(1), x(2), ... , x(M) are orthogonal. o

It follows immediately that σ2TOT  =  0 is possible only when M  ≤  L, since there
can be at most L orthogonal non-zero sequences of length L.  Thus, σ2TOT  =  0 when M
=  L is possible if and only if the L × L matrix having x(1), x(2), ... , x(M) as rows is a
Hadamard matrix [2, p. 129].  Except for the trivial cases L = 1 and L = 2, Hadamard
matrices exist only when L is divisible by 4; they may exist for all L divisible by 4 but
this has not been proved.  Hadamard matrices are known to exist whenever L is a
power of 2 [2, p. 130-131].  However, the case M ≤ L is not of real interest in S-CDMA
systems.  The motivation for attaining the complete synchronization that
characterizes an S-CDMA system is that this should allow the system to accomodate
many more users than one can tolerate with non-synchronous CDMA.

3  Welch's Bound

The starting point for our finding solutions to Problem 2 above will be the bound on
the sum of the squares of the magnitudes of inner products given by Welch in 1974 [1].
Because this bound applies generally to sequences with complex components and
because the general case is as easy to treat as the special case of sequences with ±1
components, we will hereafter allow the sequences

x(i)  =  [x1(i), x2(i), ... , xL(i)]

to be in CL, the vector space of L-tuples over the complex field C with the inner
product defined as

〈x(j), x(i)〉  =  ∑
k=1

L
 xk(j) xk(i)∗                                               (3.1)

where the asterisk denotes complex conjugation.

We first derive an elementary property of squares of inner products in CL that is
the key not only to a simple derivation of Welch's bound, but also and more
interestingly to a recognition of when equality holds in that bound.



Lemma 1: (Row-Column Equivalence)  Let y(1), y(2), ... , y(L) denote the columns of the
M × L array whose rows are the sequences x(1), x(2), ... , x(M) in CL, then

∑
i=1

M
  ∑

j =1

M
  |〈x(j), x(i)〉|2  =  ∑

k=1

L
  ∑

l =1

L
  |〈y(l), y(k)〉|2.                                          (3.2)

Proof:  Because 〈x(i), x(j)〉  =  〈x(j), x(i)〉 ∗ , we have

∑
i=1

M
  ∑

j =1

M
  |〈x(j), x(i)〉|2  = ∑

i=1

M
  ∑

j =1

M
  〈x(j), x(i)〉〈 x(i), x(j)〉

=  ∑
i=1

M
  ∑

j =1

M
  ∑

k=1

L
  xk(j) xk(i)∗ ∑

l =1

L
 xl(i) xl(j)∗

=  ∑
k=1

L
  ∑

l =1

L
  ∑

i=1

M
  xl(i) xk(i)∗ ∑

j =1

M
 xk(j) xl(j)∗

=  ∑
k=1

L
  ∑

l =1

L
 〈y(l), y(k)〉〈 y(k), y(l)〉

=  ∑
k=1

L
  ∑

l =1

L
  |〈y(l), y(k)〉|2,

where we have used the fact that the column vector y(k) is just

y(k)  =  (xk(1), xk(2), ... , xk(M)). o

We will also have need for the following simple result.

Lemma 2:  If  a1, a2, ... , aL are real numbers, then

∑
k=1

L
 (ak)2  ≥  

1
L ( ∑

k=1

L
 ak )2                                                                             (3.3)

with equality if and only if a1 = a2 = ... = aL.

Proof:  Consider a random variable X that takes on the value ak with probability 1/L
for 1 ≤ k ≤ L.  Because the square function x2 is strictly convex-∪  on the whole real line,
it follows from Jensen's inequality that



E[X2]  =  ∑
k=1

L
  
1
L (ak)2  ≥  E[X]2  =  ( ∑

k=1

L
  
1
L ak)2

with equality if and only if  a1 = a2 = ... = aL.  Multiplying both sides of this inequality by
L gives the lemma. o

We are now ready for the proof of Welch's bound.

