
Reprinted from Fast Software Encryption (Ed. R. Anderson), Lecture Notes in Computer Science No.
809. New York: Springer, 1994, pp. 1-17.

SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm

James L. Massey
Signal and Information Processing Laboratory

Swiss Federal Institute of Technology
CH-8092 Zürich

Abstract: A new non-proprietary secret-key block-enciphering algorithm, SAFER K-64

(for Secure And Fast Encryption Routine with a Key of length 64 bits) is described.

The blocklength is 64 bits (8 bytes) and only byte operations are used in the processes of

encryption and decryption. New cryptographic features in SAFER K-64 include the use

of an unorthodox linear transform, called the Pseudo-Hadamard Transform, to achieve

the desired "diffusion" of small changes in the plaintext or the key over the resulting

ciphertext and the use of additive key biases to eliminate the possibility of "weak keys".

The design principles of K-64 are explained and a program is given, together with

examples, to define the encryption algorithm precisely.

1. Introduction

This paper describes a new block encryption algorithm called SAFER K-64 (for

Secure And Fast Encryption Routine with a Key of length 64 bits) that the author

recently developed for Cylink Corporation (Sunnyvale, CA, USA) as a non-proprietary

cipher. SAFER K-64 is a byte-oriented block enciphering algorithm. The block length is

8 bytes (64 bits) for plaintext and ciphertext; the user-selected key is also 8 bytes (64 bits)

in length. SAFER K-64 is an interated cipher in the sense that encryption is performed

by applying the same transformation repeatedly for r rounds, then applying an output

transformation; r = 6 is recommended but larger values of r can be used if desired for

even greater security. Each round uses two 8-byte (64-bit) subkeys determined by a key

schedule from the secret 8-byte user-selected key. The output transformation uses

another 8-byte subkey determined by the key schedule. One unusual feature of SAFER

K-64 is that, in contrast to most recently proposed iterated block ciphers, encryption and

decryption are slightly different (i.e., they differ by more than just the reversal of the key

schedule).

2

SAFER K-64 uses only byte operations in the processes of encryption and

decryption, which makes it particularly useful in applications such as smart cards where

very limited processing power is available. Some bit-level rotations of bytes are used in

the key schedule, but this is done "once and for all", i.e., until the user-selected key is

changed. To achieve security with such simple processing, SAFER K-64 exploits two

new cryptographic concepts, namely:

(1) an unorthodox linear transform , which we call the Pseudo-Hadamard Transform

(PHT), that allows the cipher rapidly to achieve the desired "diffusion" of small changes

in the plaintext or the key over the resulting ciphertext [It is usually the case in block

cipher design that one struggles to obtain such diffusion by carefully selecting

permutations to imbed within the cipher and then doing massive statistical testing to see

which ones give acceptable diffusion. As will be seen, the PHT provides a systematic

way to ensure that the cipher provides the necessary diffisuion--in fact, the diffusion

provided by the PHT appears to be better than that in any other cipher that we know.]

and (2) the use of additive key biases that eliminate the "weak keys" that plague most

block ciphers. [SAFER K-64 includes a recursive procedure for generating these key

biases that is easy to implement and that provides the very "random" biases desired.]

2. Description of the SAFER K-64 Algorithm

The encrypting structure of the SAFER K-64 cipher is shown in Fig. 1. The

enciphering algorithm consists of r rounds of identical transformations that are applied in

sequence to the plaintext, followed by an output transformation, to produce the final

ciphertext. Our recommendation is to use r = 6 for most applications, but up to 10

rounds can be used if desired. Each round is controlled by two 8-byte subkeys and the

output transformation is controlled by one 8-byte subkey. These 2r + 1 subkeys are all

derived from the 8-byte user-selected subkey K1 in a manner that will be explained later.

The plaintext, ciphertext and all subkeys are 8 bytes (64 bits) long.

