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Implementation of Burst-Correcting Convolutional Codes 
JAMES L. MASSEY, MEMBER, IEEE 

Abstract-A general procedure is formulated for decoding any 
convolutional code with decoding delay N blocks that corrects all 
bursts con6ned to r or fewer consecutive blocks followed by a guard 
space of at least N - 1 consecutive error-free blocks. It is shown 
that all such codes can be converted to a form called “doubly 
systematic” which simplifies the decoding circuitry. The decoding 
procedure can then be implemented with a circuit of the same order 
of complexity as a parity-checking circuit for a block-linear code. A 
block diagram of a complete decoder is given for an optimal burst- 
correcting code. It is further shown that error propagation after a 
decoding mistake is always terminated by the occurrence of a 
double guard space of error-free blocks. 

I. INTRODUCTION 

HE CONVOLUTIONAL type of error-correcting 
code in which encoding dependencies exist over the 
entire encoded sequence rather than over finite 

length segments or blocks was first introduced by Elias 
in 1955 [I]. D. W. Hagelbarger [2] was the first to use these 
codes for burst correction. (Hagelbarger used the term 
“recurrent” code rather than “convolutional” code and 
several later authors have followed his practice. In this 
paper, however, we shall adhere to Elias’ original usage.) 
W. W. Peterson [3] refined the work of Hagelbarger, but 
no other significant progress was made in this area until 
recently when Wyner and Ash [4] formulated bounds for 
binary burst-correcting convolutional codes and found 
several optimal codes which achieved these bounds. Their 
work stimulated Berlekamp [5] to formulate a general 
procedure for constructing optimal binary codes of any 
redundancy. In most cases, these optimal codes are signi- 
ficantly better than the corresponding Hagelbarger codes. 
Hagelbarger and Peterson have devised simple decoding 
circuits for the Hagelbarger codes, but Berlekamp gave no 
decoding circuits and Wyner 161 gave decoding circuits 
only for a class of nonoptimal codes. 

In Sections IV and V, a decoding procedure will be 
formulated which can be applied to all the codes previously 
mentioned, and indeed to any burst-correcting convolu- 
tional code subject to only minor restrictions. It will be 
shown that this procedure can be implemented with very 
simple decoding circuitry. The Sections II and III will 
be devoted to developing the background necessary for 
discussion of this decoding procedure. 

II. CONVOLUTIONAL CODE STRUCTURE 

Since only low redundancy codes are ordinarily of 
interest in connection with burst correction, we shall limit 
our discussion to convolutional codes with redundancy l/b. 
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F’or a discussion of the general case where the redundancy 
is any rational fraction, the reader is referred to Massey 
[7]. We use a polynomial notation to describe convolu- 
tional codes rather than the matrix notation given by 
Wyner and Ash [4], but as much of the latter terminology 
as possible will be preserved. 

A. Convolution Encoding 

D. A. Huffman’s delay operator [S] affords a convenient 
notation for convolutional encoding. Let a,, a,, a,, * . . , be 
any sequence of digits from the finite field of Q elements, 
GF(q). These symbols may be thought of as occurring at 
unit clock intervals where ai is the digit occurring at 
time unit j. Such a sequence will be represented by its 
transform A (D) where 

A(D) = a,, + a,D + azDZ + *a* 

is a formal power series in the delay operator D. A convolu- 
tional code of redundancy l/b consists of a rule by which 
b - 1 such sequences of information digits are converted 
into b such sequences of encoded digits. Thus b - 1 
information symbols and 6 encoded symbols are associated 
with each time unit. 

The b - 1 sequences of information digits will be re- 
presented by 
I”‘(D) = ,jjf’ + i:i’ + ,$i)D2 + . . . , 

j = 1, 2, ... , b - 1 

where iUCi’ is the information symbol occurring at time u 
in the jth sequence. Similarly, the b encoded sequences 
will be represented by 

T”‘(D) = t;” + t;j’D + tii’D2 f.. . , j = 1, 2, . . . , be 

We impose the requirement that the code be systematic, 
i.e., that the first b - 1 encoded sequences coincide with 
the b - 1 information sequences 

I’“‘(D) = I”‘(D), j = 1, 2, .. * , b - 1. 

