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N(n, w, 22~). Then, whenever 

M(n, w, 2u) = M(n - 1, w - 1, 2~) + n/r(n - 1, w, au), 
we must also have 

(n - w)M(n - 1, w - 1, 2~) = wM(n - 1, w, au). (14) 

If (14) is not satisfied in these cases, lower M(n, zu, 2~) by one. A 
final useful, though simple, relationship for establishing realizability 
is given by 

Nh + n,, w1 + w, 2u, + 2~2 

= min (Nh , wl, 224, Nb, w, 24 ) . (15) 
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Application of Lyapunov’s Direct Method to the Error- 
Propagation Effect in Convolutional Codes 

INTRODUCTION 

The convolutional type of code, discovered by P. Elias,’ has 
assumed a central role in coding theory owing to its use in several 
practical decoding schemes.z-6 Encoding is performed by a linear 
digital filter resulting in a continuous and queue-free encoding 
operation. One feature of the decoding process, however, has re- 
sulted in certain misgivings, namely the tendency of a decoding 
error to trigger a succession of further decoding errors. Certain 
st,rategies, such as periodic resynchronization,7 have been suggested 
to control this error-propagation effect, but at the expense of intro- 
ducing encoding queues. An alternative to such artificial means of 
limiting error propagation is the possibility that the decoder will 
itself “reconverge” to correct operation after a short burst of 
erroneous decoding decisions. That possibility is the subject of 
this communication. It is shown below that the error-propagation 
effect is closely related to the stability of a binary nonlinear-feed- 
back shift register. This stability problem is analyzed with the 
aid of a modified form of Lyapunov’s direct method. As an example, 
a practical convolutional decoder is analyzed by this method and 
it is shown that automaGc reconvergence is obtained. 

FORMULATION OP THE PROBLEM 

For ease of presentation, only binary, rate one-half, convolutional 
codes will be considered. In this case, there is a single sequence of 
information symbols which can be represented in delay-operator 
notation as 

I(D) = i, @ i,D @ i,D” @ . . . , 
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where ii is the information symbol input to the encoder at time 
unit j. The encoder forms a parity sequence which is given by 

P(D) = po @ plD @ pzD2 @ . * . = I(D)G(D), 

where 

G(D) = go @ glD @ gzDz @ - - - 0 gmDm 

is the code-generating polynomial whose choice fixes the code. 
pf is the parity symbol formed at time j by the encoder. Both 
I(D) and P(D) are transmitted. The decoder input differs from 
I(D) and P(D) by the addition of the information and parity noise 
sequences, Ei(D) and Eo( D), respectively, where 

and 

Ei(D) = e6 @efD @efD” @ .+a 

and where e = 1 indicates that the corresponding symbol was 
received in error. 

The decoder first forms the syndrome, or parity check, sequence 
S(D) by encoding the received information symbols and adding the 
parity symbols thus formed to the received parity symbols. It 
readily follows that 

X(D) = Ei(D)G(D) @E”(D) = so @ s,D @ szD2 @ . . * 

or 

X(D) = (ei @ efD @ efD” @ . . .)G(D) 

@eE @eTD @e:D’@ ... . (1) 

The decoding algorithm is the rule for deciding upon the value of ek 
(i.e., deciding whether or not the first information symbol was 
received correctly) from the first m  + 1 terms of S(D). Let ei* 
denote the decoding decision for e& The decoder then prepares t,o 
determine e: by first removing the effect of its previous decision, 
i.e., by adding eiAG(D) to the syndrome sequence. The modified 
syndrome sequence that results, excluding the time unit zero terms 
which are discarded, is given by 

D[(ed @ e6*)(gl @ g,D @ . . . @ g,,,Dmwl) 

O(efOe5DO...>G(D)Oe~Oe~D + . ..I. 

from which it is clear how the effect of ej is removed by a correct 
decoding decision. Moreover, by comparison to (I) it can be seen 
that decoding may proceed sequentially using the first m  + 1 
terms of the altered syndrome sequence to determine efA according 
to the same algorithm used to find ek*. The obvious difficulty 
occurs when ei # egA. The altered syndrome sequence then differs 
from its proper value by the spurious addition of D(gl @ g,D @ 
. @ gmDgdl), and hence it is more likely that subsequent decod- 
ing decisions will be incorrect. Thus a decoding error tends to 
propagate. 