3

Plaintext (8 bytes)

Encrypting Round 1

Encrypting Round 2

Encrypting Round r

Mixed XOR/BYTE ADDITION
 (Output Transformation)

Ciphertext (8 bytes)

K1

K2

K3

K4

K2r-1

K2r

K2r+1

Fig. 1: Encrypting Structure of SAFER K-64

The output transformation of SAFER K-64 consists of the bit-by-bit XOR

("exclusive or" or modulo-2 sum) of bytes 1, 4, 5 and 8 of the last subkey, K2r+1, with

the corresponding bytes of the output from the r-th round together with the byte-by-byte

byte addition (modulo-256 addition) of bytes 2, 3, 6 and 7 of the last subkey, K2r+1, to

the corresponding bytes of the output from the r-th round. [Higher order bytes are

considered to be those on the left, i.e., byte 1 is the most significant byte--this convention

is used throughout this paper.] Hereafter, we refer to this particular combination of two

eight-byte words as the Mixed XOR/Byte-Addition operation.

 The detailed encryption round structure of SAFER K-64 is shown in Fig. 2. The

first step within the ith round is the Mixed XOR/Byte-Addition of the round input with

the subkey K2i-1. The eight bytes of the result are then passed through a nonlinear layer

and individually subjected to one of two different "highly nonlinear" transformations,

namely:

(1) the operation labelled "45(.)" in Fig. 2, which notation is to suggest that if the byte

input is the integer j then the byte output is 45j modulo 257 (except that this output is

taken to be 0 if the modular result is 256, which occurs for j = 128) [The reasoning

behind the use of this transformation is the following. Because 257 is a prime, arithmetic

4

ROUND INPUT (8 Bytes)

 1 2 3 4 5 6 7 8

 xor add add xor xor add add xor

45
(.) 45

(.)
45

(.) 45
(.)log

45
log

45
log

45
log

45

K2i-1

 add xor xor add add xor xor add K2i

2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT

ROUND OUTPUT (8 Bytes)
 1 2 3 4 5 6 7 8

Fig. 2: Encryption round structure of SAFER K-64

modulo 257 is the arithmetic of the finite field GF(257). The element 45 is a primitive

element of this field, i.e., its first 256 powers generate all 256 non-zero field elements.

Thus the mapping "45(.)" is an invertible mapping from one byte to one byte that is very

nonlinear with respect to the arithmetic of GF(257) as well as with respect to the vector

space of 8-tuples over the binary field GF(2) whose addition is bit-by-bit XOR.]
and (2) the operation labelled "log45" in Fig. 2, which notation is to suggest that if the

byte is the integer j then the byte output is log45(j) (except that this output is taken to be

128 if the input is j = 0), i.e., the power to which one must raise 45 to obtain j modulo

257. [The nonlinear features of this mapping are similar to those described for

exponentiation.]

5

In the appended programs for implementing the SAFER K-64 cipher, these two nonlinear

operations are realized with two look-up tables of 256 bytes each, i.e., simple byte-in

byte-out look-up tables.

The output of the eight nonlinear transformations is then combined with subkey

K2i in an operation that consists of the byte-by-byte byte addition (modulo-256 addition)

of bytes 1, 4, 5 and 8 of the subkey K2i to the corresponding bytes of the output from

the nonlinear transformations together with the bit-by-bit XOR (modulo-2 sum) of bytes

2, 3, 6 and 7 of the subkey K2i to the corresponding bytes of the output from the

nonlinear transformations. Hereafter, we refer to this particular combination of two

eight-byte words as the Mixed Byte-Addition/XOR operation. [It is important to note the

distinction between this Mixed XOR/Byte-Addition operation and the previously

described Mixed Byte-Addition/XOR operation.]

The output of the Mixed Byte-Addition/XOR operation then passes through a

three-level "linear layer" of boxes that are labelled "2-PHT" in Fig. 2. This notation
indicates a 2-point PHT. If the two input bytes to a 2-PHT are (a1, a2), where a1 is the

more significant byte, then the two output bytes are (b1, b2) where

b1 = 2a1 + a2

(1)
b2 = a1 + a2

and where the arithmetic is normal byte arithmetic, i.e., arithmetic modulo 256. Between

levels of the linear layer, the decimation-by-2 permutation [familiar from the Cooley-

Tukey FFT and the ordinary discrete Hadamard Transform] is applied--as will be seen,

this is what creates diffusion in the SAFER K-64 cipher. The output of this linear layer

constitutes the round output.