Welch's Bound:  If x (1), x (2), ... , x (M) are sequences in CL and all have the same
"energy" L, i. e., if

| | x(i) | |2  =  〈x(i), x(i)〉   =  L                                                (3.4)

for 1 ≤ i ≤ M, then

∑
i=1

M
  ∑

j =1

M
  |〈x(j), x(i)〉|2   ≥  M2 L                                               (3.5)

with equality if and only if the columns y(1), y(2), ... ,y(L) of the M × L array whose rows
are x(1), x(2), ... , x(M) are orthogonal and all columns have the same energy, i.e.,

| | y(k) | |2  =  M                                                           (3.6)

for 1 ≤ k ≤ L.

Remark:  Welch's bound was originally stated, and is usually treated, as a lower bound
on the maximum value of |〈x (j), x (i)〉| for i ≠ j.  This form of the bound is easily
obtained from (3.5), but it seems to us that Welch's bound is more fundamentally a
bound on the sum of the squares of the magnitudes of the inner products between the
sequences.  The condition for equality in (3.5) appears not to have been given
previously.

Proof:

∑
k=1

L
  ∑

l =1

L
  |〈y(l), y(k)〉|2  ≥  ∑

k=1

L
  |〈y(k), y(k)〉|2   =  ∑

k=1

L
  ( | | y(k) | |2)2

with equality if and only if y(1), y(2), ... ,y(L) are orthogonal.  But Lemma 2 now gives

∑
k=1

L
  ( | | y(k) | |2)2  ≥  

1
L( ∑

k=1

L
  | | y(k) | |2)2  =  

1
L( ∑

k=1

L
  ∑

i=1

M
  |xk(i)|2)2  =  

1
L( ∑

i=1

M
 ∑
k=1

L
  |xk(i)|2)2

=   1
L( ∑

i=1

M
 | | x(i) | |2)2  =  

1
L

 (M L)2  =  M2 L



this value must be M.) o
We now show a rather surprising consequence of the situation when equality

holds in (3.5), i.e., when the columns y(1), y(2), ... ,y(L) of the M × L array whose rows
are the equi-energy sequences x(1), x(2), ... , x(M) are orthogonal.

Proposition 1: (The Uniformly-Good Property)  If x(1), x(2), ... , x(M) are sequences in CL

such that | | x(i) | |2  =  L for 1 ≤ i ≤ M and such that equality holds in (3.5), then

∑
j =1

M
  |〈x(j), x(i)〉|2   =  M L

for 1 ≤ i ≤ M.

Proof:        ∑
j =1

M
  |〈x(j), x(i)〉|2   =  ∑

j =1

M
  〈x(j), x(i)〉  〈x(i), x(j)〉   =  ∑

j =1

M
  ∑

k =1

L
  xk(j) xk(i)∗ ∑

l =1

L 
  xl(i) xl(j)∗

=  ∑
k =1

L
  ∑

l =1

L
  xk(i)∗  xl(i) ∑

j =1

M 
  xk(j) xl(j)∗  =  ∑

k =1

L
  ∑

l =1

L
  xk(i)∗  xl(i) 〈y(k), y(l)〉.

But equality in (3.5) implies 〈y(k), y(l)〉  =  0 for all k ≠ l and 〈y(k), y(l)〉  =  Μ for k = l so
that

∑
j =1

M
  |〈x(j), x(i)〉|2   =  ∑

k=1

L
  xk(i)∗  xk(i) M  = | | x(i) | |2 M  =  L M.  o

We next consider the special case when all components of all sequences have
unit magnitude, i.e., when |xk(i)|  =  1 for 1 ≤ i ≤ M and 1 ≤ k < L.  [We note that this
special case includes the case of interest for CDMA systems where the sequences have
±1 components.]  For this special case, equalities (3.4) and (3.6) are automatically
fulfilled so that Welch's bound simplifies as follows.

