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Abstract. When a shadow of a threshold scheme is publicized, new
shadows have to be reconstructed and redistributed in order to maintain
the same level of security. In this paper we consider threshold schemes
with disenrollment capabilities where the new shadows can be created
by broadcasts through a public channel. We establish a lower bound on
the size of each shadow in a scheme that allows L disenrollments. We
exhibit three systems that achieve the lower bound on shadow size.

1 Introduction

In safeguarding a secret, there are many situations where two or more guardians
provide more security than only one. Common examples can be found in safe
deposit boxes and in the control of nuclear weapons. In these cases, two keys
are needed to activate the control mechanism; the ability to exercise shared
control is lost if either key is lost or either key's owner is incapacitated. To guard
against such a loss, copies of keys or instructions may be made and distributed to
di�erent parties. However, increasing the number of distributed copies increases
the risk of some copy being compromised, thus reducing the security of the
system. By distributing \shadows" of a shared secret (which can be used as a
key),threshold schemes allow shared control without risking compromise of the
secret.

Let S be a secret which needs to be protected. The secret S is concealed
among n di�erent shadows in such a way that:

1. For some threshold t; t � n, called the \threshold size", any t shadows de-
termine the secret S.

2. No t� 1 or fewer shadows uniquely determine the secret.

The secret S is secure against the collusion of any t � 1 or fewer owners of
shadows, and the scheme is protected against the loss of any n� t shadows.

? This paper appears in Advances in CryptologyCRYPTO'92 (Ed. E. F. Brickell),
Lecture Notes in Computer Science No. 740. New York: Springer, 1993, pp. 540-548.



Blakley[1] published a (t; n) threshold scheme using hyperplanes. Shamir[7]
proposed a threshold scheme using polynomials over a �nite �eld. Various other
schemes (using vector spaces, combinatorial designs, �nite geometries and Reed-
Solomon codes) exist [3, 4, 6, 9]. Schemes with the property that the disclosure
of t � 1or fewer shadows does not reveal any information about the secret are
called perfect threshold schemes.

The disclosure of a shadow decreases the security against collusion of a thresh-
old scheme since every t � 1 remaining shadows, together with the disclosed
shadow, determine the secret. Thus, the threshold is reduced from t to t � 1.
In order to maintain the same threshold t, the key must be changed and the
shadows modi�ed. One way to do this is to design a new (t; n) scheme where
shadows are then distributed through secure channels. The security of the new
system is not compromised if the new shadows are independent of the disclosed
shadow. However, setting up the secure channels for distributing shadows can
be expensive.

This paper considers schemes which distribute modi�cations to existing shad-
ows through insecure channels. Such a scheme is said to have a disenrollment ca-

pability. Section 2 gives an information theoretic de�nition of threshold schemes
with such a disenrollment capability and establishes a lower bound on the size
of each shadow. Section 3 gives three examples of implementations that achieve
the lower bound. The Brickell-Stinson Scheme[2] depends on the existence of a
random number generator. The Nonrigid Hyperplane Scheme extends the orig-
inal Blakley[1] Scheme to allow disenrollments. Finally, the Martin Scheme[5]
makes use of threshold schemes with higher thresholds and reduces the cost of
each public broadcast.

2 Information Theory and Lower Bound

A (t; n) threshold scheme distributes partially redundant shadows S1; :::; Sn
among n users so that any t or more shadows uniquely determine the secret
K. The random variable K representing the secret takes values in the space IK.
The random variables S1; :::; Sn representing the shadows take values in a space
S. Using the entropy or \uncertainty" function H(X) introduced by Shannon[8],
we have the following de�nitions.