This restriction is ordinarily demanded in practical com- 
munication systems, and it is well known [4], [7] that 
any convolutional code can be converted to systematic 
form without affecting the error-correcting power. Thus, 
the convolutional code is specified by the rule for form- 
ing the single redundant or parity sequence TCb’ (D). This 
rule may be written 

b-1 

Tcb’(D) = c I’“(D)G’“(D) 
i-1 (1) 

where the G”‘(D) are polynomials of degree N - 1 or 
less with coefficients in GF(q), and all arithmetic opera- 
tions are assumed here (and hereafter) to be carried out 
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in GF(q). These 6 - 1 polynomials are called the code- In other words, 
generating polynomials of the convolutional code and 
will be written 

R(j)(D) = Tci)(D) + E”‘(D), j = 1, 2, . . . , b (2) 

G”‘(D) = g;f) + g;i’D + g:j’D2 + . . . , + g,~;lD”-‘e 
and eLi) = 0 if and only if the symbol at time u in the 
jth encoded sequence is received correctly. 

Implementation is facilitated by noting that the code- Decoding is based on the syndrome sequence 

generating polynomials in (1) are the transfer functions 
of the linear sequential encoding network, i.e., that G”’ (D) 

S(D) = so + s,D + s2D2 + ... 

is the transform of the output sequence T”‘(D) when the which gives the pattern of parity failures at the receiver. 

jth information sequence is the “unit impulse” sequence This sequence is formed by subtracting the received par- 

1, 0, 0, 0, *-a . Thus, it is readily verified [7] that either ity sequence R’“‘(D) from the parity sequence formed 

of the circuits in Figs. 1 and 2 is a valid encoding circuit, by encoding the received information sequences. Thus, 

and the former would ordinarily be preferred because of 
the smaller number of delay elements when b > 2. 

b-l 
X(D) = z R”‘(D)G’j’(D) - R”‘(D) 

B. Decoding Convolutional Codes 
which reduces with the aid of (I) and (2) to 

h--l 
We assume that at some receiving point, a set of b 

sequences 
X(D) = c E”‘(D)G”‘(D) - E’“‘(D), (3) i=1 

R”‘(D) = ,A” + T:~’ D + yIi’Dz + * * . 7 j = 1, 2, * . * ) b 
which shows that the syndrome sequence depends only 
011 the error sequences. 

are received which differ from the encoded sequences by Let the notation [X(D)IN denote the result of dropping 

the set of b error sequences all terms of degree N and greater from the transform 
enclosed within the brackets. The polynomial [X(D)lN = 

p’(D) = eh” +e:i’D+e~“D’+.-*,j= 1,2,*-*, b. s,+s,D+ ... + s~-~D’~-~ will be called the tmncated 

(b-11 
I 

I(b-I) 

q UNIT 
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Fig. 1. (IV - 1) stage encoder. Fig. 2. (b - l)(‘j- - 1) st’age encoder. 

DN-lR’l’ 

(I) o- R lb-I)IN-I) : 
: STAGE 

R(b-l) O- 
2-I Jb-I) 

ENCODER 

+‘)A 

+b-l)A 

lb) 
R 

Fig. 3. General decoder for convolutional code. (Note: Quantities 
are labeled for time ni - 1, A denotes decoded estimate.) 
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syndrome. Following Wyner and Ash [4], we shall refer 
to the set of b digits at a fixed time unit from similar 
sequences as a block of digits, e.g., e:“, e:‘), . . * , eAb), will 
collectively be called the block-zero error digits. A decoding 
algorithm for a convolutional code is a rule for deter- 
mining the block-zero error digits from the truncated 
syndrome. Once these digits are known, the block-zero 
encoded digits are easily found as 

p (i) 0 = 7-0 - ,y j= 1,2 -.. ,b , 

and decoding of the first block is completed. The effect of 
the block-zero error digits on the syndrome sequence of 
(3) may then be subtracted out and the time unit one 
through N terms of the altered syndrome sequence used as 
a new truncated syndrome for the determination of the 
block-one error digits by the same decoding algorithm. 
Thus, decoding proceeds sequentially on one block of digits 
at a time. Since the block-zero digits are decoded at time 
N - 1, N is the decoding delay in time units. The decoding 
constraint length, i.e., the decoding delay in digits, is Nb 
digits. 

