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Abstract The applicability of techniques in coding theory to problems in cryptography is
illustrated by examples concerning secret-sharing schemes with tailored access priveleges, the
design of perfect local randomizers, the construction of t-resilient functions, and the
quantization of the nonlinearity of boolean functions.  Some novel coding concepts, in
particular the notions of minimal codewords in linear codes and of a partition of the space of n-
tuples based on nonlinear systematic codes akin to the coset partition for linear codes, are
shown to be necessary to treat the cryptographic problems considered.  The concepts of dual
codes and dual distance as well as the relation between codes and orthogonal arrays are seen to
play a central role in these applications of coding theory to cryptography.

1    Introduction

Coding theory, which had its inception in the late 1940's, is now generally regarded as a
mature science.  Cryptography on the other hand, at least in the public sector, is a science
in the phase of early and rapid development.  The thesis of this paper is that there are
many problems in cryptography to which the well-developed techniques and extensive
results of coding theory can be fruitfully applied.  Our approach to demonstrating this
thesis is anecdotal–we simply recount instances in our own research in cryptography
where we have found coding theory to be an exceedingly useful tool.

Sometimes our application of coding theory to cryptography has forced us to
introduce a new coding concept that may well be useful in its own right.  One instance of
this is the concept of "minimal codewords" in linear codes that we found necessary to treat
secret-sharing schemes with tailored access priveleges as described below in Section 2.
Our cryptographic applications of coding theory have also caused us to gain a deeper
appreciation of the connection between codes, whether linear or nonlinear, and orthogonal
arrays.  This connection is described in Section 3 where again a new coding concept is
required, in this case a partition of the space of n-tuples based on nonlinear systematic
codes that is akin to the familiar coset partition for linear codes.  In Sections 4 and 5 we
bring the tools of Section 3 to bear on two problems of cryptographic interest: the design
of "perfect local randomizers" and the construction of "t-resilient functions".  In Section 6
we show how the venerable Reed-Muller codes provide a natural way to quantify the
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nonlinearity of a boolean function, a problem of considerable cryptographic interest.  We
conclude in Section 6 with a few remarks.

2    Secret Sharing with Tailored Access Priveleges

The age-old way to share a secret, such as the three-digit combination 17–14–92 to a
combination lock with 100 positions on its dial would be to give part of the secret to each
user, say 17 to Alice, 14 to Bob and 92 to Carol, telling each user the position of his or her
share in the secret.  There are two drawbacks to such secret sharing by dissection.  First,
the secret "leaks out" as more shares are learned.  In the example, each share already
reduces the uncertainty of its owner about the secret to only 104 out of the 106 possible
combinations.  Knowledge of two shares reduces this uncertainty further to only 102

combinations.  Second, all shares are required to determine the secret.  If Carol loses her
share, Alice and Bob after combining their shares still must experiment to determine
which of the remaining possible 102 combinations is the correct one.  Such considerations
led Shamir [1] and Blakely [2] independently in 1979 to formulate so-called (S, T) threshold

schemes for secret sharing  in which a secret is transformed into a list of S shares in such a
manner that
(P1) knowledge of any T shares (where by "knowledge of a share" we will always mean
knowledge of both its value and its position in the list of shares) reveals the secret, but
(P2) knowledge of T - 1 or fewer shares gives no information whatsoever about the secret.

With no loss of essential generality when considering secret-sharing schemes, we can
and do suppose that the secret is an element of GF(q), the finite field of q elements, as also
is each of the shares.  McEliece and Sarwate [3] have given an elegant formulation of (S, T)

threshold schemes in terms of q-ary maximum-distance-separable (MDS) codes of block
length n = S + 1 with qk codewords, i. e., q-ary (n, k) codes with minimum distance d = n - k