De�nition 1. A (t; n) threshold scheme is a collection of random variables
(K;S1; :::; Sn) such that for any 1 � i1 < i2 < ::: < ij � n,

H(KjSi1 ; :::; Sij ) = 0 8j � t; (1)

H(KjSi1 ; :::; Sij ) > 0 8j < t: (2)

Condition (1) says that every set of t or more shadows determines the secret
uniquely, whereas condition (2) indicates that the secret cannot be uniquely
determined by fewer than t shadows. A (t; n) threshold scheme is said to be
perfect if

H(KjSi1 ; :::; Sij ) = H(K) 8j < t: (3)



Condition (3) says that knowledge of fewer than t shadows does not reduce one's
uncertainty about the secret.

Let us consider the case where one shadow, say S1, is disclosed or invalidated.
In order to maintain the threshold level at t, a new secret key has to be chosen
and new shadows have to be constructed. If information on the new shadows
can be distributed through a public channel without compromising the secrecy
of the new key, then such a (t; n) threshold scheme is said to have a 1-fold
disenrollment capability. If L+1 secrets can be chosen so that, while disenrolling
L shadows successively, the broadcast public messages do not compromise the
secrecy of the new key, then such a (t; n) threshold scheme is said to have an L-
fold disenrollment capability. An information-theoretic model of such a scheme
is given below.

Let K0;K1; :::;KL denote the L+1 secrets. Let S1; :::; Sn represent the shad-
ows, any t of which determine the original secret key K0. Without loss of gen-
erality we may assume that Si corresponds to the shadow that is invalidated
at the i-th disenrollment, i = 1; :::; L. Let P1; :::; PL denote the public messages
that are broadcast successively at each disenrollment step. Note that each Pi
may include informations obtained from the revealed shadows, S1; . . . ; Si.

De�nition 2. A (t; n) threshold scheme with L-fold disenrollment capability is
a collection of random variables (K0;K1; :::;KL; S1; :::; Sn; P1; :::; PL) such that
for each i; i = 0; :::; L,

H(Kij�i(k); P1; :::; Pi) = 0 8k � t; (4)

H(Kij�i(k); P1; :::; Pi; S1; :::; Si) > 0 8k < t; (5)

where �i(k) = fSi1 ; :::; Sikg � fSi+1; Si+2; :::; Sng.

De�nition 3. A (t; n) threshold scheme with L-fold disenrollment capability is
said to be perfect if

H(Kij�i(k); P1; :::; Pi; S1; :::; Si) = H(Ki) 8k < t: (6)

Let us assume that H(Ki) = m bits. For a perfect (t; n) threshold scheme
with L-fold disenrollment capability, conditions (4) and (6) can then be expressed
in terms of mutual information as

I(Ki;�i(k); P1; :::; Pi) = m if k � t (7)

I(Ki;�i(k); P1; :::; Pi; S1; :::; Si) = 0 if k < t (8)

respectively, where we remind the reader that by de�nition,

I(X;Y ) = H(X)�H(XjY ) = H(Y )�H(Y jX):

In order to minimize the cost of distributing shadows through secure chan-
nels, we wish to minimize the number of bits required to encode each shadow.
It is conceivable that a (t; n) threshold scheme with higher disenrollment capa-
bility requires higher overhead for encoding the shadows. The following theorem



shows that this is indeed the case by establishing a lower bound on the number
of bits required to encode a shadow that grows linearly with the number L of
disenrollments.

Theorem4. Let (K0;K1; :::;KL; S1; :::; Sn; P1; :::; PL) be a perfect (t; n) thresh-
old scheme with L-fold disenrollment capability. If H(Ki) = m, for i = 0; :::; L,
then

H(Sj) � (L+ 1)m 8j = 1; :::; n:

To prove the theorem, we �rst establish that the knowledge of previous secret
keys and the public messages, together with any t � 1 shadows, provides no
information about the new secret.