3. Decryption for SAFER K-64

The decrypting structure of SAFER K-64 is shown in Fig. 3. The deciphering

algorithm consists of an input transformation that is applied to the ciphertext block,

6

Plaintext (8 bytes)

Decrypting Round 1

Decrypting Round 2

Decrypting Round r

Mixed XOR/BYTE SUBTRACTION
 (Input Transformation)

Ciphertext (8 bytes)

K2r

K2r-1

K2r-2

K2r-3

K2

K1

K2r+1

Fig. 3: Decrypting Structure of SAFER K-64

followed by r rounds of identical transformations. The input transformation consists of

the Mixed XOR/Byte-Subtraction of subkey K2r+1 from the ciphertext block. A

characterizing feature of SAFER K-64 is that decrypting rounds differ from encrypting

rounds so that an encrypter cannot be converted to a decrypter by simply reversing the

key schedule.

The detailed decryption round structure of SAFER K-64 is shown in Fig. 4. The

ith encryption round begins by passing the round input through the three-level inverse

linear layer. It is easy to check from equations (1) that the Inverse PHT (IPHT) is given

by
a1 = b1 - b2

(2)
a2 = -b1 + 2b2.

This IPHT is just as simple to compute as the direct PHT. The fan-out-by-two

permutation between levels of this inverse linear layer is the inverse of the decimate-by-

two permutation used in the linear layer of an encryption round.

7

ROUND INPUT (8 Bytes)

 1 2 3 4 5 6 7 8

 xor sub sub xor xor sub sub xor

45
(.)

45
(.)

45
(.) 45

(.) log
45log

45
log

45
log

45

K2r+1-2i

 sub xor xor sub sub xor xor sub K2r+2-2i

2-IPHT 2-IPHT 2-IPHT 2-IPHT

2-IPHT 2-IPHT 2-IPHT 2-IPHT

2-IPHT 2-IPHT 2-IPHT 2-IPHT

ROUND OUTPUT (8 Bytes)
 1 2 3 4 5 6 7 8

Fig. 4: Decryption round structure of SAFER K-64

The next step within the ith decryption round is the Mixed Byte-Subtraction/XOR

of the output of the inverse linear layer with the subkey K2r+2-2i, which consists of the

byte-by-byte byte subtraction (modulo-256 subtraction) of bytes 1, 4, 5 and 8 of the

subkey K2r+2-2i from the corresponding bytes of the output from the previous round

together with the bit-by-bit XOR (modulo-2 sum) of bytes 2, 3, 6 and 7 of the subkey

K2r+2-2i with the corresponding bytes of the output from the previous round.

In the next step of the decryption round, the eight bytes from the previous step are

passed through the "inverse nonlinear layer", which differs from the "nonlinear layer" in

8

the encryption round by interchanging of the locations of the four exponentiating boxes

and the four logarithm-taking boxes.

The last step within the ith decryption round is the Mixed XOR/Byte-Subtraction

of the round input with the subkey K2r+1-2i, which consists of the bit-by-bit XOR

(modulo-2 sum) of bytes 1, 4, 5 and 8 of the subkey K2r+1-2i with the corresponding

bytes of the output from the previous round together with the byte-by-byte byte

subtraction (modulo-256 subtraction) of bytes 2, 3, 6 and 7 of the subkey K2r+1-2i from

the corresponding bytes of the output from the previous round.

4. How SAFER K-64 Works and Why

To see that the SAFER K-64 cipher correctly decrypts, we first note that the

Mixed XOR/Byte-Subtraction of K2r+1 in the Input Transformation for decryption (cf.

Fig. 3) undoes the Mixed XOR/Byte-Additon of K2r+1 in the Output Transformation for

encryption (cf. Fig. 1). Then the inverse linear layer of the first decryption round (cf.