+ 1, as follows:  The secret x1 is chosen as the first digit of the codeword.  The code digits
x2, x3, ... xk are next chosen independently and uniformly at random in GF(q) and the full
codeword x = [x1 x2 ... xn] then computed.  The share list is x2, x3, ... xn so that S = n - 1.
Because any k components of a codeword in an (n, k) MDS code form an information set, i.
e., the values of these k components can be arbitrarily selected and then determine the
entire codeword, property (P1) is satisfied for T = k   Because the first component x1 can be
included in an information set with any k - 1 other components, the values of these other
components cannot constrain the value of x1 and hence property (P2) is satisfied.  When
the MDS code is a Reed-Solomon code, this McEliece-Sarwate construction of an (S, T)

threshold scheme is equivalent to the scheme suggested by Shamir [1] and formulated in
terms of polynomial interpolation.
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Sometimes one wishes to share a secret so that some users have greater privelege of
access to it than do others.  For instance, suppose that Alice is president of a bank in which
Bob, Carol and David are tellers.  One might desire that Alice together with any one of the
tellers should have access to the secret, but that not even all three tellers together can gain
access to the secret without Alice.  For such cases, one can define the access structure of the
secret-sharing scheme as consisting of all those sets of shares that determine the secret but
that contain no proper subset that also determines the secret.  For the example just
mentioned, the access structure consists of the following sets of shares: {A, B}, {A, C}, and
{A, D}, where A, B, C and D denote the shares for Alice, Bob, Carol and David,
respectively.  One can then formulate an (S, Γ) access-structure scheme for secret sharing in
which a secret is transformed into S shares in such a manner that
(P3) knowledge of the shares in any set in Γ determines the secret, but
(P4) knowledge of the shares in a set not in Γ  and having no subset in Γ  reveals no
information whatsoever about the secret.
The question then arises: which access structures can be realized by q-ary (n, k) codes in
general and by linear codes in particular?  To treat this problem for linear codes, we
introduced in [4] what appears to be a new coding concept, viz. "minimal codewords", that
we now review.

The q-ary n-tuple x is said to cover the q-ary n-tuple x' in case that in every coordinate
where x' is non-zero, x is also non-zero.  For example, the 3-ary 4-tuple x = [0 1 2 1] covers
the 3-ary 4-tuple x' = [0 2 1 0].  We will say that a codeword x in a q-ary linear (n, k) code is
minimal if (i) x is a non-zero codeword whose leftmost non-zero component is a 1, and (ii)
x covers no other codeword whose leftmost non-zero component is a 1.

Example 1  Let GF(q) have characteristic 2 and consider the q-ary linear (5, 3) code for
which

 




 


1 1 1 0 0

1 1 0 1 0
1 1 0 0 1

is a generator matrix.  One easily checks that [1 1 1 0 0],  [1 1 0 1 0],  [1 1 0 0 1],  [0 0 1 1 0],
[0 0 1 0 1]  and [0 0 0 1 1]  are all and only the minimal codewords of this code.

The most interesting property of minimal codewords is the following.

Proposition 1  Every codeword in a q-ary linear (n, k) code can be written as a linear
combination of those minimal codewords that it covers.
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Proof

Let x be a non-zero codeword.  If x is minimal then there is nothing to prove.
Otherwise, x covers a minimal codeword x1 and hence there is a constant c1 such that the
codeword x - c1x1 has smaller Hamming weight than does x.  Because x covers x - c1x1, it
follows that if  x - c1x1 is 0 or a minimal codeword then the proof is complete.  Otherwise, x
- c1 x1 covers a minimal codeword x2 and hence there is a constant c2 such that the
codeword x - c1x1 - c2x2, which is still covered by x, has smaller Hamming weight than
does x - c1x1.  Etc.

Every q-ary linear (n, k) code V with no idle components (i. e., with no components
that are 0 in all codewords) determines an (S, Γ) access-structure secret-sharing scheme
with S = n - 1 as follows.  With no loss of essential generality, the secret is taken as the first
digit x1 of the codeword and the digits in some other specified k - 1 components, which
together with the first component form an information set, are chosen independently at
random.  The codeword x = [x1 x2 ... xn] is then computed and the share list taken as x2, x3,

... xn so that S = n - 1.  The following result, taken from [4], determines the corresponding
access structure.