Lemma5. For L � i � 0,

I(Ki;K0;K1; :::;Ki�1;�i(k); P1; :::; Pi; S1; :::; Si) = 0 if k � t� 1: (9)

Proof. Recall from information theory that conditional mutual information is
de�ned as I(X;Y jZ) = H(XjZ) � H(XjY;Z) = H(Y jZ) � H(Y jX;Z) and
satis�es the identity I(X;Y ;Z) = I(X;Z) + I(Y ;ZjX). Thus,

I(Ki;K0;K1; :::;Ki�1; �i(k); P1; :::; Pi; S1; :::; Si)

= I(Ki;�i(k); P1; :::; Pi; S1; :::; Si)

+I(Ki;K0; :::;Ki�1j�i(k); P1; :::; Pi; S1; :::; Si):

If we can show that I(Ki;K0; :::;Ki�1j�i(k); P1; :::; Pi; S1; :::; Si) = 0 when k �
t� 1, then (9) follows directly from (8). But

I(Ki;K0; :::;Ki�1j�i(k); P1; :::; Pi; S1; :::; Si) � H(Kij�i(k); P1; :::; Pi; S1; :::; Si)

and H(Kij�i(k); P1; :::; Pi; S1; :::; Si) = 0 by (4), so the desired result follows.
ut

We next observe the following identiy.

Lemma6. For j � i+ 1,

I(Ki;Sj j�i(t� 1); P1; :::; Pi;K0; ::;Ki�1) = m:

Proof.

I(Ki;Sj j�i(t� 1); P1; :::; Pi;K0; :::;Ki�1)

= I(Ki;Sj ;�i(t� 1); P1; :::; Pi;K0; ::;Ki�1)

�I(Ki;�i(t� 1); P1; :::; Pi;K0; ::;Ki�1)

= I(Ki;�i(t); P1; :::; Pi;K0; :::;Ki�1)

= m:

The second equality is obtained because j � i + 1 and thus joining Sj with
�i(t� 1) gives a set �i(t) for use in (7), and by noticing that the second term
in the previous equation is 0 from Lemma 5 because mutual information is
nonnegative and I(X;Y ) � I(X;Y;Z). The last equality is obtained directly
from Lemma 5. ut



Proof of theorem. We �rst observe that for j = 1; :::; n, we may choose Sj =
SL+1. Thus H(Sj) = H(SL+1) and we need to show only that H(SL+1) �
(L+ 1)m. Now,

H(SL+1)

� H(SL+1j�L(t� 1))

� H(SL+1j�L(t� 1))�H(SL+1jP1; :::; PL;K0; ::;KL; �L(t� 1))

= I(P1; :::; PL;K0; :::;KL;SL+1j�L(t� 1)):

If we can show that the last quantity is at least (L + 1)m, then the theorem is
proved. But

I(P1; :::; PL;K0; :::;KL;SL+1j�L(t� 1))

=
LX
i=1

I(Pi;SL+1j�L(t� 1); P1; :::; Pi�1)

+
LX
i=0

I(Ki;SL+1j�L(t� 1); P1; :::; Pi;K0; :::;Ki�1)

�

LX
i=0

I(Ki;SL+1j�L(t� 1); P1; :::; Pi;K0; :::;Ki�1)

= (L+ 1)m

where the last equality is obtained directly from Lemma 6. ut

We have shown that if a (t; n) threshold scheme can disenroll L participants,
then each secret shadow must contain at least (L + 1)H(K0) bits. In the next
section we exhibit three examples of such threshold schemes where each shadow
contains exactly (L+ 1)H(K0) bits.

3 Threshold Schemes with Disenrollment Capability

In this section we will exhibit three examples of perfect (n; t) threshold schemes
that allow disenrollments and achieve the lower bound on shadow size established
in the previous section

3.1 Brickell-Stinson Scheme[2]

Let (K;S1; :::; Sn) be a perfect (n; t) threshold scheme, where K represents
the secret chosen from IK and Si represents a shadow chosen from S. We further
assume thatH(K) = m. An (n; t) threshold scheme with L-fold disenrollment ca-
pability (K0; :::;KL; ~S1; :::; ~Sn; P1; :::; PL) can be constructed from (K;S1; :::; Sn)
as follows:

� Each Ki represents a secret chosen uniformly from IK.



