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that are hypothesized to be good ones. To carry out the 
evaluation, one finds weights of codewords corresponding 
to various input sequences I(D). It would be advantageous 
to lim it the length of those I(D) sequences that could 
conceivably “achieve” free distance (by m inimizing the 
right-hand side of (14)). 

Theorem 3 shows that for noncatastrophic codes of rate 3 
there is no all-zero path of length u - 1 branches other 
than the path O,O, . . . ,O. Hence any input I(D) that does not 
induce the state 0 must have at least one nonzero output 
once every u - 1 blocks. Also the very first output block 
contains at least one nonzero output. Combining these 
results with the result of Theorem 4, we get Theorem 5. 

Theorem 5: For noncatastrophic codes of rate 3, free 
distance can be attained only by input sequences of length 
less than or equal to 

(U + [log, ~1 - I)(U - I) + 1. 

Theorem 5 is an improvement on Costello’s previous 
result [6], but the length is still of the order of u* and not 
u log u, which was conjectured by M iczo and Rudolph [ 1 I]. 
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Variable-Length Codes and the Fano Metric 
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Absbact-It is shown that the metric proposed originally by Fano for 
sequential decoding is precisely the required statistic for minimum-error- 
probability decoding of variable-length codes. The analysis shows further 
that the “natural” choice of bias in the metric is the code rate and gives 
insight into why the Fano metric has proved to be the best practical 
choice in sequential decoding. The recently devised Jelinek-Zigangirov 
“stack algorithm” is shown to be a natural consequence of this inter- 
pretation of the Fano metric. Finally, it is shown that the elimination of 
the bias in the “truncated” portion of the code tree gives a slight reduc- 
tion in average computation at the sacrifice of increased error probability. 
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I. THE VARIABLE-LENGTH DECODING PROBLEM 

C ONSIDER the transmission situation shown in Fig. 1 
for a variable-length code {x1,x2,. . . ,x~} whose 

codeword lengths are {Y~~,IZ~, . . . ,nM}. The message m 
(1 I m  < M), having probability P,,,, selects the codeword 

x, = [hd,2,’ * AJ 

to which is added the “random tail” 

43 = [t,,t*,. * *,LJ 

to form the input sequence 

z = [q,z*,*** Av1 = [%AIl 
for transmission over the discrete memoryless channel 
(DMC). Here N = max (y11,n2,. . . ,~t~) is the maximum 
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I +, 

Fig. 1. Conceptual situation for the variable-length coding problem. 

codeword length. We assume that t, is selected statistically 
independently of x,, and that the digits in t, are chosen 
independently according to a probability measure Q( ) 
over the channel input alphabet; that is, 

N-n,,, 

Pr 0, I 4 = Pr (&J = fl QOk). 
k=l 

The random tail t, can be thought of as the digits resulting 
from subsequent encodings of further messages in a ran- 
domly selected code or simply as a convenient device for 
normalizing the number of received digits that must be 
considered in the decoding process. 

Letting y = [yl,y,, . . . ,yN] be the received 
have by the definition [l] of a DMC 

word, we 

Pr (Y I Z) = igl p(Yi I %ni) :gr p(Ynm+j I tj>9 

where P(I) defines the transition structure of the channel. 
The joint probability of sending message m, adding the 

random tail t,, and receiving y may thus be written 

= pm Pr 0, I h) Pr (Y I 4AJ 

= Pm ,fJl p(Yi I Xmi) tfl: Q(tk) :fJ p(Yn,,,+j l tj)* 

Summing over all possible random tails, we obtain 

Pr (w) = p~ inl p(Yi I Gzi) :G: pO(Yn,+j)9 Cl) 

where 

po(Yi> = C p(Yi I tk)Q(tk) fk (2) 

is the probability measure induced on the channel output 
alphabet when the channel inputs are used according to 
Q( ). But given y, the optimum (in the sense of minimizing 
the probability of an erroneous decision) decoding rule is to 
choose m’ as the value of m, which maximizes Pr (m, y) or 
equivalently which maximizes 

Pr Ow9/ifll pO(Yi) 

since the denominator is independent of m. Taking log- 
arithms, and using (1) and (2), we obtain as the final 

Fig. 2. An example of a tree code with rate 4. 

statistic to be maximized by the optimum decoder: 

We note the somewhat surprising fact that the statistic for 
each codeword depends only on that portion of the received 
word y having the same length as the codeword. 

II. APPLICATION TO SEQUENTIAL DECODING 

To simplify the discussion without loss of essential 
generality, we shall assume binary coding, i.e., we shall 
assume that the DMC is a binary input channel. Sequential 
decoding refers in general to a method for obtaining a good 
estimate of the path followed by the encoder of a tree code. 
An example of a (semi-infinite) tree code is shown in 
Fig. 2, where the encoder is supposed to follow the upper 
branch at each successive node if and only if the corre- 
sponding information digit is a “one.” The code rate R is 3 
in this example, and more generally is the reciprocal of the 
number of encoded digits per information digit. 