Proposition 2  The access structure of the secret-sharing scheme correponding in the
manner just specified to the q-ary linear (n, k) code V consists precisely of those share sets
corresponding to those minimal codewords in the dual code V⊥  having 1 as their first
component in the manner that the share set specified by such a minimal codeword
contains the share xi (2 ≤ i ≤ n) if and only if the i-th component of this codeword is non-
zero.

Example 2  If we take the matrix in Example 1 to be a parity-check matrix for the code V, i.
e., a generator matrix for the dual code V⊥ , then the minimal codewords with first
component 1 in this dual code are [1 1 1 0 0], [1 1 0 1 0] and [1 1 0 0 1].  By Proposition 2,
the access structure consists of the share sets {x2, x3}, {x2, x4} and {x2, x5}.  Letting x2, x3, x4

and x5 be the shares for Alice, Bob, Carol and David, respectively, we see that we have
realized the desired access structure for the bank in which Alice is president.

Proof of Proposition 2

Suppose that {x1, x2, ... xt} is a share set in the access structure realized by the code V.
Because V is linear, it must be the case that the secret x1 is then determined as a linear
combination of the shares in this share set, i. e., there must exist constants a2, a3, ... at (all
necessarily non-zero) such that
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x1  =  a2x2 + a3x3 + ... + atxt       (1)

or, equivalently, such that

x1 - a2x2 - a3x3 -. .. - atxt  =  0

or, again equivalently, such that [1 -a1 -a2 ... -an] is a codeword in the dual code V⊥ .  This
codeword must be minimal for otherwise, by Proposition 1, it covers a minimal codeword
for which (1) can be written with at least one of a2, a3, ... at equal to 0 and hence a proper
subset of {x2, x3, ... xt} would reveal the secret x1, contradicting that this share set is in the
access structure.  Conversely, any minimal codeword with leading component 1 in the
dual code V⊥ , say [1 -a1 -a2 ... -an] with a1, a2, ... at all non-zero, corresponds to a relation (1)
and hence implies that {x2, x3, ... xt} suffice to determine x1, but the minimality of this
codeword implies that (1) cannot be written for any other choice of a1, a2, ... at  and hence
no proper subset of {x2, x3, ... xt} suffices to determine x1 so that this share set is indeed in
the access structure.

Among the open problems suggested by Proposition 2 are the following:  Give an
algorithm that, for a desired access structure, either finds a linear code V that realizes this
access structure in the manner of Proposition 2 or else shows that no such code exists.
Show that any access structure that can be realized in some manner can also be realized by
a linear code in the manner of Proposition 2 or else give a counterexample to this
assertion.

3    Codes and Orthogonal Arrays

In this section we collect some definitions and results that will be needed in the two
following sections.  We begin by recalling a result from [5] and then proving an analogous
result for dual codes.

Lemma 1  If the k × n q-ary matrix G is the generator matrix of a q-ary linear (n, k) code V,
then the minimum distance d of V is the smallest number of columns that can be removed
from G to yield a matrix with rank less than k.

Proof  Suppose that deleting t columns of G gives a matrix G~ of rank less than k.  Then

there is a non-zero k-tuple u such that u G~ = 0 and hence such that the non-zero codeword
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uG has Hamming weight at most t.  But the minimum weight of the non-zero codewords
in a linear code coincides with its minimum distance d so we must have t ≥ d.  Choosing
the t deleted columns of G to correspond to the non-zero components of a codeword uG of
weight d shows that t = d suffices.

Lemma 2  If the k × n q-ary matrix G is the generator matrix of a q-ary linear (n, k) code V,
then the minimum distance d⊥  of the dual code V⊥  is the smallest number t of columns of
G that form a k × t matrix with rank less than t.