Fig. 4) undoes the transformation performed by the linear layer in the last encryption

round (cf. Fig. 2). Next, the Mixed Byte-Subtraction/XOR of K2r in the first decryption

round (cf. Fig. 4) undoes the Mixed Byte-Addition/XOR of K2r in the last encryption

round (cf Fig. 2). Then the inverse nonlinear layer in the first decryption round (cf. Fig.

4) undoes the transformation performed by the nonlinear layer in the last encryption

round (cf. Fig. 2). Finally, the Mixed XOR/Byte-Subtraction of K2r-1 in the first

decryption round (cf. Fig. 4) undoes the Mixed XOR/Byte-Addition of K2r-1 in the last

encryption round (cf. Fig. 2). In the same way, decryption round i undoes the

transformation performed by encryption round r + 1 - i for i = 2, 3, ... , r so that

decryption indeed recovers the original plaintext.

SAFER K-64 was designed in accordance with Shannon's principles of

confusion and diffusion for obtaining security in secret-key ciphers [1]. When a round

subkey is not all-zero in SAFER K-64 encryption, its combination by Mixed XOR/Byte

Addition (or Mixed Byte-Addition/XOR) with the signal within the round acts like a

nonlinear combination with respect to the subsequent transformations in the nonlinear

layer and in the linear layer. This gives the cipher the confusion required to make the

statistics of the ciphertext depend in a complicated way on the statistics of the plaintext--

provided that small changes diffuse quickly through the cipher. To guarantee this

9

diffusion in SAFER K-64 is, in fact, why we developed a new and unorthodox linear

transform, the Pseudo-Hadamard Transform (PHT).

The standard Hadamard Transform (HT) [sometimes called the "Walsh

transform" or the "Walsh-Hadamard transform"] has in place of (1) the equations

b1 = a1 + a2

(3)
b2 = a1 - a2.

Notice that the determinant of the matrix of coefficients is -2, which makes these

equations non-invertible for byte arithmetic (arithmetic modulo 256) where -2 = 254 has

no multiplicative inverse. It also has the unpleasant effect of requiring a multiplication by

1/2 in the inverse transform in those number systems where 2 has a multiplicative

inverse. By choosing equations (1), whose matrix of coefficients has determinant 1, we

avoid both of these problems--we can use normal byte arithmetic and there is no

unpleasant scale factor in the inverse transform! Moreover, we can still mimic the HT in

the multi-dimensional case, which is what the decimations by-two and fanning-outs by-

two accomplish. We are in fact using a three-dimensional PHT, i.e., independent 2-

PHTs in each of 3 dimensions, which is why there are 23 = 8 bytes in the input and

output of the PHT within SAFER K-64.

Just as for the HT in number systems appropriate to it, every digit (here read

"byte") of the input to the PHT effects every output byte, i.e., the PHT provides

guaranteed complete diffusion within one linear layer. In Appendix A, we show the PHT

for the unit-vector inputs where one sees this diffusion over all eight output bytes very

clearly. By linearity, the PHT of any vector can be computed as the corresponding linear

combination of these unit-vector PHT's. The "guaranteed complete diffusion" within one

layer does not hold fully when one considers single-bit changes in the input bytes.

Because of the factor of 2 in equations (1), a few bits of the input will effect only 4 bytes

(or 2 bytes or 1 byte) of the output within one linear layer, but their effect is immediately

spread over all 8 bytes in the next linear layer encountered. This can be seen from the last

three examples in Appendix A. For instance, because (1,0,0,0,0,0,0,0) has the PHT

(8,4,4,2,4,2,2,1), it follows [from the fact that 2 * 128 = 0 mod 256] that

(128,0,0,0,0,0,0,0), which contains a single non-zero bit, will have the PHT

(0,0,0,0,0,0,0,128), which shows no diffusion at all. However, in turn

(0,0,0,0,0,0,0,128) has the PHT (128,128,128,128,128,128,128,128), which shows

10

complete diffusion over output bytes. In fact, consideration of the unit-vector PHT's in

Appendix A shows that (128,0,0,0,0,0,0,0) is the only vector that shows no diffusion

under one application of the PHT. We know of no other cipher with such rapid and

guaranteed diffusion. This rapid diffusion is the main reason that r = 6 rounds of

encipherment are enough to make SAFER K-64 crack-resistant.

