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Determ ining the Burst-Correcting L imit 
o f Cyclic Codes 

HANS J. MATT AND JAMES L. MASSEY, FELLOW, IEEE 

Almwct--Two new computationally efficient afgorithms are developed 
for fmdiug tke exact burst-comxtiug limit of a cyclic code. The first 
algorithm is based on testing tbe culumn rank of certain submatrices of the 
parity& matrix of the code. Aa auxiliary result is a proof that every 
cyclic (n,k) code, with a min immu distauce of at least three, CorrecQ at 
least all bursts of length L(n-2k+l)/2J or ks. The second algorithm, 
wbicb requires somewhat less computation, is based on finding the length 
of the skortest Ihear feedback sbift-register that generates tke sub 
sequences of length n - k of tke sequence formed by the coefficients of the 
parity-check polynomial h(n), augmented with L (n - k)/2j - 1 leading 
zeros and trailhg zeros. Tables of the burst-corxxting limit for a large 
number of binary cyclic codes are included. 

I. INTRODUCTION 

T HIS PAPER presents two new and  simple methods 
for determining the burst-correcting lim it of a  cyclic 

code. In the first section we collect some well-known 
results concerning burst-correction that will be  used in the 
sequel. In Section II we establish the ma in result of this 
paper, a  simple test for the burst-correcting lim it of a  
cyclic code in terms of its parity-check matrix, which we 
also use to prove a  new lower bound  on  the burst-correct- 
ing lim it of a  cyclic code. We  show in Section III that this 
test is equivalent to finding the length of the shortest 
linear feedback shift-register that can generate certain 
subsequences of a  sequence determined by the parity- 
check polynomial of the cyclic code; this leads to a  
computationally efficient test for the burst-correcting 
lim it. We  conclude in Section IV with a  tabulation of the 
burst-correcting lim it for a  number  of cyclic codes. 

Consider the correction of a  single burst by a  linear 
block code of length n  and  dimension k (i.e., an  (n, k) 
code with symbols in the finite field GF(q)). Suppose that 
the transmitted codeword x = [x,, x2,. * * , x,] is received as 
the n-tuple x + e  where e  = [e,, e2, * * . , e,,], with e, E GF(q), 
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is the error pattern. An error pattern e#O is said to be  an  
open-loop burst of length b if its nonzero components are 
confined to b consecutive components,  the first and  last of 
which are nonzero. An error pattern e#O is said to be  a  
closed-loop burst of length b if b is the smallest integer such 
that the nonzero components of e  are confined to b 
consecutive components,  where the first component  of e  is 
considered to follow the last component  in a  cyclical 
fashion. For example, e  = [ 1, 0, 1, 0, I] is a  closed-loop burst 
of length b = 4; however, there are two choices for the b 
consecutive components that contain all the nonzero dig- 
its. When  b <n/2, this type of “amb iguity” for closed- 
loop bursts does not occur. For both the open- loop and  
closed-loop case, the error pattern e  =0 is defined to be  
the unique burst of length 0. 

By the open-loop burst-correcting limit (closed-loop burst- 
correcting limit) of an  (n, k) code, denoted B,(B,), we 
mean  the largest integer such that the code can correct all 
open- loop bursts (closed-loop bursts) of length B,(B,) or 
less. Since an  open- loop burst of length b is also a  closed- 
loop burst of length at most b, it follows that 

B, <B,. 0) 
It m ight seem that closed-loop bursts have significance 
only for cyclic codes, but this is not the case. Ga llager [l, 
p. 2881  has given a  definition of “bursts” on  a  channel, 
which is independent of the block structure of the coding 
system, by first specifying a  guard space g. The channel 
bursts are then those segments of the semi-infinite channel  
error sequence that lie between all segments of g  or more 
consecutive zeros, i.e., g  or more consecutive error-free 
transmissions on  the channel. A channel  burst has length 
b if the corresponding segment, which must begin and  end  
with a  nogero symbol, contains b symbols. If g  = n  - B,, 
then a  block code will correct any channel  burst of length 
B, or less, since any n consecutive symbols in the semi-in- 
finite channel  error sequence will be  a  closed-loop burst of 
length B, or less. On  the other hand  it is necessary to 
specify g  = n - 1  to ensure that a  block code will correct 
any channel  burst of length B,, or less, since n - 2  consecu- 
tive error-free transmissions can lead to the block error 
pattern l,O ,O; . . , 0, 1, which is an  open- loop burst of 
length n. It can be  shown (cf. [l, p. 2901)  that any coding 
system (block, convolutional, variable-length block, etc.) 
that has rate R (measured in information symbols per 
channel  symbol) and  corrects all “channel  bursts” of 
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length b or less requires that the quard space satisfies 

g> l+R 
b ‘I-R’ d> 1. 