From the foregoing discussion, it should be clear t,hat 
the circuit in Fig. 3 is a general decoder for a convolutional 
code. After the block-zero errors are determined by the 
decoding algorithm, their values are fed back to the syn- 
drome to remove their effect as given by (3). We shall refer 
to this alteration of the syndrome as syndrome resetting. 
As might be suspected, the difficult feature in implement- 
ing the decoding circuit is finding a simple combinatorial 
circuit which realizes the decoding algorithm. 

III. BURST-CORRECTING CONVOLUTIONAL CODES 

Wyner and Ash [4] define a convolutional code to be 
type-B2 for burst range r and guard space g if it can correct 
all error patterns E”‘(D), j = 1, 2, . . . , b, for which the 
nonzero terms are confined to at most r consecutive blocks 
separated by at least g consecutive errorlfree blocks. This 
is a natural definition for a convolutional code since under 
it the burst-correcting properties do not depend on the 
order in which the b encoded sequences might be serial- 
ized for transmission over a single channel. This is the 
type of burst correction that will be considered in this 
paper. It should be noted that no matter what order of 
serialization is used, a type-B2 code will correct all serial 
bursts of rb - b + 1 or fewer digits followed by a serial 
guard space of gb + b - 1 digits. 

Wyner and Ash [4] define a convolutional code to be 
type-B1 if in the serial stream of digits it corrects all 
bursts or rb or fewer digits followed by an error-free guard 
space of Nb - 1 digits. Such a code is necessarily type- 
B2 for bursts confined to r or fewer blocks followed by an 
error-free guard space of N blocks. If a type-B2 decoding 
algorithm is used for such a code, its type-B1 burst-cor- 
recting capability is reduced at worst to bursts of rb - 
b + 1 digits. For the practical case, r >> b and this loss 
is minor. Thus, for example, all the type-B1 codes found 
by Hagelbarger could be decoded by a type-B2 decoding 

algorithm with only a minor loss in type-B1 error-cor- 
recting power. These remarks provide a practical justi- 
fication for considering only type-B2 burst correction in 
connection with convolutional codes. 

A. Basic and Interlaced Codes 

A type-B2 code with r = 1 will be called a basic burst- 
correcting convolutional code. Interest in basic codes stems 
from the fact [4] that a basic code with guard space g’ 
can be interlaced to form a type-B2 code with burst range 
r and guard space g = rg’, and may be decoded by es- 
sentially the same decoder as for the basic code. The idea 
of interlacing burst-correcting convolutional codes was 
first introduced by Hagelbarger [2]. 

Let GCi’ (D) be the code-generating polynomials of a basic 
code. The associated interlaced code for bursts confined to 
r blocks is the convolutional code with code-generating 
polynomials G”’ (D’). From (l), it can be seen. then that 
in the interlaced code the information symbols at times 
u, r + u, 2r + u, 3r + u, . . . , are treated as independent 
streams for u = 0, 1, . . . , r - 1. Each of these r independ- 
ent streams is separately encoded into the basic code, 
and hence, each stream can be decoded independently 
using the decoding algorithm for the basic code. A burst 
affecting r or fewer consecutive blocks in the encoded 
sequences of the interlaced code can affect at most one 
block in each of these streams. Then, such a burst will 
be corrected if it is followed by g’ error-free blocks in each 
stream of the basic code or a total of rg’ consecutive 
error-free blocks in the sequences of the interlaced code. 
From these observations, it is clear that interlaced codes 
can be studied conveniently in terms of the underlying 
basic codes. 

B. Optimal Type-B2 Codes 

Wyner and Ash [4] have given a lower bound on the 
decoding delay N that can be achieved with any binary 
type-B2 convolutional code. Their bound states that for 
such a code 

N 2 (2b - 1)~ + 1. 

A code satisfying this bound with the equality sign is 
called optimal. The same authors found optimal codes for 
the cases of b = 2, 3, and 4. E. Berlekamp has since suc- 
ceeded in finding optimal codes for all values of b [5]. All of 
these optimal codes are interlaced codes, a fact which 
underlines the importance of the class of underlying basic 
codes. 