Proof

We first note that t (t  ≥ 1) chosen columns of G form a submatrix of rank less than t if
and only if these columns are linearly dependent, i. e., if and only if there is a non-zero n-
tuple x that is non-zero only in the t corresponding components and gives GxT = 0T or,
equivalently, gives xGT = 0.  But G is a parity-check matrix for the dual code V⊥  and hence
xGT = 0  is just the condition that x be a codeword in V⊥ .  Because x is non-zero, it has
Hamming weight at least d⊥  and hence t ≥ d ⊥ .  Choosing the t = d ⊥  columns of G  to
correspond to the non-zero components of a minimum-weight codeword in V⊥  shows that
these t = d⊥  columns of G are indeed linearly dependent.

An orthogonal array OAλ(t, n, q) is a λqt × n array of q-ary symbols such that in every
choice of t (t ≥ 1) columns, each of the qt possible q-ary t-tuples occurs in exactly λ rows.
Orthogonal arrays with distinct rows are said to be simple.  An orthogonal array OAλ(t, n,
q) with t ≥ 2 is of course also an OAλq(t - 1, n, q) so that the maximum t for which a given

array is an orthogonal array is the parameter of interest.

Example 3  The 4 × 3 array

0 0 0
1 0 1
0 1 1
1 1 0

whose rows are the codewords of a binary linear (3, 2) code is a simple orthogonal array
OA1(2, 3, 2) since each binary 2-tuple appears in exactly 1 row in every choice of 2 columns
of the array.  This t = 2 is the maximum t for which this 4 × 3 array is an orthogonal array.
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Proposition 3  The maximum t for which a qk ×  n q -ary array, whose rows are the
codewords of a q-ary linear (n, k) code V with k < n and d⊥  > 1, is an orthogonal array
OAλ(t, n, q) [necessarily simple] is t = d⊥  - 1.

Remark  For k = n, the dual code has only one codeword; for the lemma still to hold in this
case, one must adopt the convention that d⊥  = n + 1.  For d⊥  = 1, the code V has one or
more idle components and hence its codewords cannot be the rows of an orthogonal array.

Proof

Let G~ be the submatrix formed by some choice of t columns of a generator matrix G

for V.  Then x~ = uG~ is a mapping from the information k-tuple u to those t components of
the codeword that correspond to the chosen columns.  This mapping is surjective (or

"onto") if and only if G~ has rank t.  Moreover, if this mapping is surjective, its linearity

guarantees that there are the same number of solutions u to the equation x~ = uG~  for each

of the qt choices of x~, i. e., the same number of codewords that have this pattern x~  in the
chosen t components.  The proposition now follows directly from Lemma 2.

A q-ary nonlinear (n, k) code C of course has no dual.  However, one can define a
dual distance d⊥  for such a code to be the smallest positive integer i such that Bi > 0 where
(B0, B1, ... Bn) is the MacWilliams' transform of the average distance distribution (A0, A1, ...

An) between the codewords of C, cf [6, pp. 135-141].  For a linear code, this dual distance is
the minimum distance of the dual code.  The following remarkable fact was first proved
by Delsarte [7], cf. [6. p. 139] and cf. [8] for a recent and masterful treatment of this subject.

Proposition 3+  Proposition 3 also holds for a q-ary nonlinear (n, k) code C when d⊥  is
taken to be the dual distance of C.

Stinson [9] has defined a large set of simple orthogonal arrays OAλ(t, n, q) to be a
collection of qn-t/λ such arrays with the property that every q-ary n-tuple appears as a row
in exactly one of the arrays in the collection.