For an (n, k) code, R = k/n. Setting b = B, and g = n - B, 
we find from (1) that 

BC+ (3) 

where r = n - k is the redundancy of the code. In fact (3) 
also holds for B,, and this stronger version is called the 
Rieger bound [2, p. 1 lo]. 

Because x, + e, = x2 + e, is equivalent to x2 - x, = e, - 
e,, a linear code can correct all the error patterns in some 
set & if and only if there is no codeword that can be 
written as the difference of two distinct error patterns in 
G. Thus one can immediately make the following asser- 
tion. 

Proposition I: B,(B,) is the largest integer b such that 
no codeword can be written as the difference of’ two 
distinct open-loop (closed-loop) bursts of length b or less. 

We shall say that two open-loop (closed-loop) bursts of 
lengths b, and b, are nonoverlapping if their nonzero spans 
of b, and b, consecutive components, respectively, have 
no common components. But the difference e, - e, of two 
open-loop (closed-loop) bursts e, and e2 of length b or less 
can always be written as the difference e; - e; of two 
nonoverlapping open-loop (closed-loop) bursts of length b 
or less; for example, the difference [1, LO, O,O, l] - 
[ 1, 0, 1, 0, 0, 01, the difference of two closed-loop bursts of 
length three, can be written as [0, 0, 0, 0, 0, 1] - 
[0, - 1, 1, 0, 0, 01. Thus Proposition 1 is equivalent to the 
following assertion 

Proposition 2: B,(B,) is the largest integer b such that 
no codeword can be written as the difference of two 
distinct and nonoverlapping open-loop (closed-loop) 
bursts of length b or less. 

Suppose the codeword x can be written as x-e, - e, 
where e, and e, are nonoverlapping closed-loop bursts of 
lengths b, and b,, respectively. If the code is cyclic, then 
there is a cyclic shift x’ of x such that x’ = e; - e; where e; 
and e; are nonoverlapping open-loop bursts of lengths b, 
and b,, respectively, and the last b, components of e; 
contain all the nonzero components. Thus Proposition 2 
implies the next two propositions. 

Proposition 3: For a cyclic code, B, = B,. 
Hereafter we write simply B to denote the burst-correct- 

ing lim it B, = B, of a cyclic code. 
Proposition 4: For a cyclic code, B is the largest integer 

b such that no nonzero codeword has the property that 
the nonzero components among its first n - b components 
are confined to b or fewer consecutive components. 

If H is the parity-check matrix of an (n, k) code, then 
s = eH r is the syndrome of the error pattern e relative to 
H. Hereafter, we assume H is fixed and call s simply the 
syndrome of e. For any (n, k) code all the error patterns in 
a set & are correctable if and only if they have distinct 
syndromes. For b <n/2, there are exactly n(q- l)qb-’ 
distinct nonzero closed-loop bursts of length b or less 

since, for such a burst e#O, there are n possible positions 
for the first nonzero component, which can assume (q - 1) 
different values, whereas the (b - 1) following components 
can assume arbitrary values. Thus we can immediately 
make the following assertion. 

Proposition 5: For a cyclic code, B is the largest integer 
b such that the n(q- I)qb-’ distinct nonzero bursts of 
length b or less have distinct nonzero syndromes. 

Propositions 4 and 5 suggest two methods for determin- 
ing the burst-correcting lim it B of a cyclic code. The first 
is to examine the first n - b components of the qk- 1 
nonzero code words and apply Proposition 4. The second 
is to compute the syndromes of the n(q- l)q”- ’ nonzero 
bursts of length b or less and apply Proposition 5. Previ- 
ous determinations of B for cyclic codes, e.g. [3] and [4], 
seem to have used one or both of these methods. How- 
ever, when k and B are large, both methods become 
computationally prohibitive. 

II. A MATRIX METHOD FOR DETERMINING B FOR A 
CYCLIC CODE 

Hereafter we shall consider only cyclic (n, k) codes. To 
find B, it follows from Proposition 3 that we can consider 
only open-loop bursts, which are more convenient than 
closed-loop bursts. Thus we shall simply say “burst” when 
we mean “open-loop burst”. 

Since x is a codeword if and only if xHT = 0, and since 
(e,-e,)HT=Oifandonlyifs,=e,HT=e,HT=s,,wesee 
that Proposition 4 implies the following strengthened ver- 
sion of Proposition 5. 

Proposition 6: For a cyclic code, B is the largest integer 
b such that: 

i) all bursts whose nonzero components fall entirely in 
the last b components have distinct syndromes, and 

ii) no nonzero burst of length b or less whose nonzero 
components fall entirely in its first n - b compo- 
nents has the same syndrome as some burst speci- 
fied in i). 