The study of the error-propagation phenomenon will now be 
reduced to a “stability” analysis of a nonlinear-feedback shift 
register (NFSR, for short). The relevant portion of a decoder is 
shown in Fig. 1 and is seen to constitute a NFSR. The first na terms 
of the syndrome sequence are stored in the shift register, and the . 
current input 1s sm, at the time when the decoder forms eA*. Let 
the vector s = (se, sr, . . sm-r) represent the shift-register contents 
and let 0 denote the all-zero vector. s will be referred to as the 
state vector, or simply state, of the NFSR. The decoding algorit)hm 
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is represented by the function P(sm, s), that is, P(s,, s) = eA*. For 
any reasonable decoding algorithm, F(0, 0) = 0 since this is the 
case where all parity checks are satisfied. 

From Fig. 1 it should be clear that m  consecutive correct decoding 
decisions will clear the decoder of any spurious symbols introduced 
by a decoding error and hence will terminate the error propagation. 
The ability of the decoder to effect such a “reconvergence” is 
conveniently studied by considering the shift register to be loaded 
with some initial state s and the syndrome input sequence to be 
all zeroes, i.e., all succeeding parity checks are satisfied. The shift 
register will enter state 0 when and only when reconvergence has 
been achieved. Thus the problem of studying error propagation 
reduces to the study of the autonomous behavior of the NFSR 
shown in Fig. 1. 

SYNDROME 
INPUT 

Fig. l-Decoder NFSR. 

DIRECT METHOD OF LYAPUNOV 

Considering only its autonomous behavior, i.e., am = 0, the NFSR 
of Fig. 1 is represented by a difference equat,ion of the form 

OS = f(s), i2) 
where f is a vector function and 9 is the next-state operator. 6% de- 
notes the new state after one shift of the NFSR, 0”s denotes the new 
state after N shifts. Since F(0, 0) = 0, it is easy to see from Fig. 1 that 
80 = 0 and hence that 0 is an ep7~ilibrium state of the NFSR. This 
is motivation for the following definition: 

Dejinition 1 

The NFSR is stable if, for every state s, there exists some N 
such that BNs = 0. It is unstable if it is not stable. 

In other words, if the NFSR is stable, it will reconverge eventually 
after a decoding error. 

Stability analysis of s&ems whose variables are rea.1 numbers is 
facilitated by the direct method of Lyapunov.8 The key concept 
in this method is the use of a Lyapunov function through which 
stability or instability may be established without full knowledge 
of the solution of the equations of the system. This method will 
now be modified to study the stability of the NFSR of Fig. 1, 
which is a finite-state discrete-time system. 

Consider the binary scalar function V(s) with the properties 
that V(s) = 0 for s in set A and V(s) = 1 for s in A where A is any 
set and A denotes the complement of A. Let AV(s) be defined by 

AV(s) = V(6s) @ V(s). 

Then AV gives the change of V when a state s is shifted in the 
NFSR. A state is shifted from A to A or from A to A if and only if 
AV = 1 for that state. Hence, AV = 0 for s = 0 always. The 
following theorem is immediate: 

Theorem 1 

Let V,(s) have the property that V,(O) = 0 and V,(s) = 1 for 

*J. LaSalle and S. Lefsehetz. “Stability by Liapunov’s Direct Method with 
Applications,” -4cademic Press. Inc., New York, N. Y.: 1961. 

s # 0. Then the NFSR is unstable if AV, = 0 for all s and is stable 
if AV’, = 1 for all s # 0. 