� Each ~Si represents a shadow ~Si = (Si; Ri;1; :::; Ri;L) where each Ri;j is a
random binary string of length m.

� When ~Si is invalidated, a new key Ki is chosen and associated with it are
the new shadows fSi

i+1; :::; S
i
ng that are formed as speci�ed by the original

(n; t) threshold scheme. The public message Pi that is broadcast through the
public channel is the union of messages of the type

fRi+1;i + Si
i+1; Ri+2;i + Si

i+2; :::; Rn;i + Si
ng:

Note that each Ri;j is a random string and can be considered as a one-
time pad that protects the shadow Si

j ; thus, H(Si
j) = H(Si

j jPi) and H(Ki) =
H(Kij�i(k); P1; :::; Pi) for k < t. Furthermore, it is easy to check that each
shadow contains (L+ 1)m bits which is the lower bound given in Section 2. So,
we have the following theorem.

Theorem7. The Brickell-Stinson scheme is a perfect (n; t) threshold scheme

with L-fold disenrollment capability that achieves the lower bound, H(Sj) =
(L+ 1)m.

3.2 Nonrigid Hyperplane Scheme

For simplicity we �rst consider the case where L = t � 1; the cases where
L 6= t � 1 can be similarly designed and will be discussed later. Let IH be the
collection of all hyperplanes in a t-dimensional vector space E over GF (q). The
n hyperplanes represented by the rows of an n by t+ 1 augmented matrix

A =

2
6664

a1;1 a1;2 � � � a1;t�1 1 b1
a2;1 a2;2 � � � a2;t�1 1 b2
...

...
. . .

...
...
...

an;1 an;2 � � � an;t�1 1 bn

3
7775 (10)

must be in general orientation, that is, the unaugmented n by t matrix

U(A) =

2
6664

a1;1 a1;2 � � � a1;t�1 1
a2;1 a2;2 � � � a2;t�1 1
...

...
. . .

...
...

an;1 an;2 � � � an;t�1 1

3
7775 (11)

must have the property that every one of its t by t submatrices is nonsingular.
The intersection of the hyperplanes corresponding to any t or more rows of this
matrix is a point v, whose �rst coordinate is the secret K0. The intersection of
hyperplanes corresponding to any collection of fewer than t rows must intersect
in an a�ne subspace consisting of points which do not all share a common �rst
coordinate. Equivalently, the vector (10:::0) must never appear as a row in the
row reduced echelon form of any j by t submatrix of U(A) given in (11) if j < t.

Let Ki correspond to the �rst coordinate of an arbitrarily chosen point vi in
the vector space E. Corresponds to every point v0 in E, there is a translation



of hyperplanes such that the new point of intersection is the point v0. Each
shadow Sj is given by the j-th row of the matrix A in (10). Clearly, every
shadow consists of t log2 q bits, which is the lower bound given in Section 2. On
revealing Sj , the public information Pj is the collection of translations of the
unrevealed hyperplanes, that is, fcj;j+1; cj;j+2; :::; cj;ng such that the i-th newly
translated hyperplane can be easily computed by converting the last entry in A
to bi + cj;i.

Theorem8. The nonrigid hyperplane scheme is a perfect (n; t) threshold scheme

with t-fold disenrollment capability that achieves the lower bound, H(Sj) =
t log2 q.