We note next that a burst of length one is also a “single 
error”. Thus B = 0 if and only if the code cannot correct 
single errors, i.e., if and only if its m inimum distance dti 
satisfies dti < 3. As the condition d,,+ < 3 is easily tested, 
we now seek a method for finding B when we already 
know that B > 1. 

Leth(x)=xk+hlxk-‘+... +h,-,x+h,,h,#O,bethe 
parity-check polynomial [2, p. 2081 of an (n, k) cyclic code 
over GF(q). The r x n matrix 

[hk hkbl .-. h, 1 0 .-. 0 01 

H= 

. . . 

is a parity-check matrix for the code. It follows from the 
fact that the last r columns of H form an rX r lower 
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triangular matrix that, for b f r, all bursts whose nonzero 
components fall in the last b positions have distinct syn- 
dromes and  that the first r - b components of s = eH T  are 
identically zero for all such bursts e  whereas the last b 
components of s range over all qb possibilities. But some 
nonzero burst whose nonzero components fall within 
some given b consecutive components within the first 
n  - b components will have a  syndrome which is identi- 
cally zero in its first r - b components if and  only if the 
(r-b) X b matrix, formed by the corresponding b con- 
secutive columns of H with the last b rows deleted, has 
linearly dependent  columns. Invoking Proposition 6  we 
have our first ma in result. 

Theorem 1: For a  cyclic code with B > 1, B is the 
largest integer b (b <r) such that every set of b consecu- 
tive columns of the matrix Mb  is linearly independent,  
where Mb  is the (r - b) x (n - b) matrix formed by deleting 
the last b rows and  last b columns from the parity-check 
matrix H of (4). 

For any b >r - b, any set of b columns of Mb  must be  
linearly dependent.  Thus Theorem 1  implies 

B<ir=i(n-k) (5) 

in agreement with the Rieger bound.  
We  digress to remark that in view of (5) the only 

property of H that is needed  to establish Theorem 1  is 
that H contains an  r x r triangular (or identity) submatrix 
with zeros either below or above the ma in diagonal in its 
right r columns. It follows that the following more general  
result holds. 

Theorem 1’: Theorem 1  holds, with the condition b <r 
weakened to the condition b <r/2, when H is any r x n 
parity-check matrix for a  cyclic code having an  r X r 
triangular (or identity) submatrix in its right r~columns. 

We  return to our examination of the consequences of 
Theorem 1. From (4) and  the definition of Mb  we see that 
the first r - b columns of Mb  form a  square matrix that is 
nonsingular, since hk # 0. Thus columns i, i + 1, - . . , i + b - 
1 of Mb  must be  linearly independent for i= 1,2, - - . ,r - 
2b + 1. Similarly, the last r - b  columns of Mb  (i.e., col- 
umns n-r+l,n-r++;** , n  - b) also form a  nonsingu- 
lar matrix. Thus columns i,i+l;-a,i+b-1 of Mb  must 
be  linearly independent for i=n-r+l,n-r+2;.*,n- 
2b+l or, equivalently, for i=k+l,k+2;**,n-2b+l. 
We see then that every set of b consecutive columns of Mb  
is linearly independent if n  - r + 1 < (r - 2b + 1) + 1  or, 
equivalently, if b < 1  (n - 2k + 1)/2 1, where 1.1 denotes 
the integer part of the enclosed number.  Thus we have 
proved what appears to be  a  new lower bound  on  B for 
low-rate cyclic codes. 

Theorem 2: For every cyclic code with B > 1 (or, 
equivalently, with dti > 3), 

B > [(n-2k+ 1)/2]. (6) 

This theorem shows, for instance, that any (127, 15) 
primitive Bose-Chaudhur i -Hocquenghen (BCH) code 
(regardless of the choice of primitive element used to 
define the code) will have B > 49. Notice that the bound  
(5) gives B < 56 for such a  code. 

Our observation as to certain sets of b consecutive 
columns of H which must be  linearly independent also 
allows us to write the following strengthened version of 
Theorem 1. 

Theorem IS: For a  cyclic code with B > 1, B is the 
largest integer b in the range max{ 1, [(r-k+ 1)/2]} <b 
<[r/2] such that columns i,i+l;*.,i+b-1 of Mb  are 
linearly independent for i = r - 2b + 2, r - 2b + 3,. . . , k. 

Theorem 1s implies the following algorithm. 

Algorithm 1 to determine B for a cyclic (n, k) code with 
d,,>3 

Step 0: Set b = 1  r/2] and i = 2. 
Step I: Check columns i, i+ 1;. . ,i+ b- 1 of Mb  for 

linear independence. If they are linearly inde- 
pendent  go  to Step 2. O therwise go  to Step 3. 

Step 2: If i= k, stop and  announce B = b. Otherwise 
increase i by one  and  return to Step 1. 

Step 3: Decrease b by one. If now b = 
max{l,[(r-k+1)/2]}, stop and  announce B 
= 6. Otherwise return to Step 1. 

