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Equivalence of Nonlinear Shift-Registers 
J. L. MASSEY, MEMBER, IEEE AND R. w. LIU, MEMBER, IEEE 

Summary-Two forms of nonlinear-feedback shift-registers are 
considered. In the Type-I register, the feedback output is added to 
the shift-register contents at an arbitrary number of stages. In the 
type-11 register, the feedback is input to the first stage only. It is 
shown that for every Type-I register there is an equivalent Type-II 
register in the sense that the autonomous state diagrams differ only 
by a labelling of the states. Moreover, the mapping between equiva- 
lent states can always be chosen to be a linear transformation. This 
theorem is a well-known result in the theory of linear-feedback 
shift-registers and is thus seen to apply unchanged to the nonlinear 
case. 

I 
N THIS PAPER, we will show that an equivalence 

relation known to hold for linear-feedback shift- 
registers is also valid for nonlinear-feedback shift- 

registers. This fact materially simplifies the analysis of 
a class of nonlinear-feedback shift-registers encountered 
in the study of convolutional codes. 

It was shown recently by the authors1 that the error- 
propagation effect in binary convolutional codes is 
closely related to the autonomous behavior of the binary 
nonlinear-feedback shift-register (NFSR) shown in Fig. 
1. In this figure, the feedback function is an arbitrary 
Boolean function of the shift-register contents so, 
s1, * * - s,-l. The column vector s = _ (so, sl, . . . s,-,) will 
be called the state of the NFSR. Each gi in Fig. 1 is 
equal to one or zero, accordingly, as the feedback output 
is or is not an input to the corresponding modulo-two 
adder. The NFSR of Fig. 1 will be called a type-1 NFSR 
for ease of reference. 

The NFSR of Fig. 2 is an important, special case of 
that found in Fig. 1; namely the case where the feed- 
back output is an input only to the first stage of the 
shit-register. The NFSR of Fig. 2 will be referred to as a 
type-If NFSR. 

Let 6 be the “next-state operator”, i.e., OS is the next 
state of an NFSR with current state s. The autonomous 
behavior of type-1 and type-II NFSR’s can then be 
described, respectively, by 

es = AS @ f(s)g (1) 

and 
es’ = As’ @ f’(s’)u (2) 

where s and s’ are the states of type-1 and type-II NFSR’s, 
respectively. f’ is the feedback function of the type-II 
NFSR; @ indicates summation modulo-two. 
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Fig. l-Type-I nonlinear-feedback shift-register. 

Fig. a-Type-11 nonlinear-feedback shift-register. 

A is the m X m shifting matrix 

r 
0 1 ..* 0 1 

A_= 

and g and u are the column vectors 

g = (Sl, Qzr . . * gm-I, 1) 

u = (0, 0, . -0 0, 1). 

In the linear case, i.e., when f(s) = COZY cisi, it is 
well-known that for any type-1 shift-register there is an 
equivalent type-II linear-feedback shift-register in the 
sense that the autonomous state diagrams of the’ two 
machines differ only by a labelling of the states.’ In 
other words, there exists in this case a one-one trans- 
formation, T(s) = s’, such that T(Bs) = 0(5!‘(s)) for all s. 
Thus, if s and s’ are equivalent states, then so are OS 
and OS’. We show here the somewhat surprising fact that 
the same result is true for the nonlinear case; thus the 
autonomous behavior of any type-1 NFSR can be de- 

2 W. W. Peterson, “Error-Correcting Codes,” M. I. T. Press, 
(3;m7br\dg;i Mass., and John Wrley and Sons, Inc., New York, N. Y., 
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termined by the study of the equivalent type-II NFSR. 
This is a result of practical importance since a considerable 
body of theory about the autonomous behavior of type-II 
NFSR’s already exists.3 ,4 ,’ 

Then, from the structure of the matrix A, we see that 

Theorem: For every type-1 NFSR there is a type-II 
NFSR with the same autonomous behavior, i.e., there 
exists a one-one transformation, T(s) = s’ such that 
T(k) = 0(7’(s)) for all s. In particular, T can always 
be chosen as a linear transformation, and the restriction 
f(s) = f’(T(s)) can always be imposed, (i.e., both registers 
have the same feedback output for equivalent states). 

Proof: Let T be a one-one transformation between a 
state s of the type-1 NFSR and a state s’ of a type-II 
NFSR. Then by applying the transformation to (l), 
we obtain 

T(h) = T(As @ f(s)g). 

If we now require that T be a linear transformation, 
then T must be a nonsingular m X m matrix, and the 
preceding equation becomes 

T(b) = TAs @ f(s)Tg. (3) 

Similarly, since s’ = Ts, (2) becomes 

B(Ts) = ATs @ f’(Ts)u. (4) 

We now impose the further restriction that f(s) = f’(Ts). 
It is then evident from (3) and (4) that the equivalence 
condition T(b) = B(Ts) for all s will be met if we have 
both 

and 

TA = AT (5) 

Tg = u. 03 

Thus, the proof will be complete if we can find a non- 
singular matrix T that satisfies (5) and (6). 

Let T be represented as the matrix 

3 S. W. Golomb and L. R. Welch, “Non-Linear Shift Register 
Sequences,” California Inst. of Tech., Pasadena, JPL Memo. 209149; 
October, 1957. 

4 S. W. Golomb, et al., “Cycles from Non-linear Shift-Registers,” 
California Inst. of Tech., Pasadena, JPL Progress Rept. 20-389; 
August, 1959. 

6 K. B. Magleby, “The Synthesis of Nonlinear Feedback Shift 
Registers,” Stanford Electron. Labs., Stanford, Calif., Tech. Rept. 
Xo. 6207-l; October, 1963. 

TA = 

and 

r 0 t,,, t,,, . * * tm 
..o L.1 L2 . *. Lm-1. 

t 2,2 

t m.2 

0 

. . . t 2.m 

t m m 

0 1, 

In words, postmultiplication by A shifts the first m - 1 
columns of T one position to the right and inserts a new 
first column of zeroes, while premultiplication by A 
shifts the last m - 1 rows of T one position upward and 
inserts a new last row of zeroes. Thus (5) will be satisfied 
if and only if T is a triangular matrix with the structure 

r t, t, t, . . 
(7) 

lo 0 0 ... t, -I 
where t,, t,, . . . t, are arbitrary binary numbers. 

Assuming that T has the form given in (7), we find 

Tg = C&g, 0 tzszO - . - L, t,gz 0 t,g, 0 . . . tm-, , . . . , 61, 

and thus (6) will be satisfied if and only if 

t, = 1 

tlgrw-l 0 t2 = 0 

(8) 

t,gz 0 t*g3 0 . . . 0 tm-1 = 0 
t,gr @ t2g2 @ . . . @ t,,, = 0. 

The first equation in set (8) guarantees that T is non- 
singular. It is readily seen that the remaining equations 
are satisfiable by a unique choice of t,, t,, . . . t,. This 
completes the proof of the theorem. 

Some further remarks are in order. First, the theorem 
is easily generalized to the case where the components 
of s are elements in any finite field. Second, the theorem 
may be generalized to include inputs (i.e., nonautonomous 
behavior) to the shift registers. However, an input at 
point X alone for the type-1 NFSR in Fig. 1 will in 
general correspond to an input at more points than X’ 
alone for the equivalent type-II NFSR of Fig. 2. Thus, 
the equivalence is not so useful as in the autonomous case. 


