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CODING THEORY 

w. w. PETERSON,* MEMBER, IEEE, AND J. MASSEYt 

ALGEBRAIC CODINGTHEORY 

The class of error-correcting codes studied most during 
the past several years is the class of cyclic codes. A cyclic 
code is a parity-check code which has the property 
that every cyclic permutation of a code word is also a 
code word. This class includes the Hamming codes, the 
well-known Golay perfect (23, 12) code, the ‘(maximal 
length sequence” codes. It also includes the important 
class of codes discovered independently by Bose and 
Ray-Chaudhuri [15] and Hocquenghem [61], and the 
class of double-adjacent error-correcting codes found by 
Abramson [l]. These latter papers are to a large measure 
responsible for interest in cyclic codes for random-error 
and burst-error correction respectively. 

A large class of burst-error-correcting cyclic codes with 
small redundancy has been found by Fire [38] and a 
number of workers have found codes with minimum 
or near-minimum redundancy for correcting short bursts 
[2], [3], [33], [41], [55], [56], [95]. Some of the work includes 
nonbinary codes [32], [go]. Furthermore, very simple 
and efficient encoding and error-correcting equipment 
can be built for any burst-error-correcting cyclic code 
[791-WI, WI. 

Progress in the study of cyclic codes for random-error 
correction has been spurred by the interest and efforts 
of a number of algebraists. Reed and Solomon [93] 
discovered a new class of codes closely related to the 
Bose-Chaudhuri-Hocquenghem codes. Then Solomon and 
Mattson [104] found that the ideas behind the Reed- 
Solomon codes could be used as the basis for a new 
way of treating the generalized Bose-Chaudhuri codes, 
and they were able to determine specific properties of 
certain cyclic codes with their methods. H. B. Mann [76] 
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has derived expressions for the number of information 
symbols in a Bose-Chaudhuri-Hocquenghem code. Interest 
is still high [lo], [20], [51], and new results along these 
lines can be expected. 

Some of the algebraically oriented coding theory of 
the past three years applies to parity-check codes in 
general [9], [18], [34], [59], [67], [97], 1991. Slepian [103] 
has published new work relating to group-code equivalence 
and to sums and products of codes. MacWilliams [75] 
has found a formula for determining the weight distribu- 
tion of a code from the weight distribution of its null 
space. From this, Pless [91] has derived a formula for the 
sum of the rth powers of the weights of all code words 
in a code, for any integer r. Independently, Assmus and 
Mattson [6], [118], have derived an interesting theorem 
which gives as a corollary a formula for the sum of the 
squares of the weights of code words. Solomon [105] 
also has an interesting weight formula. Many of these 
results have been helpful in determining properties of 
specific cyclic codes [7], [78], [83], [106]. 

Some very simple decoding methods and equipment 
have been designed for cyclic random-error-correcting 
codes. The general method of Meggitt [79]-[82] applies, 
but refinements are necessary for practical implementa- 
tion. Prange [92] has described an idea involving the 
choice of information sets which leads to simple decoding 
of short cyclic codes. Massey [77] has found very simple 
implementations for several cyclic and recurrent codes. 
Rudolph [98] (and Kasami in Japan) have found very 
simple and practical decoding algorithms for some short 
cyclic codes. At least two corporations in the United 
States, General Electric Company and Codex Corporation, 
plan to build and market simple cyclic or recurrent 
error-correcting encoders and decoders. 

A decoder for a 127-bit 5-error-correcting Bose-Chau- 
dhuri-Hocquenghem code has been constructed by Bartee 
[ll]. This machine is roughly the size of a file-cabinet 
drawer. It is made from I-psec transistor and diode 
logic, and can process roughly 4000 bits per second. 
A similar machine design was done by Moss [85]. 

A variety of coding schemes suited to special types 
of errors have been reported recently. Wolf and Elspas 
[114] have introduced the concept of error-location codes. 
Stone [log] has discussed the problem of correcting 
multiple bursts, and Reed and Solomon [93] have pointed 
out the applicability of certain nonbinary codes to this 
situation. Calingaert [19] has described a code for cor- 
recting a “spot” of errors in a two-dimensional array. 
A method for correcting for a bit loss or gain was devised 
by Sellers [loo], and Gallager [45] has pointed out that 
sequential decoding can be adapted to correct for this 
type of error. 