This theorem corresponds to the asymptotic stability theorem 
of Lyapunov. However, the conditions are too strong to be useful 
in analyzing a practical decoder. Stability can be established from 
Theorem 1 only when all nonzero states jump to 0 in a single shift, 
and instability can be established from Theorem 1 only when no 
nonzero states jump to 0. In the pract,ical case, some states jump 
to 0 in one shift and some do not, i.e., AV, = 1 for some nonzero 
states and AVO = 0 for others. This corresponds to the ambiguous 
case for real-number systems. For the binary system, the informa- 
tion about stability can still be obtained by following the steps 
outlined here: 

Let A0 be the set containing 0 alone. Form V,(s) as in Theorem 1. 
Let S1 be the set of all s such that AV,(s) = 1 and let A1 = A0 U &. 
The states in 81 jump to 0 in one shift. If iI, = a, where + is the 
empty set, or if 6’1 = ‘P, then stability or instability, respectively, 
is established from Theorem 1. Otherwise, form V,(s) such that 
V,(s) = 0 for s in A, and V,(s) = 1 for s in A,. Let 8, be the set 
of all s such that AV,(s) = 1 and let 8, = A, U SZ. The states in 
XZ jump t,o 0 in two shifts. The process is repeated a finite number 
of times M  (always M  5 2’“) until A, = % or 8,~ = a,. In the 
former case, all states go to 0 in M  or fewer shifts. In the latter 
case, there exist states which never go to 0. The following theorem 
is obtained: 

Repeating the steps outlined above until, in a finite number of 
steps M, B1v = @ or X&f = *, then the NFSR is stable in the first 
case and is unstable in the second case. 

The functions Vi are easily obtained. Let 

where the s; are the components of s, and let 

L,(s) = c IT (St @ s! @ I). 
S’ IllSi I 

Then the functions 

V,(s) = V,(s) CD 2 L, n = 1,2, ... 31 
1=1 

meet the conditions outlined above. Computation is facilitated by 
noting that 

Al',,(s) = L,(Os). 
An example will noTv be given to illustrate this process: 

Example: The NFSR in Fig. 2 is the syndrome portion of a prac- 
tical double-error-correcting decoder for a rate l/2 convolutional 
code having go = g3 = gi = g5 = l.Q F(.Q, s), in this case, is a 
threshold function which takes on value 1 whenever three or more 
of the inputs (so, sat s+ a1 @ s5) are equal to one. Let the state s 
be represented by the decimal integer s0 + 2~ + 2%2 + 2%~~ + 24.~4 
(s6 = 0 in the autonomous case). The iterated Lyapunov technique 
described above leads to the results which are given in Table I. 
Since & = @ and A, # a, the conclusion is reached that this 
NFSR is unstable. (It must be pointed out that the Lyapunov 
method is used here mainly to emphasize the analogy with con- 
tinuous systems and that the same information could be obtained 
by working out the complete autonomous state diagram. The method 
here saves some computation owing to the fact that the entire set 
of states at each level of the diagram is computed simultaneously 
and only stable states are found.) 

0 J. Massey, op. cit.. p. 62. 
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INPUT 

Fig. 2-NFSR for Example. 

DRIVEN-STABILITY 

The NFSR of Fig, 2 is unstable, but fortunately it does not follow 
necessarily that the decoder is subject to indefinitely long error 
propagation. The reasoning is as follows: The decoder always 
begins operation with 0 stored in the shift register and is driven 
into other states by the syndrome input sequence. Thus only those 
states s that can be established by an input sequence should be 
considered in studying the error-propagation effect. This motivates 
the following definition: 

DeJinition 2 

The NFSR is driven stable if and only if, for every state s that 
can be reached from 0 by driving the NFSR with an input sequence, 
there exists some N such that ENs = 0. 

Thus, if the NFSR is driven stable, no decoding error can propa- 
gate indefinitely. Conversely, if the NFSR is not driven stable, 
indefinitely long error propagation is possible. Clearly stability 
implies driven stability, but the converse is not true. From Table I, 
it is found that state 23 is the only state which does not go to 0. 
(It follows that state 23 must go into itself and is thus also an 
equilibrium state.) It is readily checked that, under driven con- 
ditions, state 23 can be reached only through states 14 or 15 as 
previous states. State 15 cannot be reached, and state 14 can be 
reached only through state 28, which in turn cannot be reached. 
Thus state 23 cannot be established in this NFSR by an input 
sequence. Consequently, this NFSR is driven stable and a decoding 
error cannot monacrate indefinitelv. 