Now suppose that {xl,xZ,. . . ,x~} represent all the paths 
in the encoding tree that have been explored up to the present 
by a sequential decoder. The decoder is assumed to know 
nothing about the digits in the unexplored part of the 
encoding tree except that they are selected independently 
according to Q( ), but for the price of one computation it 
can “buy” the knowledge of the digits on the branches 
stemming from the terminal nodes on any already explored 
path. Every sequential decoding algorithm can be thought of 
as a rule for deciding which of these paths to extend. 

Assuming that the information bits are independent and 
equally likely to be zeros or ones, we have as the a priori 
probability that the encoder followed path x,,, 

p, = 2-Rnm. (4) 

We next recognize that the problem of deciding which of 
the explored paths is the initial portion of the path actually 
followed by the encoder is precisely the variable-length 
decoding problem of the previous section, since the set of 
already explored paths form a set of variable-length code- 
words one and only one of which was actually chosen by the 
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encoder. Hence the decoder should base its decision on the 
statistic L(m,y), which with the use of (3) and (4) becomes 

L(m ,y) = ig /log p*f - l-q. (5) 
I 

We now recognize L(m,y) to be precisely the metric so 
brilliantly postulated on intuitive grounds by Fano [2] for 
sequential decoding. The quantity R on the right-hand side 
of (5) is called the bias in the metric. It is interesting to note 
that Gallager [l] suggests using Rcomp as the bias whereas 
Jelinek [3] follows Fano in using R. Our analysis here shows 
that R is indeed the natural choice for the bias. It is also 
interesting to note that L(m,y) has generally been thought 
of as a “law-of-large-numbers approximation” to the true 
path-likelihood functions [l], [3], [4], whereas our 
analysis shows that there is no approximation whatsoever. 

In light of the above analysis, an obviously good se- 
quential decoding rule would be to extend the explored 
path x,, which maximizes the Fano metric L(m,y). In fact, 
this rule is precisely the so-called stack algorithm proposed 
independently by Jelinek [4] and Zigangirov [5]. By 
always choosing to extend the most likely explored path, one 
would expect that the average computation would be nearly 
m inimized. Moreover, the original Fano algorithm [2] is 
essentially this same rule, since Geist [6] has shown that the 
first new node extended by this algorithm is the terminal 
node on the already explored path of greatest metric 
(within the quantization parameter A built into this 
algorithm). 

III. REMARK ON METRICS FOR FINITE TREES 

In the usual practical case where the encoding tree has 
finite length, i.e., where L encoded digits result from branches 
corresponding to true information bits but T further 
digits are obtained by encoding zeros to terminate the code, 
(4) becomes 

p m  = 2-Rlmrn(L,n,)l (6) 

Thus, for n,, > L, the path-likelihood function (3) becomes 

+ g L 
log p(Yi I %ni) 

pO(Yi> I 
(7) 

i=L+l 

rather than (5) which suggests that the bias term R should 
be dropped for the digits in the truncated part of the en- 
coding tree. 

To test the validity of this suggestion, a Jelinek-Zigangirov 
decoder was used with a rate 4 code on a binary symmetric 
channel (BSC) with Rcomp = R = 3, both with and without 
the bias term in the truncated part of the tree. The results 
are given in Table I, and show that there is indeed the 
expected improvement in computation when the bias is 
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TABLE I 
EFFECTOFREMOVINGBIASINTRUNCATEDPARTOFENCODINGTREEFOR 
A  FRAME OF 256 INFORMATION BITS ENCODED WITH THE R = 4 CON- 
VOLUTIONAL CODE WITH GENERATORS (OCTAL) 400,000,000,000 AND 
651,102,104,421 [35 BRANCHES IN TRUNCATED PART OF TREE] ON THE 

BSC WITH CROSSOVER PROBABILITY 0.045 [R = R,,,,] 

Number of Frames Out of 1000 Decoded Frames 
With Computation Nor Less 

N - _. 
With Usual Bias in Without Usual Bias in 

Truncated Part of Tree Truncated Part of Tree 

320 147 148 
340 360 364 
360 486 489 
400 629 635 

2: 194 856 801 860 

1;: 933 958 938 961 
Erased frames 42 39 
Erroneously 

decoded 
frames 28 58 

removed. However, the improvement is very slight and is 
paid for by a factor of two increase in decoder undetected 
error probability. Richer [7] has reported similar results for 
decoding of a rate 1-z code. We conclude that in practice it 
would be generally unwise to remove the bias in the trun- 
cated portion of the tree unless the slight improvement in 
computation was badly needed, or unless T >> L so that 
most of the computation is done in the truncated part of 
the tree and thus removing the bias there would significantly 
speed up the decoding process. 

Finally, we wish to remark that although the Jelinek- 
Zigangirov algorithm always extends the most likely explored 
path and hence maximizes the probability that the next step 
taken is along the correct path in the encoding tree, it does 
not follow that this algorithm strictly m inimizes the average 
computation to find the correct path over the ensemble of 
randomly chosen unexplored parts of the encoding tree. 
The guaranteed optimality is for the next step only. Deter- 
m ination of the conditions for which this algorithm actually 
m inimizes the average computation and determination of 
the general decoding rule for m inimizing average computa- 
tion remain as interesting open problems. 
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