Perhaps the only question in the reader’s m ind about 
Algorithm 1  is why one  can dispense with resetting i to 
two when going from Step 3  back to Step 1. The  justifica- 
tion is that columns i, i + 1, * - - , i + b’ - 1  of ML  contain, in 
their uppermost r - b components,  columns i, i + 1, - * * , i + 
b’- 1 of Mb  for b’<b. Thus, if columns i,i+ 1; * - ,i+ b- 
1 of Mb  have been  found to be  linearly independent,  it is 
certain that columns i, i + 1,. . . , i + b’ - 1  of ML  will also 
be  independent for all b’ <b. 

The  complexity of determining B by Algorithm 1  is 
determined primarily by the complexity of determining in 
Step 1  whether the given b column vectors of length r - b  
are linearly independent.  This step is performed about k 
times, each time  with b=r/2 in the worst case. Checking 
the linear dependence by a  Gauss reduction requires 
about b’(r- b)/2=r ‘/ 16  GF(q) operations. Thus finding 
B by Algorithm 1  requires approximately kr3/ 16 GF(q) 
operations. 

In the next section we develop an  alternative algorithm 
to compute B which exploits certain sequence properties 
to reduce the number  of symbol operations required. 

III. A SEQUENCE METHOD FOR DETERMINING B 
FOR A CYCLIC CODE 

We begin by restating Theorem 1s in terms of linear 
dependence rather than independence, recognizing that the 
condition on  the range of b was included in Theorem 1s 
only to m inimize the testing needed  to determine B. 
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Lemma 1: For a cyclic code with B > 1, B is the smal- 
lest positive integer b such that columns i, i + 1, * - * , i + b 
of Mb are linearly dependent for some i in the range 
r-2b+ 1 <i<k. 

Key: )I+ GF Cq) odder 

But the facts that B < 1 r/2] and that the last r - b 
columns of Mb are linearly independent now permit us to 
make the following assertion. 

Lemma 2: For a cyclic code with B > 1, B is the smal- 
lest positive integer b such that the ith column of Mb can 
be written as a linear combination (possibly with all 
coefficients zero) of columns i + 1, i + 2,. * * , i + b, for some 
i in the range r-2b+ 1 <i<k. 

From (4) we see that the columns of Mb referred to in 
Lemma2,namelycolumnsr-2b+l,r-2b+2,~~~,k,k+ 
1; * * , k + b, form the following persymmetric (constant- 
minor-diagonals) matrix: 

Fig. 1. General linear feedback shift-register of length b for field 
GF(q). 

We recognize that (8) is precisely equivalent to the 
statement [5, p. 1221 that the sequence a,,a,; * * ,a, can be 
generated by the length-b linear feedback shift-register 
(LFSR) with feedback coefficients - cr, - c2; * - , - c, as 
illustrated in Fig. 1. Thus we have proved the following 
result (which holds when a,,a2, - . . ,a, are elements of an 
arbitrary field and which appears to be of independent 
interest). 

h k-r+26 “* hl 10 *o-o 

hk--r+2b+1 ’ * ’ h2 

ML= * 

hk 

0 

hl 

0 
1 

0 . . . 
’ hk 

. . . hr-b *** hr-zb 
1 

Note that there are b - 1 zeros at the end of the first row 
of ML and, since hk #O, also b - 1 zeros at the bottom of 
the first column of ML. Lemma 2 can thus be recast as 
follows. 

Lemma 3: For a cyclic code with B > 1, B is the smal- 
lest positive integer b such that some column of ML is a 
linear combination of the following b columns. 

We next note that every set of b + 1 consecutive col- 
umns of ML form a persymmetric matrix 

Lemma 4: The first column of the persymmetric matrix 
A of (8) is a linear combination of the b remaining 
columns if and only if the sequence a,, a2, * . * ,a, can be 
generated by an LFSR of length b. 

Combining Lemmas 3 and 4 and recalling that 
B < 1 r/2 j we arrive at our second main result. 

Theorem 3: For a cyclic code with B > 1, 

B=min{Ll,L2;~~,Lk~,} 

‘b+l ‘b “* ‘1 

‘b+2 ab+l ... ‘2 

A=: . 