If S is the set of rows in a simple orthogonal array OAλ(t, n, q) and x is a q-ary n-tuple,
then it is easy to see that the array whose rows form the translated set x + S (i. e., the set
formed by adding x to each n-tuple in S) is also a simple orthogonal array OAλ(t, n, q).  If S
is a linear code V, then x + S = x + V is a coset of V.  Because cosets are either identical or
disjoint, we obtain the following result immediately from Proposition 3.
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Proposition 4  The maximum t such that the collection of qn-k arrays, whose rows are the
codewords in a q-ary linear (n, k) code V with k < n and d⊥  > 1 and in its qn-k - 1 proper
cosets, is a large set of simple orthogonal arrays OAλ(t, n, q) is t = d⊥  - 1, where d⊥  is the
minimum distance of the dual code V⊥ .

Because there is nothing corresponding to a coset partition for a nonlinear code, it is
not obvious that Proposition 4 can be extended to nonlinear (n, k) codes.  This quandry
was, however, resolved in [5] for the important special case of systematic nonlinear (n, k)

codes.  A q-ary (n, k) code (linear or not) is said to be systematic if it has at least one
information set, i. e., k components whose values can be arbitrarily selected and then
determine the entire codeword.  All linear codes are systematic.  Not all nonlinear (n, k)

codes are systematic, but all the interesting nonlinear q-ary (n, k) codes that have been
found to date have been systematic.  If C is a systematic q-ary (n, k) code and if E is the set
of all qn-k q-ary n-tuples that contain only zeroes in the components corresponding to an
information set for C, then the sets e + C for e ∈  E are disjoint and exhaust the set of all qn

q-ary n-tuples.  If C is an OAλ(t, n, q), then so is e + C.  The following result from [5] thus
follows immediately from Property 3+.

Proposition 4+  Proposition 4 holds also for a systematic q-ary nonlinear (n, k) code C when
the cosets of V are replaced by the sets e + C for e ∈  E, where E is the set of all qn-k q-ary n-
tuples that contain only zeroes in the components specifying an information set for C.

4     Local Randomization

Cryptographers often wish to "stretch" randomness.  For instance, a cryptographer
designing the running-key generator for an additive stream cipher would like this device to
transform the k-bit secret key (which can be selected uniformly at random by coin tossing)
into a much longer sequence of n bits, the so-called running key, such that this longer
sequence still appears to an attacker to be completely random.  (This running key would
then be added bit-by-bit in GF(2) to the plaintext to produce the ciphertext.)  Because the
running key cannot have greater entropy than the secret key that determines it, a
completely random running key is impossible for n > k.  However, short segments of the
running key could still be completely random even when n >> k.  Motivated by such
considerations and by a related complexity-theoretic definition of Schnorr [10], Maurer
and Massey [11] defined an injective (or "one-to-one") function f from k q-ary digits to n q-
ary digits (n > k) to be a perfect local randomizer of order t if choosing the k input digits u1, u2,

... uk uniformly at random guarantees that the output digits in every choice of t
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components (not necessarily consecutive) of the output n-tuple are also uniformly
random.

Suppose now that we select some t components of the output [x1 x2 ... xn] = f(u1, u2, ...

uk).  For these components to be uniformly random, each of the qt possible values of these t
components must occur for eactly λ  = qk/qt = qk-t of the possible values of the argument [u1

u2 ... uk].  In other words, in the qk × n array whose rows are the values of [x1 x2 ... xn]  (i. e.,
are the range of the function f), each possible value of these t components must appear in λ
= qk-t rows.  We summarize.

Lemma 3  An injective function f from k q-ary digits to n q-ary digits (n > k) is a perfect
local randomizer of order t if and only if the qk ×  n array having as its rows the range of f
is an orthogonal array OAλ(t, n, q).

But any qk distinct q-ary n-tuples can be taken to be the codewords of a q-ary (n, k)

code (not necessarily linear).  Moreover, an injective function from k q-ary digits to n q-ary
digits is an encoder for such a code so that the following proposition from [11] now follows
directly from Lemma 3 and Proposition 3+.