Welch's Bound for Sequences with Unit-Amplitude Components:  If x(1), x(2), ... , x(M)

are sequences in CL  such that |xk(i)|  =  1 for 1 ≤ i ≤ M and 1 ≤ k < L, then

∑
i=1

M
  ∑

j =1

M
  |〈x(j), x(i)〉|2   ≥  M2 L                                               (3.7)

with equality if and only if the columns y(1), y(2), ... ,y(L) of the M × L array whose rows
are x(1), x(2), ... , x(M) are orthogonal.  Moreover (by Proposition 1), if equality holds in
(3.7), then

∑
j =1

M
  |〈x(j), x(i)〉|2   =  M L                                                     (3.8)



4  Optimum S-CDMA Sequence Sets from Linear Codes

We will call the binary (±1 valued) sequences x(1), x(2), ... , x(M) of length L a Welch-
Bound-Equality (WBE) sequence set (or sequence multi-set if these M sequences are
not all distinct) if equality holds in (3.7) or, equivalently from (2.9), if

σ2TOT  =  M L (M - L).                                                     (4.1)

It follows further from Proposition 1 that, for a WBE sequence (multi-)set, the
variance of the interuser interference experienced by user i is

σ2(i)  =  L (M - L)                                                        (4.2)

for 1 ≤ i ≤ M.  In other words, WBE sequence (multi-)sets are optimal for S-CDMA
systems in that they provide a solution to Problem 2 that was formulated in Section 2.
In this section, we will give a simple, but powerful, construction of WBE sequence sets
based on linear error-correcting codes.  First, we note that the number M of sequences
in a WBE sequence (multi-)set must be even, because the parity of 〈y(k), y(l)〉 equals the
parity of M and hence cannot vanish for k ≠ l unless M is even (where here and
hereafter we exclude the trivial case where L  =  1).  Moreover, because L non-zero
vectors can be orthogonal only if their length M is at least L, it follows that equality in
(3.7) is possible only when M ≥ L.  Thus, for a given L, we see that it will generally be
easier to satisfy the orthogonality condition on y(1), y(2), ... ,y(L) as M becomes larger.
Thus, the minimization of the variance of interuser interference when M ≥ L is quite
the reverse of the problem of complete elimination of interuser interference that was
discussed at the end of Section 2.

With a binary (±1 valued) sequence x  =  [x1, x2, ... , xL], we can and will associate
a binary (GF(2) valued) sequence b  =  [b1, b2, ... ,bL] where bk is 0 or 1 according as xk is
+1 or -1, respectively.  In this manner, we can and will associate to any set of vectors in
GF(2)L a corresponding set of binary (±1 valued) sequences of length L.  For ease of
later reference, we note here that if x and x' are any two binary (±1 valued) sequences
of length L and if b and b' are the corresponding vectors in GF(2)L, then

〈x', x〉   =  ∑
k=1

L
 xk' xk  =  L - 2 d(b', b)                                          (4.3)

where d(.,.) denotes the Hamming distance between the indicated vectors, i.e., the
number of components in which these vectors differ.

We recall that a binary (L, K) linear code V is just a K-dimensional
subspace of GF(2)L considered as a vector space of dimension L over the finite field
GF(2) and that such a code contains 2K codewords [2, p. 40].  We recall also that the
dual code V⊥  is the set of all b' =  [b1', b2', ... ,bL'] in GF(2)L such that b1 b1'+ b2 b2'+ ... +
bL bL'  =  0 for all b  =  [b1, b2, ... ,bL] in V, and that this dual code is a binary linear (L, L -
K) code [2, p. 44].

We now characterize completely the WBE sequence sets corresponding to linear



codes.
Proposition 2:  The binary (±1 valued) sequence set corresponding to the binary linear
code V is a WBE sequence set if and only if the dual code V⊥ contains no codewords of
Hamming weight two, i. e., with exactly two non-zero components.