1. : 
i I 

(8) 

a, a 
L 

,-, *-* ‘r--b 

where a,,a,; . . , a, is a subsequence of length r of the 
sequence 

0,o; * * ,O, Lh,,h,; * * ,h,,o,o,* * * ,o 
where this latter sequence has exactly b - 1 leading zeros 
and (since hk # 0) exactly b - 1 trailing zeros. We note also 
that the first column of A will be a linear combination of 
the remaining b columns if and only if there exist con- 
stants cl, c2, * * * ,c, (possibly all zeros) such that the first 
column, added to c1 times the second column, plus c2 
times the third column, etc., gives the all-zero column. 
But, from (8), we see that this vector condition is equiv- 
alent to the following scalar equations: 

aj+claj-,+..* +cbaieb=O, 

forj=b+l,b+2;**,r. (9) 

where Lj is the length of the shortest LFSR that can 
generate the length r = rr - k subsequence that starts in 
position i of the sequence 

0,o; . * ,O,l,h,,h,; * * ,hk,o,o,. . - ,o (9) 
where there are 1 r/2 I- 1 leading zeros and trailing zeros, 
and where 6 = 0 if r is even and S = 1 if r is odd. 

We remark that since the first 1 r/2] digits of the 
sequence in (9) form the subsequence O,O,. * * ,O, 1, we 
always have L, = 1 r/2] or L, = 1 r/2] + 1 [5, Theorem 21. 
Thus, since B’< 1 r/2], there is in fact no need to compute 
L, when finding B. 

Our interest in Theorem 3 arises from the fact that there 
is a computationally efficient algorithm, the “LFSR 
synthesis algorithm” of [5] (which is a variant of 
Berlekamp’s “iterative algorithm” [6, p. 1841 for decoding 
the BCH codes) for finding the length L of the shortest 
LFSR that can generate a given finite sequence of digits 
in any field. We incorporate this algorithm in the follow- 
ing algorithm. 
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Algorithm 2 to Determine B for a Cyclic 
(n, k) Code with d& > 3 

&J&j+ 1100101110 

Fig. 2. Binary LFSR of Example 1 for generating sequence Step 0: 
Step I: 

Step 2: 

Apply the LFSR synthesis algorithm to the 
subsequence of length r starting at position i of 
the sequence in (9) to find the m inimum length 
L required. Exit from the LFSR algorithm as 
soon as L > b is implied and  go  to Step 2. If 
L <b when the LFSR synthesis algorithm is 
completed, replace b by L and go  to Step 2. 
If i = k - 6  (where 6  is zero if r is even and  is 
one  otherwise) or if b= [(r- k+1)/2], stop 
and  announce B = b. Otherwise increase i by 
one  and  return to Step 1. 

Example: For the (31,21) binary cyclic code with 

Set b= lr/2j and i=2. 

h(x)=x21+x20+x18+x16+x14+x10 

+x8+x7+x6+x4+x+1, 
the sequence (9) becomes 
o,o,o,o, 1, LO, LO, LO, LO,O,O, 1, 

O ,l,l, 1,0,1,0,0,1,1,0,0,0,0. 
The  subsequence of length r = 10  beginning in position 17, 

O ,l,l, 4O,l,O,O,l,L 
has L,, = 3  (the. length three LFSR which generates this 

0,1,1,1,0,1,0,0,1,1. 

subsequence is shown in F ig. 2), which is the smallest of 
theL,fori=1,2;+- ,k-6=21. Thus B=3 for this code. 

The  complexity of determining B by Algorithm 2  can 
be  estimated as follows. For the worst case, i.e., for 
b-r/2, the use of the LFSR synthesis algorithm in Step 1  
of Algorithm 2  will require about 4  b2=r2 GF(q) opera- 
tions. This step is performed k - S times so that finding B 
by Algorithm 2  requires approximately kr2 GF(q) opera- 
tions. For sufficiently large b, Algorithm 2  will require 
fewer than the approximately kr3/16 GF(q) operations 
required by Algorithm 1. 

IV. RJMARKSANDTABLES 

In Tables I-III, we list the values of B for a  large 
number  of binary F ire codes [7], binary nonprimitive 
BCH codes, and  binary primitive BCH codes [6, p. 1721, 
respectively. For these cyclic codes, B was found by use of 
Algorithm 1  (actually, by use of an  earlier and  slightly less 
efficient version of Algorithm 1  [8]). For many of the 
codes in Tables I-III, the determination of B by previ- 

TABLE I 
BURST-CGRRECXTNG-LIMITBFORTHOSEOPWAGNER'S“BEST" FIRECODESFOR~HICHTHEFIREL~~ERBO~ND 

B,oNB ISCONSERVAT~(~=~-k) 

n k B BF r/n B/r c P(X) =  gW/(x’ - 1) 
15 6 
21 8 
33 12 
39 14 
45 18 
57 20 
69 24 
75 30 
87 30 
99 36 
75 40 
65 40 

145 88 
155 104 
215 144 
105 72 
165 112 
175 120 

63 48 
91 66 

105 78 
189 144 
231 168 
245 189 

63 50 
117 92 
171 134 
385 300 

85 72 
143 120 
165 140 
187 160 
275 230 
297 246 
495 410 
153 136 
273 240 
459 408 
525 470 
391 363 
437 407 
675 628 
725 676 
897 836 