For any type-B2 code with decoding delay N, the guard 
space is at most N - 1 blocks. This follows from the 
fact that when the last block of the burst is being corrected, 
i.e., when this block is treated as “block zero” in the 
truncated syndrome considered by the decoding algorithm, 
then a guard space of N - 1 blocks insures that no other 
blocks containing errors affect the truncated syndrome. 
Thus correction of this block completely clears the decoder 
of erroneous symbols and the decoder is ready to accept 
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the beginning of a new burst. For all of the optimal codes, 
the guard space is exactly N - 1 blocks. 

IV. DECODIKG PROCEDURE FOR BASIC CODES 

We will now formulate a decoding procedure which can 
be applied to any type-B2 code for which the guard space 
is N - 1 blocks, i.e., where digits from at most one burst 
of a correctable error pattern can affect the truncated 
syndrome. This procedure applies to all of the optimal 
codes and can be used as a type-B2 decoding method for 
all of the Hagelbarger codes. For ease of presentation, 
the procedure will first be formulated for basic codes in 
this section. In Section V, it will be extended to interlaced 
codes and arbitrary type-B2 codes. The procedure in- 
volves three fm~ctionally distinct steps, namely detecting 
a block-zero burst, specifying the block-zero errors, and re- 
setting the syndrome after correction of the block-zero 
errors. 

A. Detection of a Block-Zero Burst 

From (3), it follows that the truncated syndrome de- 
pends only on the error digits in blocks 0, 1, . . . , N - 1. 
If the error pattern is correctable by a basic code, then all 
the errors (nonzero error digits) must be confined to a 
single one of these blocks. An error pattern will be called 
a block-zero bwst if it has no errors in blocks 1, 2, . . . , 
N - 1, (it may or may not have errors in block zero). 
Since the decoding algorithm is required to determine only 
the block-zero error digits, the first step in decoding is to 
determine whether the truncated syndrome corresponds to 
a block-zero burst. If not, all the block-zero error digits 
must be zero. A simple procedure for accomplishing this 
recognition is based on the following fundamental theorem. 

Theorem 1: For any basic type-B2 convolutional code, 
the set of truncated syndromes corresponding to block- 
zero bursts form an abelian group under polynomial (i.e., 
term by term) addition. 

Proof: Let E”‘(D) and E’“‘(D) be any two block-zero 
bursts. The corresponding truncated syndromes from (3) 
are given by 

[W% = [z ECi’(D)G”‘(D) - ECb)(D) 1 iv 
and 

[syD)lN = [z W)(D)G(~)(II) - IV(D)] . 
A’ 

The sum of these truncated syndromes is thus 
b--l 

5 (E’“(D) + E”i’(D)]G’i’(D) 
1 

- {ECb’(D) + E”b’(D)]],v 

which is the truncated syndrome corresponding to the 
error-pattern ECi’ (D) + I?“’ (D) which is clearly another 
block-zero burst. Thus, the truncated syndromes cor- 
responding to block-zero bursts satisfy the closure axiom 

for a group, and it may be trivially verified that the 
other group axioms are also satisfied. 

For a block-zero burst, the truncated syndrome can 
be found from (3) to be 

b-l 

so + s,D + ... + s,+,-,D’-’ = c GCi’(D)eAi’ - e;“‘. (4) 
i=l 

It will be convenient to rewrite (4) in matrix form. Let 
S and e denote the row vectors [so, s1 . ’ . .s,~-J and 
[e:l’, ep), . . . , eib)], respectively, and let G be the b X N 
matrix 

(1) 
1 * 

go (1) 91 *.- (1) gs-1 
1 

I . I 
G = / g’bi g;b-” . , . (b-1) , 

0 gx- 1 

i 1 0 . . . 01 

then (4) may be written as 

s = eG. (6) 

The group of syndromes corresponding to block-zero bursts 
is then the row space of the matrix G. In traditional 
coding terminology [3], these syndromes S are the code 
words in the linear block code generated by the mat’rix G. 

As pointed out by Wyner and Ash [4], the set of trun- 
cated syndromes for block-zero bursts must be disjoint 
from the set of truncated syndromes for which there are 
errors in only one of the blocks 1, 2, . . . , N - 1, for 
otherwise some block-zero burst could not be corrected. 
Thus, detecting a block-zero burst reduces to determining 
whether or not the syndrome S is a code word in the 
block-linear code generated by the matrix G. 