Proof:  Consider any positions k and l, 1 ≤ k < l ≤ L.  We will determine the condition
such that columns y (k) and y (l) of the array with rows x (1), x (2), ... , x (M) are not
orthogonal when this sequence set corresponds to the binary linear code V.  Now the
subset of codewords b  =  [b1, b2, ... ,bL] in V such that bk  =  bl or, equivalently, such that
bk + bl  =  0 is a subspace U of V, where we note that the codeword 0  =  [0, 0, ... ,0] is
always in this subspace U.  If U  ≠  V, then this subspace has a single coset in V distinct
from itself, namely the set of all codewords b  =  [b1, b2, ... ,bL] such that bk  ≠  bl or,
equivalently, such that bk + bl  =  1.  Thus, if U  ≠  V, y(k) and y(l) will disagree in
exactly half of their components and hence 〈y(k), y(l)〉  =  0.  But if U  =  V, then y(k) and
y(l) will agree in all their components and hence 〈y(k), y(l)〉  =  Μ  ≠  0.  Thus y(k) and
y(l) will not be orthogonal for all k ≠ l if and only if, for some k ≠ l, bk + bl  =  0 in all
codewords b.  But this latter condition is just the condition that the dual code contains
the weight two vector whose 1's are in positions k and l.  o

The interesting WBE sequence sets specified by Proposition 2 are those of the
following corollary, whose truth follows from the fact that the minimum distance of a
linear code is equal to the minimum Hamming weight of its non-0 codewords [2, p.
41].

Corollary to Proposition 2:  The binary (±1 valued) sequence set corresponding to the
binary linear code V is a WBE sequence set if the minimum distance d⊥  of the dual
code V⊥  is at least three.

The dual code V⊥  of a linear code V contains a word of Hamming weight one
whose 1 is in position k if and only if bk  =  0 in all codewords b  =  [b1, b2, ... ,bL] of V,
i.e., if and only if the k-th component of the codewords in V is idle.  If V⊥  contains no
weight two codewords, then, because V⊥  is also a linear code, it can contain at most
one codeword of Hamming weight one.  Moreover, deleting the corresponding idle
component from all codewords of V will then give a linear code V' whose dual code
V'⊥  contains no codewords with Hamming weights one or two, and thus, unless the
dual code is the linear dual code V'⊥ has minimum distance d⊥   ≥  3.  It follows that
the Corollary to Proposition 2 actually gives all the linear codes corresponding to WBE
sequence sets except for the trivial generalization to linear codes obtained by inserting
exactly one idle component into all the codewords of one of the former codes.

Recall from the discussion in Section 2 that the i-th user in a CDMA system will
transmit in every expanded data symbol period either his spreading sequence +x(i) or
its negative -x(i) according as his corresponding data bit is +1 or -1, respectively.  Thus,
it is often desired that no sequence in a CDMA sequence set be the negative of another
sequence, i. e., that x (i) ≠ -x (j) for all i ≠ j or, equivalently for the corresponding
sequences in GF(2)L, b(i)  ≠  b(j) + 1 for all i ≠ j where 1  =  [1, 1, ... , 1] is the all-one



for all i ≠ j a unipolar sequence set.  The following characterization is immediate.
Characterization of Unipolar Sequence Sets Corresponding to Linear Codes:  The
binary (±1 valued) sequence set correponding to a binary linear code V is unipolar if
and only if  the all-one word 1  =  [1, 1, ... , 1] is not a codeword in V.

We illustrate the ideas of this section with two simple examples.

Example 1:  Let v  be a binary maximal-length sequence (or m-sequence  or pseudo-
noise sequence) of length L  =  2m - 1 where m ≥ 2  [2, p. 222].  Let T denote the left cyclic
shift operator.  Then 0, v, T(v), ... , TL-1(v) are the codewords in a binary linear code V
(for which 1 is not a codeword) with minimum distance d  =  2m-1  whose dual code
V⊥  is a Hamming code with minimum distance d⊥   =  3 [2, p. 223].  It follows from the
Corollary that the binary (±1 valued) sequence set corresponding to V is a unipolar
WBE sequence set of M = L + 1 sequences.  It follows further from (4.2) that, when this
sequence set is used in an S-CDMA system, the interuser interference experienced by
user i has variance

σ2(i)  =  L                                                                 (4.4)

for 1 ≤ i ≤ M.  [We note that the results in this simple example could also have been
obtained by conventional arguments.  The code V is an equidistant code in the sense
that  the Hamming distance between any of its two codewords is the same [2, p. 223],
namely 2m-1 .  This implies from (4.3) that

〈x(j), x(i)〉  =  L - 2. 2m-1  =  -1                                                 (4.5)

for all i ≠ j, which then with the aid of the definition (2.5) gives (4.4).]