A type of coding based on ordinary arithmetic has 
been studied by Brown [16], Henderson [60], Bernstein 
and Kim [14], and Chien [25]. The coded form of the 
number n is of the form An + B. The error-correction 
capabilities are dependent on the value chosen for A 
and the limits on the range of n. Since the encoding 
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operation is linear, these codes can be used to check 
an adder. In that case, they can detect or correct carry 
errors as well as the more commonly considered digit 
errors. Since encoding and decoding can be done by 
ordinary arithmetic, these codes could be used con- 
veniently in communication between computers. 

Freiman [42] and Berger [12], [13] have found codes 
well adapted to an assymetric channel. One particularly 
interesting coding scheme uses as check symbols a count, 
possibly weighted, of the “ones” in the information. 
The count is expressed as the complement of the conven- 
tional binary number. Then an error pattern which 
changes only ones to zeros, or vice versa, is always 
detected. 

More refined bounds on the error-correcting capabilities 
of codes have been found [8], [53], [54]. Both upper 
and lower bounds are known for burst-correcting codes 
[al], [go]. Perhaps the most interesting new work, reported 
by Johnson [65], [66] and Gramenopoulos [52] are two 
different upper bounds on minimum distance which are 
assymptotically lower than the Hamming or Plotkin 
bounds. 

Some interesting binary and nonbinary sequences with 
good autocorrelation properties have been found recently 
[48], [50], [62], [64], [88]. These sequences, which can be 
used as error-correcting codes, also have applications in 
spectroscopy and radar and communication signal design. 

The work traditionally designated coding theory and 
that called signal design differ only in that the former 
deals with discrete spaces and the latter deals with 
continuous spaces. Otherwise they are the same, and 
in fact Shannon [loll considers both to be special cases 
of transformations of signals or information, and uses 
the term coding for both. J. L. Kelly [71] has published 
a random-coding-type theorem that applies to continuous 
channels and for which the codes bear some resemblance 
to group codes. Harmuth [57] and Franc0 and Laths [44] 
have found methods of constructing continuous codes 
(i.e., signal design) based on discrete error-correcting 
codes. Recent work by Frank, Zadoff, and Heimiller [43], 
[58], Viterbi [112] and Stutt [ill] is at least related very 
closely to conventional coding theory. Other work in 
the area of signal design is summarized in another section. 

PRESENTSTATUS OF ALGEBRAIC CODINGTHEORY 

Shannon’s fundamental theorem for the noisy channel 
[loll, which sets limits on the amount of information 
which can be transmitted reliably through a noisy channel, 
was the initial motivation and goal for work on error- 
correcting codes. Shannon [102] and Elias [31] later 
sharpened that goal by deriving bounds which show 
the relationship between code length and error probability 
for the best code for certain channels. 

The simplest and best-understood noisy channel is 
the binary symmetric channel in which the error prob- 
ability is the same for both symbols and independent 
from symbol to symbol. For this channel, the Bose- 
Chaudhuri-Hocquenghem codes are far the best codes 
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known at the present, and in many instances such codes 
can be very effectively used to control errors. For example, 
if the channel error probability is 0.01, the 20-error- 
correcting Bose-Chaudhuri-Hocquenghem code of length 
511 symbols, results in a probability for erroneous decoding 
of approximately 8 X lo-‘. Bounds of the type derived 
by Shannon and Elias show that the best parity-check 
code with 340 information and 171 check symbols has 
an error probability lying between 3.7 X lo-l6 and 
2.6 X 10-17. These same bounds show that the shortest 
code in which one-third of the symbols are parity-check 
symbols, and which has error probability less than 
8 X lOA must have its length between 171 and 213. 
Thus the best codes which we know fall far short of 
what is possible. 

The figure 3.7 X 10-l’ is an upper bound on the average 
error probability for all codes with 340 information and 
171 check symbols. Thus the Bose-Chaudhuri codes fall 
far short of average! Yet, they are the best codes for 
which the construction and correction procedure can be 
given explicitly now. There are two possible explanations: 
the correction procedure for correcting any combination 
of 20 or fewer errors is not optimum, because there 
are many combinations of more than 20 errors which 
this code certainly could correct. PJo effective method 
for correcting these error patterns is known, and it is not 
even known how much lower the error probability would 
be if optimum decoding were possible. Thus these codes 
might be near optimum although it has not been proved, 
or alternatively they might indeed be nonoptimum and 
even worse-than-average codes! 

This state of affairs has challenged coding theorists 
and the modest but important and rather steady progress 
in this area in the past several years has spurred them on, 
and has paid off both in producing useful codes and in 
some practical equipment designs. It has also motivated 
the study of systems based on randomly chosen codes 
as an alternative to the so-far unsuccessful search for 
near-optimum codes of algebraic structure. 