1127 1045 

4 
6 
9 

12 
12 
16 
22 
20 
28 
27 
15 
10 
24 
20 
28 
12 
20 
20 

6 
11 
12 
18 
30 
21 

5 
9 

15 
30 

z 
10 
10 
20 
18 
30 

6 
12 
18 
20 
11 
11 
18 
18 
22 
33 

3 
4 
6 
7 
a 

10 
12 
13 
15 
17 

a  
7 

15 
16 
22 
11 
17 
18 

5 
7 
8 

14 
17 
18 

:: 
10 
28 

3 
7 
a 
9 

13 
17 
28 

5 
11 
14 
18 

9 
10 
14 
15 
20 
25 

60.0 
61.9 
63.6 
64.1 
60.0 
64.9 
65.2 
60.0 
65.5 
63.6 
46.7 
38.5 
39.3 
32.9 
33.0 
31.4 
32.1 
31.4 
23.8 
27.5 
25.7 
23.8 
27.3 
22.9 
20.6 
21.4 
21.6 
22.1 
15.3 
16.1 
15.2 
14.4 
16.4 
17.2 
17.2 
11.1 
12.1 
11.1 
10.5 

7.1 
6.9 
7.0 
6.8 

44.4 5 
46.2 7 
42.9 11 
48.0 13 
44.4 15 
43.2 19 
48.9 23 
44.4 25 
49.1 29 
42.9 33 
42.9 15 
40.0 13 
42.1 29 
39.2 31 
39.4 43 
36.4 21 
37.7 33 
36.4 35 
40.0 9 
44.0 13 
44,4 15 
40.0 27 
47.6 33 
37.5 35 
38.5 7 
36.0 13 
40.5 19 
35.3 55 
38.5 5 
34.8 13 
40.0 15 
37.0 17 
44.4 25 
35.3 33 
35.3 55 
35.3 9 
36.4 21 
35.3 27 
36.4 35 
39.3 17 
36.7 19 
38.3 27 
36.7 29 
36.1 39 
40.2 49 

23 
127 
3043 
13617 
10011 
1341035 
34603145 
4100001 
3706175715 
11000100011 
4100001 
10761 
3572445367 
5521623 
3657555473 
13321 
6130725 
4102041 
103 
15173 
13321 
1011011 
11274767701 
10040001 
103 
10377 
1055321 
16471647235 
567 
3777 
3043 
3777 
4345543 
1001001 
11000100011 
763 
13077 
100011011 
4100001 
5343 
5343 
4100001 
4102041 
34603145 
107753475213 
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TABLE II 
BURST-C• RREIXNG-LIMIT I3 FOR SOME NONPRIMITWE 

BCH CODES 

n k t B r/n Bl’ g(x) 
17 9 2 3 47.1 37.5 727 
21 12 2 4 42.9 44.4 1663 
23 12 3 5 47.8 45.5 5343 
33 22 2 3 33.3 27.3 5145 
41 21 4 9 48.8 45.0 6647133 
47 24 5 11 48.9 47.8 43073351 
65 53 2 3 18.5 25.0 10761 
65 40 4 10 38.5 40.0 354300067 
73 46 4 12 37.0 44.4 1717773537 

t is the random-error-correcting-limit, r= n- k, r/n, and B/r are 
expressed in percent and g(x) is the generator polynomial in octal form. 

TABLE III 
BURST-CQRRFKXNGLIMIT B OF SOME F'RIMITIW BCH CODES 

I 

7 4 1 1" 42.9 33.3 13 
15 11 1 1* 26.7 25.0 23 
15 7 2 4 53.3 50.0 721 
15 5 3 5 66.7 50.0 2467 