Example 2:  Let α  be a primitive element of the finite field GF(24) [2, p. 158] and let V be
the (L = 15, K = 6) Bose-Chaudhuri-Hocquenghem (BCH) code such that α0 = 1, α , and
α3 are zeroes of the generator polynomial g(X) of this code [2, p. 271].  This BCH code
has minimum distance d = 6 [2, Appendix D] and the all-one vector 1  is not a
codeword in this code.  The dual code V⊥  is a (15, 9) cyclic code with minimum
distance d⊥   =  3 [2, Appendix D].  It follows from the Corollary that the binary (±1
valued) sequence set corresponding to V is a unipolar WBE sequence set of M = 64
sequences of length 15.  It follows further from (4.2) that, when this sequence set is
used in a S-CDMA system, the interuser interference experienced by user i has
variance

σ2(i)  =  15 (64 - 15)  =  735                                                  (4.6)

for 1 ≤ i ≤ M.

5  WBE-Preserving Transformation and Combination of Sequence Sets

We first consider operations on a sequence (multi-)set that preserve the WBE
property.



Proposition 3:  If the binary (±1 valued) sequences x(1), x(2), ... , x(M) of length L form a
WBE sequence set or multi-set, then the sequence set or multi-set obtained by
performing any of the following operations on the former set or multiset is also a
WBE sequence set or multi-set:

(i) Replacing x(i) by -x(i) for any i;

(ii) Replacing x(i) =   [x1(i), x2(i), ... , xL(i)] by its left cyclic shift
        T(x(i))  =  [x2(i), ... , xL(i), x1(i)] for 1 ≤ i ≤ M;

(iii) Replacing x(i)  =   [x1(i), x2(i), ... , xL(i)] by its left negacyclic shift
        N(x)  =  [x2(i), ... , xL(i), -x1(i)] for 1 ≤ i ≤ M;

(iv) Deleting the k-th component xk(i) of x(i) for 1 ≤ i ≤ M and for any k; and

(v) Replacing x(i), which corresponds to b(i) in GF(2)L, by the binary (±1 valued)
       sequence corresponding to b(i) + u for 1 ≤ i ≤ M and any u in GF(2)L.

Proof:  Operation (i) changes only the sign of 〈x(j), x(i)〉 for all j ≠ i and hence does not
alter the sum in (3.8).  Operation (ii) causes the columns of the M × L array whose rows
are x(1), x(2), ... , x(M) to be cyclically shifted, but this does not alter the orthogonality of
the columns nor their equi-energy.  Operation (iii) additionally changes the sign of
one column in this array, but again this does not alter the orthogonality of the
columns nor their equi-energy.  Operation (iv) deletes one column of this array but
again this does not alter the orthogonality  nor the equi-energy of the remaining
columns.  Finally, operation (v) changes only the signs of those columns of the M × L
array whose rows are x(1), x(2), ... , x(M) corresponding to positions in which u contains
a 1, which clearly does not alter the orthogonality of the columns nor their equi-
energy. o

Example 3:  Adding any vector u in GF(2)L to the codewords of the linear code V of
length L  =  2m - 1 considered in Example 1 gives the coset

u + V  =  {u, u + v, u + T(v), ... , u + TL-1(v)},

which by Proposition 3(v) also corresponds to a WBE sequence set S of M  =  2m

sequences.  We note that if m is not divisible by 4 and if the sequence u is the (2e + 1)-st
decimation of the m-sequence v, then u is also an m-sequence and the corresponding
binary (±1 valued) sequence set, when augmented with the sequence corresponding to
v  is a so-called Gold sequence set where the name honors the originator of these
sequence sets [3].  Note however, that, for any choice of u, the sequence set S is WBE.
Note also that the full Gold sequence set cannot be WBE because it contains an odd
number of sequences.