5. The Key Schedule for SAFER K-64

The key schedule for SAFER K-64, i.e., the procedure for generating the subkeys

K2, K3, ... , K2r+1 from the user-selected subkey K1, is indicated in Fig. 5. The

quantities B2, B3, ... , B2r-1 are the key biases that have the purpose of ensuring that the

round subkeys appear individually "random" and, in particular, that no more than one

round subkey can be all-zero. Letting b[i,j] denote the j-th byte of bias Bi, we can

express this byte as the double exponential

 b[i,j] = 45**[45**(9i+j) mod 257] mod 257, (4)

which equation defines the key biases used in SAFER K-64. We note here that we might

have used the factor 8 instead of 9 in the exponent in (4)--we chose 9 to introduce an

extra measure of "staccato" in the key schedule." A Table giving the precise values of the

key biases for SAFER K-64 is given in Appendix B. Examination of the Table in

Appendix B shows that the resulting sequence of biases is indeed very random

appearing, which is all that is really needed. The use of such biases, which appears to be

new, is clearly a good idea in general for iterated ciphers. The "weak keys" (also called

"self-dual keys" and "keys with a dual") of the Data Encryption Standard (DES) [2] are a

direct result of the fact that no key biases are used so that, for instance, all 16 round

subkeys in DES can be all-zero.]

Fig. 5 shows how K1, the user-selected 64-bit subkey, is used to generate the

additional 64-bit subkeys K2, K3, ... , K2r+1 that are required within the r-round

SAFER K-64 algorithm. Note that, in the generation process, the subkey register is

byte-wise rotated by 3-bits to the left between additions of a new bias. [The addition of a

bias is always byte-by-byte byte addition (modulo-256 addition).] Ideally, one wishes

the entire subkey sequence K1, K2, K3, ... , K2r+1 to have the character of a sequence

of independently-chosen uniformly-random subkeys. Of course, this cannot be achieved

in a strict sense because all of the subkeys in this sequence are determined entirely by the

11

first (user-selected) subkey, K1. The real goal in the design of the key schedule is to

make the departure from independence so complicated that it cannot be exploited by an

attacker--and this is the purpose of both the byte rotations and the addition of subkey

biases within the key schedule for SAFER K-64

User Selected Eight-Byte Key K1

Rotate Each Byte Left by 3 Bits

Rotate Each Byte Left by 3 Bits

Rotate Each Byte Left by 3 Bits

Rotate Each Byte Left by 3 Bits

Byte-by-Byte
mod 256 add

Byte-by-Byte
mod 256 add

Byte-by-Byte
mod 256 add

Byte-by-Byte
mod 256 add

B2

B3

B4

B2r+1

K2

K3

K4

K2r+1

Fig. 5: Key Schedule for SAFER K-64

6. SAFER K-64 Program and Examples

Appendix C gives a TURBO PASCAL program that implements the full r-

round SAFER K-64 cipher, both for encryption and decryption.. This program should

be taken as the definition of the SAFER K-64 enciphering algorithm. Appendix C also

gives examples of r = 6 round encryption (the recommended number of rounds) for use

in checking implementations of SAFER K-64.

12

7. Security Considerations for SAFER K-64

In Section 4, we indicated how SAFER K-64 achieves both good diffusion and

good confusion, the two basic features that contribute to the security of a block cipher.

The best measure of security available today for an iterated block cipher is its resistance to

attack by differential cryptanalysis [3]. It is easy to show that, for the appropriate

definition of difference between a pair of plaintext blocks (or a pair of ciphertext blocks),

SAFER K-64 is a Markov cipher [4], a fact that greatly simplifies its analysis for

resistance to differential cryptanalysis. Cylink Corporation has contracted for such an

analysis of SAFER K-64 by a group of cryptanalysts that does not include the designer

of the algorithm. A considerable effort has been invested in this effort, whose conclusion

is that six-round SAFER K-64 appears to be secure against differential cryptanalysis.

This group of cryptanalysts has also done extensive statistical testing of SAFER K-64

with no detection of any weakness. The evidence available today suggests that SAFER

K-64 is a strong cipher whose strength is well measured by the length (64 bits) of its

user-selected key.

