
CORRESPONDENCE 131 

and deg (Q(X)) 2 m,,. If f 5 m,, then xiel(x) f Q(X) mod As always the joint uncertainty of n letters is overbounded by 
gl(xb)gz(x). Therefore the shortened cyclic code generated by the sum of their individual uncertainties, i.e., 
g(x) = gl(xb)g,(x) is capable of correcting all single-burst errors 
of length min {m,,bt } or less. H(X,X, * . ax”) I H(X,) + H(X,) + * * * + H(Xn, 

Earlier we presented a class of shortened cyclic codes for a and because of our probabilistic assignment 
compound channel [4]. A code in this class was generated by the 

HCXi) = MPih lliln 
polynomial g(x) = (xd + l)g’(x) where g’(x) generates a t-error- 
correcting cyclic code of length N. A comparison shows that for where h(p) = -p log, p - (1 - p) log, (1 - p). Combining 
the same number of check digits, the shortened cyclic codes pre- these expressions, we have 
sented here have a better rate of transmission, but the earlier h(Pl) + 02) + * * * + MP,) 2 log2 M 
shortened cyclic codes have a better guaranteed burst-error cor- 
rection capability. and also 
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On the Fractional Weight of Distinct Binary n-Tuples 

JAMES L. MASSEY 

where we have exploited the convexity of h. We have thus proved 
the following theorem. 

Theorem: The fraction p of ones in the Mn positions of M 
distinct binary n-tuples satisfies 

h(p) 2 1 log, M. 
n 

It is interesting to note that the bound of this theorem is tight 
for a) M = 1, since h(p) 2 0 implies 0 5 p I 1 and the values 
p = 0 and p = 1 are achievable, and for b) M = 2”, since 
h(p) 2 1 implies the unique solution p = +. Moreover, the 
bound is surprisingly tight in general. For instance, with n = 20 
and M = 2r” = 1024, the bound gives h(p) 2 +, which implies 
0.110 < p I 0.890. The actual minimum and maximum 
achievable values of p for this case are 0.139 and 0.861, respec- 

Abstracr-It is shown that the fraction p of ones in the Mn positions 
of M distinct binary n-tuples satisfies the inequality 

h(p) 2 (l/n) log, M 

where h(p) = -p log, p - (1 - p) logs (1 - p) is the binary entropy 
function. This inequality, which simplifies the derivation of the distance 
property of the Justesen codes, is proved using an elegant mformation- 
theoretic argument due to Kriz. 

Let p be the fraction of the Mn positions in M distinct binary 
n-tuples which contain ones, and let pi be the fraction of these 
n-tuples whose ith component is a one; then 

tively. 
The reader will recognize the theorem as a strengthening and 

simplification of the lemma of Justesen [2], which was the key 
inequality used in the derivation of the asymptotic distance 
bound for the Justesen codes. 
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P= 
Pl + P2 + . . . + Pn 

n On Binary Majority-Logic Decodable Codes 
We now derive an inequality relating p and n using an 
information-theoretic argument employed by Kriz [l ] for a S. G. S. SHIVA AND S. E. TAVARES 

closely related problem. 
Let [x1,x2,. . . ,x,1 be a random n-tuple, which takes on each AMruct-Let V’ be a binary (n,k) majority-logic decodable code 

of the M given distinct n-tuple values with probability l/M. 
with g’(X) as its generator polynomial and odd minimum distance d. Let 

Then the uncertainty of this random n-tuple is 
V be the (n, k - 1) subset code generated by g’(X)(l + X). This 
correspondence shows that V is majority-logic decodable with d + 1 

ffWlX2 * - .X,,) = log, M. orthogonal estimates. This fact is useful in the simultaneous correction 
of random errors and erasures. 
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