PROGRESS IN RANDOM CODING 

The term “random coding” is commonly applied to 
the process of computing average properties of an ensemble 
of codes in which all codes are assigned equal probability. 
The first proof of the noisy coding theorem by Shannon 
[loll was based on random coding and most of the recent 
progress in random coding has been made by the workers 
gathered about Shannon at M.I.T. The tightness of 
the bounds on average probability of error, P(e), for a 
random code ensemble has been greatly enhanced by 
the introduction of the technique of Chernoff [24]. Fano 
[35] has recently extended the earlier work of Feinstein 
[37] and Elias [31] to the general discrete memoryless 
channel (DMC) and has shown that for rates (R) between 
some critical rate and channel capacity (C) the exponent 
nE(R), where n is the code length, in the expression 
for P(e) obtained by random coding is equal to the 

exponent in the lower bound for the probability of error 
with any code. A random code ensemble with this property 
is called optimum. 

One interesting question is the size of the ensemble 
necessary for the proof of optimality. Elias [31] had 
shown earlier that the ensemble of sliding parity check 
codes with only 2” member codes is optimum on the 
binary symmetric channel (BSC). Wozencraft [77] 
recently discovered an optimum ensemble for the BSC 
with 2N member codes where N = max (Rn, n - Rn). 
It might be expected that as the size of the ensemble is 
reduced the decoding effort should also be reduced because 
of the increased structure of the ensemble, but there 
have been no efficient decoding methods proposed for 
the sliding parity check ensemble or for the Wozencraft 
ensemble. The link between code structure and decoding 
effort is largely unexplored. 

It is in the area of bounding decoding effort for specific 
ensembles that the most significant progress in random 
coding has been made in the past three years. Most 
of this work has been based on the earlier results obtained 
by Wozencraft [116], [117]. Wozencraft considered 
ensembles of tree codes such as the convolutional codes 
proposed by Elias [31]. The encoding and decoding of 
successive digits can be done in the same manner for 
such codes. The delay in digits between receipt of a digit 
and the attempt to decode it is called the constraint 
length, n,, and is analogous to code length in a block code. 
Using a technique called sequential decoding, Wozencraft 
showed that the average number of computations in 
discarding the incorrect subset grew as only a small 
power of n, for R less than some computational rate 
(R,,,,) less than C, while at the same time P(e) decreased 
exponentially with n,. The incorrect subset is that part 
of the coding tree, diverging from the node corresponding 
to the digit being decoded, which branches out from 
the erroneous values of that digit. Sequential decoding 
utilizes successive searches of the coding tree until a 
good match to the received sequence is obtained, the 
criterion for rejecting sequences from consideration being 
made less stringent on each search. 

Much effort has gone toward broadening and refining 
the results of Wozencraft. An important step was taken 
by Gallager [94] who suggested a method whereby the 
average computation in the entire decoding process 
could be bounded. Reiffen [94] showed that this gave a 
bound which grew as n:(l+R’ROOmp) for R < l?,,,,, thereby 
removing one of the major objections to sequential 
decoding. 

It was soon realized that sequential decoding, because 
of its highly probabilistic structure, was applicable to 
a broad class of channels and many recent results are 
concerned with this extension. Reiffen [94] extended 
most of the major aspects of the theory to the DMC 
and the semicontinuous channel. For the DMC symmetric 
from its output, he was able to show that the average 
number of computations in discarding the incorrect 
subset is bounded by a quantity proportional to n?‘ROOmD 
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for R < RcomD and that P(e) decreased with the same 
exponent as for an optimum ensemble. Reiffen showed 
further that R,,,, was equal to E(0) for such symmetric 
channels and was bounded above by E(0) for the assy-  
metric DMC. 

Z iv  [119] has recently made further extensions in 
several directions. F irst, he showed that R,,,, was 
bounded below by $E(O) for the assymetric  DMC, and 
that the bound on average number of computations in 
discarding the incorrect subset grew as nt. Second, 
Z iv  introduced an entirely new concept into sequential 
decoding. Rather than using reject cr iteria, Z iv’s  decoder 
computes the a posteriori probability of paths in the 
tree and makes a decoding decision whenever this prob- 
ability  exceeds a fixed predetermined threshold. The 
scheme was analytically attractive and allowed Z iv  to 
compute a bound on the average number of decoding 
computations which grows as n:+R’RcOmD for R < R,,,, 
for the DMC. R,,,, was found to be $E(O) for this scheme, 
the same as the lower bound on R,,,, for sequential 
decoding on assymetric  channels. 

the average number of decoding operations per digit is  
independent of block length for rates sufficiently less 
than C. For the BSC, Gallager could establish only 
that P(e) decreased exponentially as a root of the block 
length, but a reasonable conjecture would imply that 
the actual decrease was exponential with the block length. 
A computer s imulation of the decoding process was made 
and the results support this conjecture. Low-density 
parity check decoding, like sequential decoding, can 
employ a posteriori information about the received digits. 
It can thus be expected to generalize to a broader c lass 
of channels. 