References

[1] C.E. Shannon, "Communication Theory of Secrecy Systems", Bell System Tech. J.,

vol. 28, pp. 656-715, Oct., 1949.

[2] U.S. Department of Commerce/National Bureau of Standards, FIPS Pub 46, Data

Encryption Standard, April 1977.

[3] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption

Standard. New York: Springer-Verlag, 1993.

[4] X. Lai, J. L. Massey and S. Murphy, "Markov Ciphers and Differential

Cryptanalysis," pp. 17-38 in Advances in Cryptology - EUROCRYPT '91 (Ed. D. W.

Davies), Lecture Notes in Computer Science No. 547. Heidelberg and New York:

Springer-Verlag, 1991

13

APPENDIX A:
Examples of the Pseudo-Hadamard Transform (PHT)

INPUT VECTOR is 0 0 0 0 0 0 0 1
OUTPUT VECTOR is 1 1 1 1 1 1 1 1

INPUT VECTOR is 0 0 0 0 0 0 1 0
OUTPUT VECTOR is 2 2 1 1 2 2 1 1

INPUT VECTOR is 0 0 0 0 0 1 0 0
OUTPUT VECTOR is 2 2 2 2 1 1 1 1

INPUT VECTOR is 0 0 0 0 1 0 0 0
OUTPUT VECTOR is 4 4 2 2 2 2 1 1

INPUT VECTOR is 0 0 0 1 0 0 0 0
OUTPUT VECTOR is 2 1 2 1 2 1 2 1

INPUT VECTOR is 0 0 1 0 0 0 0 0
OUTPUT VECTOR is 4 2 2 1 4 2 2 1

INPUT VECTOR is 0 1 0 0 0 0 0 0
OUTPUT VECTOR is 4 2 4 2 2 1 2 1

INPUT VECTOR is 1 0 0 0 0 0 0 0
OUTPUT VECTOR is 8 4 4 2 4 2 2 1

INPUT VECTOR is 128 0 0 0 0 0 0 0
OUTPUT VECTOR is 0 0 0 0 0 0 0 128

INPUT VECTOR is 0 0 0 0 0 0 0 128
OUTPUT VECTOR is 128 128 128 128 128 128 128 128

14

AAAAPPPPPPPPEEEENNNNDDDDIIIIXXXX BBBB::::

TTTTaaaabbbblllleeee ooooffff KKKKeeeeyyyy BBBBiiiiaaaasssseeeessss ffffoooorrrr SSSSAAAAFFFFEEEERRRR KKKK----66664444 CCCCiiiipppphhhheeeerrrr....

(Biases B2 to B21 are listed here although only B2 to B13 are
required when r = 6 rounds are used with SAFER K-64.)

Bias B2 is 22 115 59 30 142 112 189 134

Bias B3 is 71 126 36 86 241 119 136 70

Bias B4 is 177 186 163 183 16 10 197 55

Bias B5 is 201 90 40 172 100 165 236 171

Bias B6 is 198 103 149 88 13 248 154 246

Bias B7 is 102 220 5 61 211 138 195 216

Bias B8 is 106 233 54 73 67 191 235 212

Bias B9 is 155 104 160 101 93 87 146 31

Bias B10 is 113 92 187 34 193 190 123 188

Bias B11 is 99 148 95 42 97 184 52 50

Bias B12 is 253 251 23 64 230 81 29 65

Bias B13 is 143 41 221 4 128 222 231 49

Bias B14 is 127 1 162 247 57 218 111 35

Bias B15 is 254 58 208 28 209 48 62 18

Bias B16 is 205 15 224 168 175 130 89 44

Bias B17 is 125 173 178 239 194 135 206 117

Bias B18 is 19 2 144 79 46 114 51 133

Bias B19 is 141 207 169 129 226 196 39 47

Bias B20 is 122 159 82 225 21 56 43 252

Bias B21 is 66 199 8 228 9 85 94 140

15

AAAAPPPPPPPPEEEENNNNDDDDIIIIXXXX CCCC::::
EEEExxxxaaaammmmpppplllleeeessss ooooffff SSSSiiiixxxx----RRRRoooouuuunnnndddd SSSSAAAAFFFFEEEERRRR KKKK----66664444 EEEEnnnnccccrrrryyyyppppttttiiiioooonnnn aaaannnndddd
PPPPrrrrooooggggrrrraaaammmm ffffoooorrrr IIIImmmmpppplllleeeemmmmeeeennnnttttaaaattttiiiioooonnnn