31 26 1 1* 16.1 20.0 45 

31 21 2 4" 32.3 40.0 3551 
31 16 3 7 44.4 46.7 107657 

31 11 5 10 64.5 50.0 5423325 
31 6 7 12" 80.6 48.0 313365047 
31 26 1 1* 16.1 20.0 75 
31 21 2 4* 32.3 40.0 2303 
31 16 3 6 48.4 40.0 135273 
31 11 5 10 64.5 50.0 6163305 
31 6 7 12" 80.6 48.0 331722561 
31 26 1 1' 16.1 20.0 67 
31 21 2 3" 32.3 30.0 3557 
31 16 3 7 48.4 46.7 141225 
31 11 5 9" 64.5 45.0 6715141 
31 6 7 11* 80.6 44.0 230745335 
63 57 1 1" 9.5 16.7 103 
63 51 2 4" 19.0 33.3 12471 
63 45 3 5 28.6 27.8 1701317 
63 39 4 11 38.1 45.8 166623567 
63 36 5 12" 42.9 44.4 1033500423 ' 
63 30 6 15 52.4 45.5 157464165547 
63 24 7 17" 61.9 43.6 17323260404441 
63 18 10 21" 71.4 46.7 1363026512351725 
63 16 11 22 74.6 46.8 6331141367235453 
63 10 13 25" 84.1 47.2 472622305527250155 
63 7 15 28 88.9 50.0 5231045543503271737 
63 57 1 1' 9.5 16.7 147 
63 51 2 3 19.0 25.0 11253 
63 45 3 7 28.6 38.9 1431377 
63 39 4 11 38.1 45.8 156615307 
63 36 5 11 42.9 40.7 1705374561 
63 30 6 12* 52.4 36.4 105065105421 
63 24 1 18X 61;9 46.2 10611427654563 
63 18 10 21" 71.4 46.7 1207106757642651 
63 16 11 20 74.6 42.6 6625720617154137 
63 10 13 26" 84.1 49.1 743065712726034051 
63 7 15 28 88.9 50.0 4567515266076214705 
63 57 1 1" 9.5 16.7 155 
63 51 2 4 19.0 33.3 16223 
63 45 3 8 26.6 44.4 1125063 
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TABLE III (Continued) 

n  k t B r/n(%) B/r(%) g(x) 

63 39  4  10  38.1 41.7 
63  36  5  12"  42.9 44.4 
63  30  6  14* 52.4 42.4 
63  24  7  16” 61.9 41.0 
63  18  10  22  71.4 48.9 
63  16  11  20* 74.6 42.6 
63  10  13  25X 84.1 47.2 
63  7  15  27"  88.9 48.2 
127  120 1  1* 5.5 14.3 
127  113 2  4* 11.0 28.6 
127  106 3  8* 16.5 38.1 
127  99  4  12  22.0 42.9 
127  92  5  14"  27.6 40.0 
127  85  6  19  33.1 45.2 
127  78  7  21  38.6 42.9 
127  71  9  27  44.1 48.2 
127  64  10  29* 49.6 46.0 
127  57  11  34  55.1 48.6 
127  50  13  37"  60.6 48.1 
127  43  14  40  66.1 47.6 
127  36  15  45  71.7 49.5 
127  29  21  46"  77.2 46.9 
127  22  23  52  82.7 49.5 
127  15  27  55* 88.2 49.1 
127  8  31  59* 93.7 49.6 
127  120 1  1" 5.5 14.3 
127  113 2  4* 11.0 28.6 
127  106 3  8" 16.5 38.1 
127  99  4  12  22.0 42.9 
127  92  5  15* 27.6 42.9 
127  85  6  18"  33.1 42.9 
127  78  7  24  38.6 49.0 
127  71  9  24"  44.1 42.9 
127  64  10  30"  49.6 47.6 
127  57  11  34  55.1 48.6 

127  50  13  37  60.6 48.1 

127  43  14  41  66.1 48.8 
127  36  15  45  71.7 49.5 

127  29  21  48  77.2 49.0 
127  22  23  52  82.7 49.5 

127  15  27  54* 88.2 48.2 
127  8  31  59* 93.7 49.6 
127  120 1  1* 5.5 14.3 
127  113 2  4* 11.0 28.6 
127  106 3  6" 16.5 28.6 
127  99  4  12  22.0 42.9 
127  92  5  16  27.6 45.7 

127  85  6  18  33.1 42.9 
127  78  7  23  38.6 46.9 
127  71  9  26  44.1 46.4 
127  64  10  29* 49.6 46.0 
127  57  11  32  55.1 45.7 
127  50  13  38  60.6 49.4 
127  43  14  110 66.1 47.6 
127  36  15  45* 71.7 49.5 
127  29  21  47"  77.2 48.0 
127  22  23  51  82.7 48.6 
127  15  27  56  88.2 50.0 
127  8  31  58* 93.7 48.7 
127  8  31  59* 93.7 49.6 

102673553 
1537210637 
106054077561 
14225100247067 
1142177532557273 
7456576205014441 

755334022316461443 

6534604245447336175 
211 
41567 

11554743 
3447023271 
624730022327 

130704476322273 
26230002166130115 

6255010713253127753 
1206534025570773100045 
335265252505705053517721 
54446512523314012421501421 
17721772213651227521220574343 
3146074666522075044764574721735 
403114461367670603667530141176155 
123376070404722522435445626637647043 
22057042445604554770523013762217604353 
7047264052751030651476224271567733130217 
217 
54505 
14517623 

2320637377 
616051466261 
152055627024155 
35647104545000377 
6402400420033061235 

1346342546425521305535 
257671620113233366110015 

72364124311247042327752451 
16563411316762141523202565773 
3033145113365036627465666704563 
403456765606274161324061641535467 
104324444272233501517170527173574417 
37071231012177064120650613540236515175 
4220564640737462343OSO754765226654156257 
235 
76533 
10513165 