The progress in random coding methods has been quite 
remarkable during the past three years. Moreover the 
momentum of the movement appears to be on the increase. 
W e can, expect that the report three years from now 
will not lack for fundamental coding theorems that owe 
their proofs to random coding methods, and that com- 
mercial use will then be being made of hardware based on 
random coding principles. 

Very recently, Fano [36] announced a major new 
result in sequential decoding. By employing a prob- 
ability  cr iterion in a novel manner that is  both opera- 
tionally s imple and mathematically tractable, Fano 
succeeded in bounding the average number of decoding 
computations by a constant independent of n, for the 
symmetric DMC. The full impact of this result can be 
expected in the near future and should serve to enlarge 
the interest of workers in random coding. Theoretical 
research is  already underway in some quarters to apply 
random coding techniques to channels with s imple k inds 
of memory and results can be expected in the near future. 

REAL CHAKNELS 

In addition to the theoretical progress described above, 
there has been concurrent effort to bring sequential 
decoding to the hardware stage. One phase of this work 
was the construction of SEC0 (SEquential decoder) 
under the direction of Perry [89] at the M.I.T. Lincoln 
Laboratory. SEC0 was completed in late 1962 and is  
now in operation. Essentially it is  a special-purpose 
digital computer programmed to instrument the W ozen- 
craft decoding alogorithm. It is  capable of operation at 
rates up to 50 k ilobits  per second with constraint lengths 
up to 60 information bits for a wide range of information 
rates. SEC0 was intended primarily as a tool for proving 
the feasibility of sequential decoding on real channels. 
Impressive results have been obtained [120]. 

Understanding of real channels, like that of the binary 
symmetric channel, has progressed immensely in the 
past few years, yet leaving many problems unanswered. 
For example, only a few years ago it was presumed that 
the important noise in typical channels was Gaussian 
and that consequently for ordinary modulation schemes 
the binary symmetric channel was a fairly accurate 
model. Experience soon showed that errors usually 
occur in “bursts,” and consequently interest arose in 
burst-error-correcting codes. This also instigated some 
thorough studies of error statistics with conventional 
modulation schemes and it was found that bursts come 
in bursts, that generally there will be long periods with 
few or no errors, and then relatively short periods of 
many errors [4], [17], [39]. The cause of the errors has 
been found to be impulse noise, typically caused by 
lightning, sw itching transients, power line transients, 
and s imilar problems. W ith these conventional modulation 
schemes, error-correcting codes without feedback seem 
to be of little help [40]. On the other hand error-detecting 
codes with request for retransmission have been used 
with extremely low probabilities of undetected errors. 

In addition to sequential decoding, a second promising 
random coding technique was discovered recently by 
Gallager [46]. Gallager has termed his method “low- 
density parity check” coding s ince it is  a decoding method 
for the ensemble of nonsystematic binary parity check 
codes constrained to have a small fixed number of bits 
in each parity set. Gallager showed that the average 
minimum distance of the codes in this ensemble increases 
linearly with block length but the ratio is  less than 
optimum. The important feature of Gallager’s  work is  
the operationally s imple decoding alogorithm for which 

W ork with real channels has brought into focus two 
problems on which we can expect serious efforts in the 
near future. F irst is  the consideration of the entire 
system-binary coding and modulation and s ignal 
design-together. W ozencraft and Perry and their 
associates are doing some experiments of this type with 
SEC0 and a real channel [89]. W ork of this type has 
been done at N.Y.U. The other problem is, what is  the 
best way to use feedback? On this problem also, pioneering 
work has been done at N.Y.U. by Chang [22], [23] and 
Metzner and Morgan [84]. Various aspects of the problem 
of error-detection and retransmission have been studied 
by Cowell [29], [30], Jacobs [63], and W ozencraft and 
Horstein [115]. 
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OTHER WORK 

Weiss [113] has found that linear codes for information 
compression are closely related to parity-check error- 
correcting codes. Karp [68] has generalized Huffman’s 
coding procedure to give minimum-cost encoding when 
the symbols have unequal costs. Cohn and Gorman [26] 
have shown an interesting address encoding. Karush [69] 
has given a new, greatly simplified proof of McMillan’s 
inequality. Other work in this area has been concerned 
largely with the important problem of gaining synchroniza- 
tion and detecting synchronization errors [72], [107], [108], 
[45], [loo]. Neumann’s work [87] is particularly interesting, 
in that it relates the synchronization problem to the 
theory of sequential machines, thus applying concepts 
new to this problem. At the same time he can specify 
machines for detecting synchronization errors. 