PLAINTEXT is 1 2 3 4 5 6 7 8
The KEY is 0 0 0 0 0 0 0 0
after round 1 0 46 170 144 255 118 2 238
after round 2 35 175 193 103 246 87 43 202
after round 3 64 252 4 38 1 140 36 104
after round 4 2 62 127 41 25 97 179 196
after round 5 59 221 9 152 113 50 224 52
after round 6 242 255 38 130 179 219 71 133
CRYPTOGRAM is 125 40 3 134 51 185 46 180

PLAINTEXT is 0 0 0 0 0 0 0 0
The KEY is 1 2 3 4 5 6 7 8
after round 1 240 174 18 192 79 214 2 46
after round 2 51 154 197 181 138 198 236 83
after round 3 178 36 41 77 26 13 222 86
after round 4 111 39 188 122 73 216 30 100
after round 5 132 78 244 157 225 84 106 144
after round 6 197 105 114 54 196 101 227 80
CRYPTOGRAM is 90 178 127 114 20 163 58 225

PLAINTEXT is 1 2 3 4 5 6 7 8
The KEY is 8 7 6 5 4 3 2 1
after round 1 101 42 122 106 63 111 225 227
after round 2 102 122 66 171 75 196 228 30
after round 3 114 219 165 207 71 24 132 155
after round 4 117 53 164 99 161 204 201 48
after round 5 132 77 246 149 5 187 182 27
after round 6 199 89 95 137 71 106 55 152
CRYPTOGRAM is 200 242 156 221 135 120 62 217

PLAINTEXT is 0 0 0 0 0 0 0 0
The KEY is 0 0 0 0 0 0 0 0
after round 1 203 244 158 176 123 197 11 39
after round 2 27 47 1 53 133 49 233 187
after round 3 134 147 160 151 93 5 125 185
after round 4 190 249 153 140 109 203 139 58
after round 5 143 72 176 126 51 175 84 69
after round 6 140 255 43 205 142 9 196 78
CRYPTOGRAM is 3 40 8 201 14 231 171 127

16

PROGRAM Full_r_Rounds_max_10_of_SAFERK64_cipher;

VAR a1, a2, a3, a4, a5, a6, a7, a8, b1, b2, b3, b4, b5, b6, b7, b8, r: byte;
 k: ARRAY[1..21,1..8] OF byte; k1: ARRAY[1..8] OF byte;
 logtab, exptab: ARRAY[0..255] OF integer; i, j, flag: integer;

PROCEDURE mat1(VAR a1, a2, b1, b2: byte);
BEGIN b2:= a1 + a2; b1:= b2 + a1; END;

PROCEDURE invmat1(VAR a1, a2, b1, b2: byte);
BEGIN b1:= a1 - a2; b2:= -b1 + a2; END;

BEGIN
{The program here computes the powers of the primitive element 45 of the
 finite field GF(257) and stores these in the table "exptab". Corresponding
 logarithms to the base 45 are stored in the table "logtab".}
 logtab[1]:= 0; exptab[0]:= 1;
 FOR i:= 1 TO 255 DO
 BEGIN
 exptab[i]:= (45 * exptab[i - 1]) mod 257;
 logtab[exptab[i]]:= i;
 END;
 exptab[128]:= 0; logtab[0]:= 128; exptab[0]:= 1;

 flag:= 0; writeln;
 writeln('Enter number of rounds r (max 10) desired then hit CR'); readln(r);