Associated with the block code generated by G is an 
(N - b) X N matrix H, called the parity-check matrix, 
such that a vector S is a code word if and only if 

SHT = 0. (7) 

Methods for finding the matrix H are given in Peterson 
[3]. Each of the N - b rows of H gives a parity check 
that must be satisfied by all code words and each such 
parity check can be implemented by one adding circuit. 

Example 1: Wyner and Ash [4] have given an optimal 
code for b = 3 and N = 6 which when converted to 
systematic form has the following G matrix: 

A corresponding H matrix using the methods 
found to be 

in [3] is 
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Fig. 4. Block-zero burst detector for Example 1. 

In Fig. 4, me show a block-zero burst detecting circuit 
for this code. Each input to the “or” gate is a parity check 
given by one row of I-I. The output of the “or” gate is a 
zero if and only if all the parity checks are satisfied, i.e., 
if and only if the syndrome corresponds to a block-zero 
burst. 

In a similar manner, block-zero bursts can be detected 
for any basic code by a simple circuit which computes 
N - b parity checks. 

B. Specifying the Block-Zero Errors 

Once a block-zero burst has been detected, it remains 
for the decoding algorithm to find the values of the b 
block-zero error digits. In general, this amounts to solving 
the b linear equations in (6) for the vector e and this 
could always be done with a modest amount of linear 
circuitry. However, this task is further simplified if the 
basic code is in the form we shall call doubly-systematic. 

A type-B2 basic code will be called doubly-systematic 
when its associated G matrix defines a systematic block 
code, i.e., when the “information symbols” eil), eA2)) 
. . . , eA*), appear unaltered in a set of b syndrome positions 
in the “code word” so, sl, . . . , sNml. Thus, in a doubly 
systematic code, when a block-zero burst has been de- 
tected, the values of the block-zero error digits can be read 
off directly from a set of b syndrome positions. 

Example 2: The G matrix of Example 1 can be con- 
verted to the matrix G’ of a systematic block code by 
adding the third row of G to the second, and then inter- 
changing the first and second rows. This yields 

i 
000111 

I 
G’-l:‘:;M:::,i 

which corresponds to the doubly systematic convolutional 
code with code-generating polynomials 

G”“(D) = 0% + D” + D5 

and 

G”“‘(D) = D + D”. 

For this doubly systematic code, we find from (6) that 

so = e:) 

s1 = ei2’ 

when the error-pattern is a block-zero burst. 
When a code is converted into doubly systematic form, 

its type-B2 burst-correcting properties are not affected 
since the row spaces of G and G’ are exactly the same. 
Moverover, since the row spaces are the same, a parity- 
check matrix for one code is also a parity-check matrix 
for the other. Thus, for example, the circuit in Fig. 4 
which was derived for the nondoubly systematic code of 
Example 1 is also a block-zero burst detecting circuit for 
the doubly systematic code of Example 2. Hence, any 
type-B2 code can be converted into doubly systematic 
form and its decoding algorithm implemented by a simple 
parity-checking circuit to detect a block-zero burst, fol- 
lowed by direct identification of the block-zero errors with 
a certain set of b syndrome positions. Interestingly enough, 
the Berlekamp optimal codes [5] are already doubly 
systematic. 

C. Syndrome Resetting 

After the set of block-zero errors have been found, 
their effect on the syndrome must be removed as was 
discussed in Section II-B. We now show that syndrome 
resetting can be materially simplified for basic type-B2 
codes. 

The key point is that for a basic code, when a block- 
zero burst is present, there are no errors in any of the 
blocks at times 1, 2, . . . , N - 1, which are the other 
blocks affecting the truncated syndrome. Thus, removal 
of the effect of the block-zero errors from the syndrome 
amounts merely to setting all terms of the truncated syndrome 
to xeyo. It is not necessary to remove independently the 
effect of each of the errors ei”, j = 1, 2, * * * , b - 1, as is 
done in the general decoder of Fig. 3. 