The next proposition gives a powerful way of combining smaller WBE sequence



sets to produce larger ones.

Proposition 4:  If x(1), x(2), ... , x(M) and x '(1), x '(2), ... , x '(M') are both WBE sequence
(multi-)sets containing M and M', respectively, binary (±1 valued) sequences of the
same length L, then their "union" x(1), x(2), ... , x(M), x '(1), x '(2), ... , x '(M') is a WBE
sequence (multi-)set with M + M' sequences.

Proof:  Let y(k) and y'(k) denote the k-th columns of the M × L and the M' × L arrays
whose rows are x(1), x(2), ... , x(M) and x'(1), x'(2), ... , x'(M'), respectively.  Then the k-th
column of the (M + M') × L array for the "union" sequence set is Y(k)  =  (y(k), y'(k)).
Thus,

〈Y(l), Y(k)〉   =  〈y(l), y(k)〉 + 〈y'(l), y'(k)〉  =  0

for k ≠ l so that the "union" of these two sequence sets in indeed WBE. o

Propositions 3 and 4 are very useful when constructing and/or analyzing
sequence sets for various types of non-synchronous CDMA systems.  We will illustrate
this applicability with an example for so-called quasi-synchronous CDMA, which is
defined in the same manner as S-CDMA in Section 2 except that there can now be a
relative time misalignment of at most one chip between the symbols of any two users.
Again we take the worst-case interuser interference experienced by any user over all
admissible misalignments as the quantity to be minimized.  A rather tedious
argument that we will not repeat here shows that, for any user i, the worst interuser
interference experienced by that user will occur when his symbol edge is either first or
last among those of all M users and those other users are each either in full symbol
synchronization with the specified user or exactly one chip misaligned with that user
[4].  Assuming that L is large so that we can ignore whether the single chip from an
adjacent expanded data symbol that overlaps the expanded data symbol of a specified
user corresponds to a data bit with the same or with the opposite sign as that for the
adjacent expanded data symbol whose L - 1 chips overlap the same expanded data
symbol of the specified user, it follows that the worst interuser interference
experienced by user i will have a variance

σ2wc(i)  =  max∆ ∈ { -1,+1}   ∑
j=1
j≠ i

M
  maxθ ∈  {0, ∆}  |〈Tθ(x(j)), x(i)〉|2                                (5.1)

where again T is the (left) cyclic shift operator.  The sequence set should thus be chosen
to minimize

σ2wc  =  maxi σ2wc(i).                                                     (5.2)

Example 4:  Let S be the WBE sequence set with M  =  L + 1  =  2m  sequences
corresponding to u + V in Example 3, where u is an arbitrary vector in GF(2)L.

We consider first the sum in (5.1) when the lag/lead parameter ∆ is +1.  Let T(S)



corresponding to T(V) be the set of left cyclic shifts of the sequences in S.  By
Proposition 4, the union sequence set U  =  S ∪ T(S) containing 2M sequences is also
WBE.  For the WBE sequence set U, (3.7) gives

2 ∑
i=1

M
  ∑

j =1

M
  |〈x(j), x(i)〉|2  +  2 ∑

i=1

M
  ∑

j =1

M
  |〈T(x(j)), x(i)〉|2  =  (2M)2 L,              (5.3)

where we have used the fact that 〈T(x(j)), T(x(i))〉   =  〈x(j), x(i)〉 .  Now the first double
sum on the left in (5.3) is just M2 L, as follows from the fact that S is a WBE sequence
set of M sequences.  Moreover,

∑
j =1

M
  |〈T(x(j)), x(i)〉|2

is independent of i, as follows from (4.3) and the fact that the linear code V is closed
under cyclic shifting so that the Hamming distances from any vector in u + V to all
the vectors in T(u + V)  =  T(u) + T(V)  =  T(u) + V does not depend on the particular
choice of the former vector.  It thus follows from (5.3) that