 REPEAT
 BEGIN
 writeln; writeln('Enter plaintext in 8 bytes with spaces');
 writeln(' between bytes, then hit CR.');
 writeln('(A byte is an integer between 0 and 255 inclusive.)');
 readln(a1, a2, a3, a4, a5, a6, a7, a8);
 writeln('Enter a key in 8 bytes');
 readln(k[1,1],k[1,2],k[1,3],k[1,4],k[1,5],k[1,6],k[1,7],k[1,8]);
 k1[1]:= k[1,1]; k1[2]:= k[1,2]; k1[3]:= k[1,3]; k1[4]:= k[1,4];
 k1[5]:= k[1,5]; k1[6]:= k[1,6]; k1[7]:= k[1,7]; k1[8]:= k[1,8];
 writeln('PLAINTEXT is ', a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4);
 writeln('The KEY is ', k[1,1]:8,k[1,2]:4,k[1,3]:4,k[1,4]:4,
 k[1,5]:4,k[1,6]:4,k[1,7]:4,k[1,8]:4);
{The next instructions implement the key schedule needed to derive keys
 K2, K3, ... K2r+1 from the user-selected key K1.}
 FOR i:= 2 TO 2*r + 1 DO
 FOR j:= 1 TO 8 DO
 BEGIN
 {Each byte of the key K1 is further left rotated by 3.}
 k1[j]:= (k1[j] shl 3) + (k1[j] shr 5);
 {The key bias is added here.}
 k[i,j]:= k1[j] + exptab[exptab[9*i+j]];
 END;

{The r rounds of encryption begin here.}
 FOR i:= 1 TO r DO
 BEGIN
 {Key 2i-1 is mixed bit and byte added to the round input.}

17

 a1:= a1 xor k[2*i-1,1]; a2:= a2 + k[2*i-1,2];
 a3:= a3 + k[2*i-1,3]; a4:= a4 xor k[2*i-1,4];
 a5:= a5 xor k[2*i-1,5]; a6:= a6 + k[2*i-1,6];
 a7:= a7 + k[2*i-1,7]; a8:= a8 xor k[2*i-1,8];

 {The result now passes through the nonlinear layer.}
 b1:= exptab[a1]; b2:= logtab[a2]; b3:= logtab[a3]; b4:= exptab[a4];
 b5:= exptab[a5]; b6:= logtab[a6]; b7:= logtab[a7]; b8:= exptab[a8];
 {Key 2i is now mixed byte and bit added to the result.}
 b1:= b1 + k[2*i,1]; b2:= b2 xor k[2*i,2];
 b3:= b3 xor k[2*i,3]; b4:= b4 + k[2*i,4];
 b5:= b5 + k[2*i,5]; b6:= b6 xor k[2*i,6];
 b7:= b7 xor k[2*i,7]; b8:= b8 + k[2*i,8];

 {The result now enters the first level of the linear layer.}
 mat1(b1, b2, a1, a2); mat1(b3, b4, a3, a4);
 mat1(b5, b6, a5, a6); mat1(b7, b8, a7, a8);
 {The result now enters the second level of the linear layer.}
 mat1(a1, a3, b1, b2); mat1(a5, a7, b3, b4);
 mat1(a2, a4, b5, b6); mat1(a6, a8, b7, b8);
 {The result now enters the third level of the linear layer.}
 mat1(b1, b3, a1, a2); mat1(b5, b7, a3, a4);
 mat1(b2, b4, a5, a6); mat1(b6, b8, a7, a8);

 {The round is now completed!}
 writeln('after round',i:2,a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4);
 END;

 {Key 2r+1 is now mixed bit and byte added to produce the cryptogram.}
 a1:= a1 xor k[2*r+1,1]; a2:= a2 + k[2*r+1,2];
 a3:= a3 + k[2*r+1,3]; a4:= a4 xor k[2*r+1,4];
 a5:= a5 xor k[2*r+1,5]; a6:= a6 + k[2*r+1,6];
 a7:= a7 + k[2*r+1,7]; a8:= a8 xor k[2*r+1,8];
 writeln('CRYPTOGRAM is',a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4); writeln;
 writeln('Type 0 and CR to continue or -1 and CR to stop run.'); read(flag);
 END
 UNTIL flag < 0;
END.