It follows then that the circuit in Fig. 5 is a complete 
decoding circuit for the doubly systematic basic code of 
Example 2. The operation of this decoder proceeds 
as follows: The output of the “or” gate is a zero when and 
only when a block-zero burst is detected. The complement 
of this output is used to energize the ‘land” gates whose 
other input is one of the syndrome terms which is equal 
to a block-zero error digit when a block-zero burst is 
present. Some saving in circuitry is accomplished since 
it is generally not required to determine the block-zero 
parity symbol e, (*) at the decoder and hence so need not 
be stored. I’inally, the syndrome is reset by feeding the 
(‘or” gate output to the “and” gates between stages of 
the syndrome register, thereby causing all terms of the 
truncated syndrome to be reset to zero when a block-zero 
burst is corrected. The discussion of the preceding para- 
graphs show that similar decoding circuit can be used 
with any basic type-B2 convolutional code. 
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0 INVERTER 

Fig. 5. Complete decoder for basic code of Example 2. 

1’. DECODING PROCEDURE FOR ARBITRARY TYPE-B2 
CODES 

Decoding of interlaced type-B2 convolutional codes 
can be accomplished by a trivial modification of the pro- 
cedure for the underlying basic codes. The code-generating 
polynomials G”‘(D) of the basic code become G”‘(D’) for 
the interlaced code with the capability of correcting bursts 
confined to r or fewer consecutive blocks. Thus, an encoder 
or decoder for the interlaced code can be derived from 
the encoder or decoder of the basic code simply by re- 
placing all unit delays in the latter by delays of r time units. 
For example, if the unit delays in Fig. 5 are replaced by 
delays of 10 units, then this circuit becomes the decoder 
for the r = 10 interlaced doubly systematic code with 
code-generating polynomials G”‘(D) = D3’ + D4’ + D”’ 
and G’“‘(D) = D”’ + DE’. 

All of the type-B2 codes (and the type-B2 codes de- 
rivable from type-B1 codes) given previously in the lit- 
erature have been either basic or interlaced codes. For 
completeness however, we will sketch how the decoding 
method of Section IV could be modified to apply to a 
noninterlaced type-B2 code, i.e., to any code which cor- 
rects all bursts confined to r or fewer blocks followed by 
a guard space of g = N - 1 error-free blocks. The de- 
coding procedure for such codes is based on the following 
generalization of Theorem 1. 

Theroem 2: For any type-B2 code, the set of truncated 
syndromes corresponding to error patterns which have 
no errors in blocks r, r + 1, . . + , N - 1, form an abelian 
group under polynomial addition. 

As in Section IV-A, the truncated syndromes in this 
group may be considered as code words in a block-linear 
code and the parity checks of this code used to determine 
whether the syndrome belongs to this group. In their 
Lemma 2, Wyner and Ash [4] have shown that the trun- 
cated syndrome cannot be all zero for any Theorem 2 
burst having at least one nonzero error digit. It follows 
then that all the distinct Theorem 2 bursts have distinct 
truncated syndromes. For suppose some pair of distinct 
Theorem 2 bursts have t,he same truncated syndrome, then 

their difference is a Theorem 2 burst with at least one 
nonzero error digit but having an all-zero truncated syn- 
drome. Thus, when a Theorem 2 burst is detected by the 
parity-checking circuit, the truncated syndrome provides 
a set of linear equations that can be solved for the block- 
zero error digits in a manner analogous to that discussed 
in Section IV-B. A transformation can be applied to the 
code so that the block-zero error digits may be read off from 
a fixed set of b syndrome digits. Finally, after the block- 
zero errors have been found, the syndrome can be reset 
in the general manner of Section II-B. 

A subtle point arises here, however, that was not en- 
countered in the decoding procedure for basic codes. Each 
distinct Theorem 2 error pattern has a unique truncated 
syndrome, but there may be other correctable bursts (i.e., 
bursts confined to r or fewer consecutive blocks but not 
to the first r blocks) which have the same truncated syn- 
drome as some Theorem 2-type bursts. When such a burst 
is present, the parity-checking circuit will erroneously 
signal that a burst confined to the first r blocks is present. 
However, no decoding mistake will be made. This follows 
from the fact that such a burst has no block-zero errors 
and that correctable error patterns with the same trun- 
cated syndrome must have the same set of block-zero 
error digits [4]. Thus, the truncated syndrome for such a 
burst must be that corresponding to a burst confined to 
the first r blocks which also has no block-zero errors. Thus, 
solution of the syndrome linear equations still gives the 
correct values of the block-zero error digits. 