Proposition 5  An injective function from k q-ary digits to n q-ary digits is a perfect local
randomizer of order t (t ≥ 1) if and only if it is the encoder for a q-ary (n, k) code (not
necessarily linear) with dual distance d⊥  greater than t.

It was pointed out in [5] that, because the Kerdock codes, cf. [6, p. 456], are binary (n,

k) nonlinear codes with n = 2r+1, k = 2r+2 and d⊥  = 6 for odd r at least 3, and because for
such r there is no binary  (n, k) linear code with the same n and with k = n - 2r - 2 and
minimum distance d = 6 (these are the parameters of the nonlinear Preparata codes that
are known to have larger d than the best linear codes with the same n and k, cf. [12]), it
then follows from Proposition 5 that there are infinitely many choices of n and k such that
there exists a nonlinear perfect local randomizer of order t from k bits to n bits but there
exists no such linear perfect local randomizer, which answers a question that had been
raised in [11].

5    Resilient Functions

Cryptographers often seek to prevent divide-and-conquer attacks on their systems by
ensuring that local constraints on an input result in no constraints on the output.  Such
considerations led Chor, Goldreich, Hastad, Friedman, Rudich and Smolensky [13] and,
later but independently, Bennett, Brassard and Robert [14] to introduce the notion of
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resilient functions.  A function f from n q-ary digits to n - k q-ary digits (1 < k < n) is said to
be t-resilient if, for every choice of t of the input digits, when the values of these digits are
fixed and the values of the other n - t input digits chosen uniformly at random, all n - k

output digits are uniformly random.

Example 4  The linear function f(x1, x2, x3) = x1 + x2 +x3 from n = 3 binary digits to n - k = 1

binary digit has the function table:

x1 x2 x3    f(x1,x2,x3)

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

   

        0         
        1         
        1         
        0         
        1         
        0         
        0         
        1         

This is a 2-resilient function since the set of arguments [x1 x2 x3] giving f(x1, x2, x3)  = 0

contains each possible value of x1 and x3, for instance, exactly once as does also the set of
arguments giving f(x1, x2, x3)  = 1; hence, when x1 and x3 are fixed to any values, f(x1, x2, x3)

will equal to 1 with probability 1/2 when x2 is chosen by coin tossing.

One sees readily from this example that the condition for f(x1, x2, ... xn)  = [y1 y2 ... yn-k]

to be t-resilient is that there exists a positive integer λ  such that, for each choice of the
output [y1 y2 ... yn-k], the set f -1(y1, y2, ... yn-k) (i. e., the set of those arguments [x1 x2 ... xn]

that give the function value [y1 y2  ... yn-k] ) has the property that, for every choice of t

components of the argument, each of the qt possible values of these t components appears
exactly λ times.  We summarize as follows.

Lemma 4  A function f(x1, x2, ... xn)  = [y1 y2 ... yn-k] from n q-ary digits to n-k q-ary digits is t-
resilient if and only if the collection of the qn-k sets f -1(y1, y2, ... yn-k) determined by the
possible choices of [y1 y2 ... yn-k] is a large set of simple orthogonal arrays OAλ(t, n, q).

If H is an (n - k) × n parity-check matrix for a q-ary linear (n, k) code V, then the linear
function f(x1, x2, ... xn)  = [x1 x2 ... xn] HT has the property that the inverse function f -1(y1, y2,

... yn-k) is a bijective mapping from the qn-k q-ary (n - k)-tuples to the collection of all cosets
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of V .  (This linear function f is called a "syndrome former" in coding theory.)  The
following result is thus an immediate consequence of Lemma 4 and Proposition 4.

Proposition 6  If H is an (n - k) ×  n  parity-check matrix for a q-ary linear (n, k) code V, then
the maximum t such that the linear function f(x1, x2, ... xn)  = [x1 x2 ... xn] HT is t-resilient is t
= d⊥  -1, where d⊥  is the minimum distance of the dual code V⊥ .

In fact, the above argument together with Proposition 4+ shows the truth of the following
stronger result from [5].