Proof. To show that the hyperplane scheme is a perfect (n; t) threshold scheme,
we need to show that every key in IK remains equally probable after each disen-
rollment. Let ` be a 1-dimensional subspace in E determined by t�1 hyperplanes
in �i(t� 1), and let fv0; . . . ; vi�1g be the chosen points in E that correspond to
the known secrets K0; . . . ;Ki�1 as de�ned above. For each each j > i, the trans-
lations of these chosen points given by V = fv0; v1 � (0; . . . ; c1;j); . . . ; vi�1 �
(0; . . . ; ci�1;j)g must be contained in the hyperplane corresponding to partici-
pant j. Since i � t � 1, for every point p 2 ` and every j > i, there exists a
hyperplane Hj 2 IH that contains the point p and the corresponding translated
points in V . In other words, every p 2 ` can be the chosen point vi and every
key can be the new secret. Thus, the entropy of every key remains the same and
(6) is established. ut

In the case where the number of disenrollment L is less than t�1, we publish
t�1�L columns of the matrix U(A) in (11) and still maintain the same perfect
threshold scheme properties. If L is greater than t�1 , then we use the additional
columns to store informations about changing the orientation of each of the
hyperplane after each disenrollment. Consider L = t + x; x � 0 and the matrix
in (10) representing the shadows is then given by

2
6664

a1;1 a1;2 � � � a1;t+x 1 b1
a2;1 a2;2 � � � a2;t+x 1 b2
...

...
. . .

...
...
...

an;1 an;2 � � � an;t+x 1 bn

3
7775 (12)

After i disenrollments, each new hyperplane is then given by (aj;i0 ; . . . ; aj;it�2 ; 1;
bj+ci;j) where im = 1+(i+m mod t+x) and ci;j isthe corresponding broadcast
translation. Such a scheme can be shown to be perfect by using similar arguments
as above.

3.3 Martin Scheme[5]

Every (n; t + i) threshold scheme, i � 0, can be used as an (n; t) threshold
scheme by publishing i additional shadows from the shadow space S. Thus,
any t or more shadows together with the i published shadows can uniquely
determine the secret. Based on the above notion, an (n; t) threshold scheme



with L-fold disenrollment capability (K0; . . . ;KL; ~S1; . . . ; ~Sn; P1; . . . ; PL) can be
constructed from L + 1 randomly chosen perfect (n; t + L) threshold schemes
(Ki; S

i
1; . . . ; S

i
n); i = 0; . . . ; L as follows:

� Each Ki represents a secret chosen from the key space, IK.
� Each ~Si represents a shadow of the form (S0i ; S

1
i ; . . . ; S

L
i ) where each S

j
i is

a shadow from the j-th (n; t+ L) threshold scheme, (Kj ; S
j
1; . . . ; S

j
n).

� When ~Si is invalidated, the new key Ki is used and associated with it, L
additional \new" shadows have to be published. Among these L additional
shadows are the revealed shadows, Si

1; S
i
2; . . . ; S

i
i .

Since all the L+1 keys, K0;K1; . . . ;KL, are independent of one another, the
disclosures of Kj and S

j
` ; ` � 1, give no information on Ki, as long as i 6= j.

However, the disclosed shadows, Si
1; . . . ; S

i
i , together with L+t�i other shadows

can uniquely determine the key Ki. Thus, only L� i additional shadows from S
are needed to be broadcast through the public channel, and we have the following
theorem,

Theorem9. The Martin scheme is a perfect (n; t) threshold scheme with L-fold

disenrollment capability that achieves the lower bound, H( ~Si) = (L+ 1)H(Ki).

We can further modify the Martin Scheme to reduce the size of the public
broadcast after each disenrollment. Speci�cally, we randomly choose an (n; t+ i)
threshold scheme (instead of an (n; tL) threshold scheme), for 0 � i � L. After
the i-th disenrollment, we use the i revealed shadows Si

1; . . . ; S
i
i as the addi-

tional shadows required to be published, thus reducing the size of the broadcast
message.

4 Conclusion

We have established a lower bound on the initial overhead required for (n; t)
threshold schemes that allow disenrollments and have given three examples of
such implementations. We further modify the Martin Scheme to reduce the cost
of broadcasting the public informations. An interesting open question remained
to be solved is \What is the lower bound on the entropy of the public broadcast".
We conjecture that the lower bound is given by

Conjecture. For 0 � i � L,

H(Pi) � iH(K):
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