∑
j =1

M
  |〈T(x(j)), x(i)〉|2  =  M L                                                 (5.4)

for 1 ≤ i ≤ M.  But, because  〈x(j), x(i)〉  =  −1 for all i ≠ j according to (4.5) and because
〈x(j), x(i)〉 must have odd parity since L is odd, it follows that

maxθ ∈  {0, +1}  |〈Tθ(x(j)), x(i)〉|2  =  |〈T(x(j)), x(i)〉|2                              (5.5)

holds for all j ≠ i.  An entirely similar argument for ∆  =  -1, which again exploits the
fact that V is closed under cyclic shifting, shows that

∑
j =1

M
  |〈T-1(x(j)), x(i)〉|2  =  M L                                               (5.6)

and that

maxθ ∈  {0, −1}  |〈Tθ(x(j)), x(i)〉|2  =  |〈T-1(x(j)), x(i)〉|2                              (5.7)

also holds for all j ≠ i.  Because of (5.1), (5.4)-(5.7) and the fact that |〈T-1(x(i)), x(i)〉|  =
|〈T(x(i)), x(i)〉|, it follows that

σ2wc(i)  =  M L - |〈T(x(i)), x(i)〉|2                                                                   (5.8)

for 1 ≤ i ≤ M.  We see from (5.8) that the worst user will be that user i for which the
"autocorrelation" magnitude |〈T(x(i)), x(i)〉| is smallest.  But, for every i, the fact that L
is odd implies



 1  ≤  |〈T(x(i)), x(i)〉|  ≤  L                                                   (5.9)
with equality on the left when x(i) corresponds to an m-sequence, as it would, for
instance, for that user whose sequence corresponds to the additive vector u  when u is
an m-sequence (as it is in the Gold sequence set).  We conclude then from (5.2), (5.8),
(5.9)  and the fact that M = L + 1 that

L  ≤  σ2wc  ≤  L2 + L - 1                                                 (5.10)

with equality on the right if u is an m-sequence (and hence if S is the Gold sequence
set).  It may come as a small surprise to some readers that the Gold sequence set gives
the poorest worst-case performance among the sequence sets corresponding to
different choices of the vector u.  What is more significant is that (5.10) applies for any
L  =  2m - 1 with m ≥ 2; there is no requirement that m not be divisible by 4 as is
required for the Gold sequence set to exist.

6  Remarks

We have given rather abundant evidence to show the importance of sequence
(multi-)sets that achieve equality in Welch's bound and we have shown that such
sequence sets are surprisingly easy to construct.  There seems no reason, in most
CDMA systems, to settle for a sequence (multi-)set that does not achieve equality in
Welch's bound.

It may come as a major surprise to some readers that the sequence set
corresponding to any binary linear code V whose dual code has minimum distance at
least 3 corresponds to a WBE sequence set and hence is optimum for use in S-CDMA
systems.  There is no requirement that the code V have any other special distance
properties, as would be required for instance if one attempted to make the
"crosscorrelation" magnitude |〈x(j), x(i)〉| small for all j ≠ i.  Such an attempt requires, by
(4.3), that the Hamming distance d(b(j), d(i)) between the corresponding codewords in
V be made as near to L/2 as possible for all j ≠ i, or equivalently that the Hamming
weights of the non-0 codewords be made as near as possible to L/2.  The reader may
object that if these crosscorrelations are not as nearly uniformly small in magnitude as
possible, then the validity of invoking the central-limit theorem to justify the
assumption that the interuser interference ξk(i) in (2.4) is Gaussian becomes suspect.
We would counter by pointing out that, for a given variance, a Gaussian random
variable has the maximum possible entropy [5, Section 20.5].  Thus, the channel
created for user i by the S-CDMA system and in which ξk(i) is an additive noise term
actually has its minimum capacity when ξk(i)is Gaussian.  For a given variance of the
interuser interference, its non-Gaussianness (if properly exploited) is a virtue, not a
vice!
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