Proposition 6+  If the function f(x1, x2, ... xn)  = [y1 y2 ... yn-k] from n q-ary digits to n - k q-ary
digits has the property that the sets f -1(y1, y2, ... yn-k) for the qn-k choices of [y1 y ... yn-k] are
the collection of sets e + C, e ∈  E, where C is a systematic q-ary (n, k) code and E is the set
of all qn-k q-ary n-tuples that contain only zeroes in the components corresponding to an
information set for C, then the maximum t such that f  is t-resilient is  t= d⊥  -1, where d⊥ is
the dual distance of C.

This proposition was used in [5] together with the properties of the nonlinear Kerdock
codes to show the existence of infinitely many nonlinear t-resilient functions with t greater
than can be obtained by linear functions for the same n and n - k, thereby disproving an
earlier conjecture [13] that not even one such nonlinear function existed.

6    Quantifying Nonlinearity of Boolean Functions

Linearity is often said to be the cryptographer's curse (or the cryptanalyst's blessing).
Indeed cryptographers often speak of selecting some "highly nonlinear" transformation for
use within their ciphers.  How to quantify nonlinearity is a task that has often occupied
cryptographers.  One approach stems from the so-called algebraic normal form of a
boolean function.  Suppose that f is a boolean function of n binary variables.  We will
consider such a function as a mapping from GF(2)n to GF(2).  Such a function can be
written uniquely as

f(x1, x2, ... xn) = a01 + a1x1 + ... anxn + a12x1x2 + a13x1x3 + ... an-1,nxn-1xn + ... a12...nx1x2...xn     (2)

where the coefficients a0, a1, ... an, a12, a13, ... an-1,n, ... a12...n and all operations are in GF(2).
This expression for f is called its algebraic normal form (ANF) and is frequently used to
define the order of nonlinearity of f.  The contant term 1 in (2) is the zero-order term; the
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variables x1, x2, ... xn are the first-order terms, the products of pairs of variables x1x2, x1x3,

... xn-1,nxn are the second-order terms; etc.  The nonlinear order of f is then defined as the
order of the term of maximum order with a non-zero coefficient in the ANF of f (and the
zero function is said to have nonlinear order -∞).  For example, the function f(x1, x2, x3) = 1

+ x1x 2 + x2x3 has nonlinear order 2.  Nonlinear order plays an important role in
determining the "linear complexity" of a sequence formed by using the function to
combine the outputs of n linear feedback shift-registers, cf. [15].  That nonlinear order is
not an entirely satisfactory measure of nonlinearity, however, can be inferred from the
example f(x1, x2, x3) = x1x2x3, which has the maximum possible nonlinear order, 3, for a
function of n = 3 variables.  But this function differs from the least nonlinear function (the
zero function) in its value for only one argument, namely [x1 x2 x3] = [1 1 1] so that it is
"very close" to this least nonlinear function.

More insight can be gained into the ANF of a function if we consider the function
tables of the monomial functions of order 0 and 1.  For n = 3, one obtains the following
function tables:

[x1 x2 x3]     [0 0 0] [0 0 1]  [0 1 0]  [0 1 1]  [1 0 0]  [1 0 1]  [1 1 0]  [1 1 1]

   1      1 1 1 1 1 1 1 1

  x1     0 0 0 0 1 1 1 1

  x2     0 0 1 1 0 0 1 1

  x3     0 1 0 1 0 1 0 1

A coding theorist looking at this 4 × 8 array of binary digits will immediately recognize it
at the generator matrix of the (8, 4) first-order Reed-Muller code in precisely the form
suggested by Reed [16].  It follows from (2) that the function table of any function f(x1, x2,

x3) of nonlinear order 1 or less is just a linear combination of the rows of this matrix, i. e., a
codeword in this first-order Reed-Muller code.  Rueppel [17, p. 129], who noted this fact,
used the Hamming distance of the function table of a function from the nearest codeword
in the first-order Reed-Muller code of length 2n , divided by n  for a convenient
normalization, as a measure of how accurately the function could be approximated by a
linear or affine function, i. e., by a function of nonlinear order 1 or less, and used this
approach to explore the nonlinearity of the functions that appear in the S-boxes
("substitution boxes") of the Data Encryption Standard (DES).