Armstrong [5] and Cowan and Winograd [28] have 
independently found a way to design a redundant digital 
machine using error-correcting codes. This is a very 
natural generalization of their use in communication 
systems. However, there are two problems here which 
are not so serious in the communication problem. First, 
while the number of redundant units may be very modest, 
there is no assurance that these units will be of the same 
size as the ones to be checked. On the contrary, it would 
appear that in the usual case, the redundant units are 
much larger. Secondly, an error-correction unit for the 
error-correcting code is needed, and there is no easy 
way to make it more reliable than the available com- 
ponents permit. While at first glance the results look 
favorable, in fact they seem to add more weight to previous 
results which indicate that there is very likely no general 
way of detecting or correcting errors in computers which 
is simpler than duplication or triplication, In certain 
special cases an improvement is possible. The load-sharing 
switching matrix, discovered independently by Takahashi 
and Goto [llO] and Constantine [27], is a case in point 
[87]. A very useful summary of practical techniques for 
improving reliablity in digital equipment has been 
compiled by Kautz [70]. 
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CONTRIBUTIONS TO SIGNAL AND NOISE THEORY 

DAVID SLEPIAN*, FELLOW, IEEE 

A. SIGNAL THEORY 

Refs. [l]-[17] indicate some of the activity in signal 
theory during the period under consideration. A number 

* Bell Telephone Laboratories, Inc., Murray Hill, N. J. 

of the researches were concerned with the design of 
signals to achieve specific aims: the design of radar 
pulses to obtain good resolution in range and velocity, 
as treated by Klauder in [8] and by Sussman [17]; the 
attainment of prescribed correlation properties, Frank 
and Zadoff [3], Heimiller [5], Huffman [7], and Max [14]; 
or the elimination of intersymbol interference, Gerst and 
Diamond [4]. Others, Bedrosian [I], dealt with general 
representation problems of the signals commonly met in 
communication systems. 

Interest in band-limited signals and their special 
properties continued to run high. The sampling theorem 
was extended by Linden and Abramson [13], and the 
error introduced in truncated sampling series was in- 
vestigated by Helms and Thomas [B]. Several surprising 
facts about strictly band-limited signals came to light. 
Such signals can have much of their energy in semi-infinite 
regions where their Nyquist samples vanish, I’ollak [15]. 
They are peculiarly robust as evidenced by the following, 
Landau [9], Landau and Miranker [lo]. Let a band- 
limited signal z(t) be distorted by an instantaneous 
device to produce a signal y(t) = F[x(t)], no longer, 
in general, band-limited. Let y be restricted to the band 
of x by passage through an ideal filter to yield a signal 
x(t). With certain weak restrictions on the nature of F, 
zr can be reconstructed from x. 

The extent to which a signal can be simultaneously 
concentrated in both the time and frequency domains 
was examined in detail in a series of three papers, [16], 
[ll], [12] by Landau, Pollak and Slepian. In the last 
of these, Landau and Pollak prove a solid mathematically 
meaningful version of the long-standing ill-defined folk 
theorem that proclaims that signals of bandwidth W 
and duration T have 2WT degrees of freedom. Prolate 
spheroidal wave functions were shown to play a natural 
important role in the solution of many problems con- 
cerning the concentration of signals. 

B. NOISE THEORY 

Noise researches pertaining primarily to detection, 
estimation, filtering, prediction, and specific communica- 
tion systems are treated elsewhere in this report. Even 
excluding these specific subjects, work in noise theory 
was most extensive. The listing made here must then 
necessarily be representative, rather than exhaustive. 

The subject matter of noise theory has no well-defined 
borders, but instead shades off continuously into physics 
in one direction and into probability theory, statistics 
and pure mathematics in another direction. For this 
survey arbitrary boundaries have been drawn. We 
proceed from near the frontier with Physica and wander 
towards Mathematics. 

Many papers appeared during the period that discussed 
the noise properties of new devices-tunnel diodes, 
transistors, masers, etc., and new circuit arrangements. 
Noise figure calculations and equivalent circuit con- 
figurations play a key role here. A few representative 
titles are given [18]-[30]. 