VI. ERROR PROPAGATION 

One of the most difficult problems to analyze in con- 
nection with convolutional codes is error propagation, the 
tendency of a decoding mistake to trigger a succession of 
further decoding mistakes [9]. This effect results from in- 
correct resetting of the truncated syndrome after a decod- 
ing mistake. For the decoding procedure of Section IV, 
however, we are able to show that a double guard space of 
error-free blocks is sufficient to restore the decoder to cor- 
rect operation after some uncorrectable burst has caused 
a decoding mistake. 

Since the code-generating polynomials are all of degree 
N - 1 or less, it follows from (3) that any error digit 
affects the syndrome sequence for at most N - 1 time 
units following the error. Thus, if the last error in some 
burst occurs at time u and is followed by 2N - 2 error- 
free blocks, then the N - 1 syndrome terms at times 
u + N, u + N + 1, ..a , u + 2N - 2, will be “zeros” 
unless they are altered. But, from Section IV-C, only 
nonzero syndrome terms can be altered by syndrome re- 
setting. Thus, these N - 1 consecutive syndrome terms 
must still be “zeros” after any syndrome resetting. Hence, 
at time u + 2N - 2 when these N - 1 terms become 
the altered syndrome used to decode the block at time 
u + N - 1 (we note as in Section IV-C that the so term 
of the syndrome is not needed), the correct truncated syn- 
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drome is necessarily present and correct decoder operation 
has been restored. Since the guard space g in blocks is 
N - 1, we have shown that 2g consecutive error-free 
blocks are always sufficient to restore the decoder to correct 
operation after a decoding failure. The same conclusion 
applies to an interlaced code derived from the basic code. 
This may prove to be an important practical feature of 
the decoding procedure formulated here. 

VII. CONCLUSIONS 

In this paper, a new decoding procedure has been given 
which applies to any type-B2 burst-correcting convolu- 
tional code with guard space N - 1. It was shown that 
this procedure can be implemented with a minimum of 
simple logical circuitry. 

The simplicity of Hagelbarger’s decoding circuits [2] 
has often been cause for comment in the literature. The 
results given here show that this feature is not due to the 
special structure of the Hagelbarger codes, but that it is 
a general characteristic of burst-correcting convolutional 
codes. 

Some Results 
Parameter 
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on the Stochastic Signal 
Estimation Problem 

EDWARD M. HOFSTETTER, MEMBER, IEEE 

Absfract-The problem of finding maximum-likelihood estimates 
of the partially or completely unknown autocorrelation function of a 
zero-mean Gaussian stochastic signal corrupted by additive, white 
Gaussian noise is analyzed. It is shown that these estimates can 
be found by maximizing the output of a Wiener estimator-corre- 
lator receiver biased by a smoothed version of the output noise-to- 
signal ratio of the Wiener estimator over the class of admissible 
autocorrelation functions. 

For the case where the autocorrelation function is known except 
for an amplitude scale parameter, an illuminating expression for 
the Cramer-Rao minimum estimation variance is derived. Detailed 
study of this expression yields, among other results, an interpre- 
tation of the maximum-likelihood estimator as an adaptive processor. 

RADAR SIGI\;AL that has been reflected from 
a complex, time-varying target returns to the 
receiver looking very much like noise. The same 

is true of a communications signal that has been received 
via a link such as the ionosphere or a dipole belt. In such 
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situations, the received signal often can be thought of as 
the sum of a large number of attenuated and delayed 
replicas of the transmitted signal. The attenuations and 
delays vary with time in a way that depends on the de- 
tailed physics of the target or communication link under 
consideration. While it is usually impossible or impractical 
to predict these individual time variations in detail, it is 
reasonable very often to make certain gross assumptions 
about them and thus effect a statistical description of the 
received signal. The most fruitful (and hence, most usual) 
way of achieving this is to assume that the various attenua- 
tion and delay fluctuations are sufficiently independent 
statistically that some version of the Central Limit The- 
orem applies. When this is the case, we can conclude that 
the received signal is a sample function from an approxi- 
mately Gaussian process and, thus, completely describable 
in terms of its mean and autocorrelation function. 

It is not our objective to examine the validity of this 
argument for particular targets of interest (it is not even 
clear exactly how one would go about this), but rather to 
use the Gaussian model to study the problem of measuring 
the pertinent physical parameters of complex, time-vary- 
ing targets or communicationlinks. Inthe Gaussian setting, 