Nothing, however, requires us to stop at the monomials of nonlinear order 1 or less
in our examination of boolean functions.  For the above example with n = 3, the mononials
of order 2 have the following function tables:

 x1x2     0 0 0 0 0 0 1 1

 x1x3    0 0 0 0 0 1 0 1
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 x2x3    0 0 0 1 0 0 0 1

A coding theorist will again immediately recognize these three binary rows as those that
must be adjoined to the generator matrix for the (8, 4) first-order Reed-Muller code to
obtain the generator matrix of the (8, 7) second-order Reed-Muller code in precisely the
form suggested by Reed [16].  Again it follows from (2) that the function table of any
function f(x1, x2, x3) of nonlinear order 2 or less is just a linear combination of the rows of
this latter generator matrix, i. e., a codeword in this second-order Reed-Muller code.  The
obvious extension can be summarized as follows.

Proposition 7  The codewords of the i-th order (0 ≤ i ≤ n) binary Reed-Muller code of
length 2n, when the generator matrix is taken in the Reed form [16], are precisely the
function tables of the boolean functions f(x1, x2, ... xn) of nonlinear order i or less with the
argument values [x1 x2 ... xn] taken in natural binary order.

This result suggests that what we will call the nonlinearity spectrum (δ0, δ1, ... δn) of a
non-zero boolean function f(x1, x2, ... xn), where δi is the normalized Hamming distance of
the function table to the nearest codeword in the i-th order Reed-Muller code of length 2n,
gives a much truer picture of the function's nonlinearity than does merely its nonlinear
order (which is the smallest i such that δi = 0) or merely its normalized distance δ1 to linear
and affine functions.  For example,  f1(x1, x2, x3) = 1 + x1 +x2x3 and  f2(x1, x2, x3) = 1 + x2x3

have the respective function tables:

 f1(x)     1 1 1 0 0 0 0 1

 f2(x)     1 1 1 0 1 1 1 0

One easily checks that the nonlinearity spectra of f1 and f2 are (1/2, 1/4, 0, 0) and (1/4, 1/4, 0, 0)

respectively, showing that f1 is indeed "more nonlinear" than f2, although both functions
have nonlinear order 2 and distance δ1 = 1/4 to the linear and affine functions.

We note that computing the nonlinearity spectrum of a boolean function f(x1, x2, ...

xn) requires one to do complete nearest-codeword decoding of the Reed-Muller codes of
length 2n.  This is not a great problem for the small values of n, typically n ≤ 6, usually
encountered in cryptographic systems, but it is already a daunting problem for n as small
as 10.  In such cases, in place of the true (normalized) Hamming distance δi to a codeword

in the i-th order Reed-Muller code, one might be forced to replace δi with the distance δi
~ to

the codeword found by Reed's simple majority-decoding algorithm [16], which is
guaranteed to decode to the nearest codeword whenever this codeword is less than half
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the minimum distance of the code from the given word (which word in this case is a
function table).

7    Concluding Remarks

That we have not given more examples of the application of coding theory to
cryptography [or, perhaps better said, of the interplay between coding theory and
cryptography] is due more to the need to hold this paper to a reasonable length than to the
paucity of such examples, even when we restrict ourselves to those that have arisen in our
own research.  The sciences of coding and cryptography appear to us to be intrinsically
intertwined.  As the former science is in a higher stage of deveopment, i. e., the theory is
more extensive and cohesive, its study is a natural springboard for those who want to dive
into the much-less-well-charted waters of cryptography.  We would be pleased if this
paper encourages a few to take this plunge.
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