- 

(if,) denotes the number of states in 

A Combinatorial Problem and a Simple Decoding Method 
for Cyclic Codes 

A relevant problem pertaining to the theory of runs is considered. 
The solution is given, and in the sequel, a useful identity (Lemma 2) 
is derived. It is shown how these results apply to decoding of sys- 
tematic cyclic codes. This leads to a simply implemented error- 
correcting and detecting decoder. The decoder functions by searching 
for an error-free string of k consecutive digits. The efficiency of 
such a decoder is described. The quantitative values are given in 
Table I. The decoding efficiency is higher when errors occur in 
bursts, instead of being independently distributed. The use of 
feedback offers an attractive utilization of the intrinsic error- 
detecting capability. 

COMBINATORIAL PROBLEM 

Consider a linear sequence of n binary symbols. Let no of these 
be zeroes, and n1 ones. To avoid the trivial cases, assume ni 2 1, 
i = 0, 1. Then, 

n = n, + n, 2 2. (1) 

There are t,> = k,) such distinguishable sequences. For pur- 

poses of clariiy, let us review the definition: 

n 
0 

n. ! 
m = m!(n - m)! 

n+m-1 zzz (-1r(- m ) for m>O>n. 

Next, assume that an integer, k 2 1, is given. Let N(k, n, nl) denote 
the number of those distinguishable sequences which do not contain 

si I #(‘G) 

83 
30 

4: 5, 6, 7 
28 
24 

8, 9, 10. 12, 13. 14 
16, 17, 18, 20, 21, 24, 28 :: 

19, 25, 26, 27, 29 
I I3 

11. 15, 30, 31 2 
22 
a : 

for m > n 2 0, (2) 

k consecutive zeroes. 

Lemma 1 

Using the above definitions, 

-_ LAS) __-----___- f: g ;je; g ;y;: g ;,‘s’g1 fB lb0 N@,n, nJ = c C-1) 
(2% ed l)(s3 @  1)sz 

z;, 
(s4 CB l)ss(s1sa @  1) 
s4[(s3 @  l)(Sl @  1) fB sa(s1 @  1) ’ where M  = min (n, + 1, [(n - nr)/h]) and the symbol [R] denotes 

(so CB 1) @  (53 @  l)(s2 fx l)SI(SO @  1)l 
sa[(sr @  l)(s, @  1)SlSO fr9 S3JSI @  1) the integer part of the real number R. 

(Sl @  1)so @  SISZ(S1 @  1180 @  s3(s2 @  lhl 
S3Sl[SJS2 e+ (a @  l)sol 

Proof: It suffices to give an abbreviated proof here. After all, the 
SI(S3 e+ l)szsl(so fB 1) problem is suggested as an exercise and the generating function 
Conclusion: UNSTABLE method is outlined in Riordan [I]. In fact, the evaluation of N(k, n, n,) 

is tantamount to finding the coefficient of the Pnl term in the 
I Aj. generating function 

The purpose of this communication is to provide an analytical 

1 _ L” n,+l 
d4 = - ( ) l--t . 

framework for the study of the error-propagation effect in decoding 
convolutional codes and to suggest certain methods that appear 

A more recent discussion [2] considers partitioning problems and 

promising for this study. The important distinction between stability 
arrives at similar results. 

and driven stability of a NFSR was introduced and is a key con- 
In attempting to simplify (3) we have arrived at a special result, 

cept in the study of error propagation. The investigations reported 
which occasionally will be useful for quick estimates of N(k, n, Q). 

here have raised several interesting questions: Is it true that any 
This is, in substance, Lemma 2. 

“good” decoding algorithm gives a NFSR that is driven stable? Lemma 2 
What is the relationship between stability and driven stability? 
What easy tests can be found to determine both types of stability? 
These and related questions are currently being investigated by the 
authors. 

Let k, n, and nl be any non-negative integers. Then 
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