2113100037 
530405706075 
145007126304221 

30222671041133777 
5056513565374533677 
1337626055235540411717 

222602703023045367232l l l  
73066070324015476437747471 

1615621071616725661503 l425161 
3145167034442312151474354252557 
411034220540056004036332365536535 
151571237655357367520454667705462071 
24220353103706645134226343657675776433 
6772370573071332110623245010363565460527 
6225355460704241323261563507571370117651 
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TABLE III (Continued) 

n k t B r/n(%) B/r(%) g(x) 

435 
267543 
156720665 
75626641375 
23157564726421 

16176560567636227 
7633031270420722341 
2663470176115333714567 

52755313540001322236351 
22624710717340432416300455 
15416214212342356077061630637 
7500415510075602551574724514601 
3757513005407665015722506464677633 
1642130173537165525304165305441011711 
461401732060175561570722730247453567445 
215713331471510151261250277442142024165471 
120614052242066003717210326516141226272506 

267 
605266655721002472636364046002763525563134 

72737 
222057723220662563124173002353474201765747 

50154441 

255 247 
255 239 

255 231 

255 223 

255 215 
255 207 
255 199 
255 191 
255 187 
255 179 

255 171 

255 163 
255 155 
255 147 
255 139 
255 131 

255 123 

1 1" 3.1 12.5 

5" 6.3 31.2 

9* 9.4 37.5 

11" 12.5 34.4 

17 15.7 42.5 

21" 18.8 43.8 

26 22.0 46.4 

274 25.1 42.2 

27" 26.7 39.7 

35" 29.8 46.1 

39" 32.9 46.4 

43" 36.1 46.7 
47 39.2 47.0 

50* 42.4 46.3 

55* 45.5 47.4 
60* 48.6 48.4 

64 51.8 48.5 

4 

6 

8 

9 
10 
11 
12 
13 
14 
15 
18 
19 

255 115 21 68 54.9 48.6 

255 ,107 22 IO" 58.0 47.3 

255 99 23 75* 61.2 48.1 106566672534731742227414162015743322524110 
76432303431 

255 91 25 80* 64.3 48.8 675026503032744417272363172473251107555076 
2720724344561 

110136763414743236435231634307172046206722 
545273311721317 

667000356376575000202703442073661746210153 
26711766541342355 

240247105206443215155541721123311632054442 
50362557643221706035 

255 87 26 83 65.9 49.4 

79 27 86" 69.0 48.9 

255 71 29 90 72.2 48.9 

255 63 30 93” 75.3 48.4 107544750551635443253152173577070036661117 
26455267613656702543301 

255 55 31 99 78.4 49.5 731542520350110013301527530603205432541432 
6755010557044426035473617 

253354201706264656303304137740623317512333 
4145446045005066024552543173 

255 47 42 103 81.6 49.5 

82.4 49.5 152020560552341611311013463764237015636700 
24470762373033202157025051541 

255 45 43 104 

255 37 45 107* 85.5 49.1 513633025506700741417744724543753042073570 
6174323432347644354737403044003 

302571553667307146552706401236137711534224 
2324201174114060254657410403565037 

255 29 47 111 88.6 49.1 

125621525706033265600177315360761210322734 
1405653074542521153121614466513473725 

255 21 55 116 91.8 49.6 

255 13 59 120* 94.9 49.6 464173200505256454442657371425006600433067 
744547656140317467721357026134460500547 

1021 
1112711 

1530225571 
1630256304641 
1112724662161763 
1142677410335765707 
1034122337164372224005 
1561350064670543777423345 
1727400306127620173461431627 
1317711625267264610360644707513 
1337530164410305712316173767147101 

15734363036573117627266577'24651203651 
1102510344130333354270407474305341234033 
1775546025777712372455452107300530331444031 
111674470652172553222716260714621621010673 

3203 
112665720250566632301700165224556261443551 

1600655 

1* 1.8 11.1 
6 3.5 33.3 

11" 5.3 40.7 

14 7.0 38.9 
17 8.8 37.8 
24 10.6 44.4 

28 12.3 44.4 

33 14.1 45.8 
37* 15.9 45.7 
41 17.6 45.6 
46* 19.4 46.5 
51* 21.1 47.2 

56 22.9 47.9 

60" 24.7 47.6 

65 26.4 48.1 

511 502 
511 493 

511 484 
511 475 
511 466 
511 457 

511 448 

511 439 

511 430 
511 421 
511 412 
5l.l 403 

511 394 

511 385 
511 376 

8 
9 
10 
11 
12 

13 
14 
15 

511 367 17 68" 28.2 47.2 
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TABLE III (Continued) 

291 

n k t B r/n(%) B/r(%) &4 

511 358 1,8 73  29.9 47.7 157445615454545041473341617653515607003776 
0411373255 

511 349 19  79  31.7 48.8 145501223467575324207450155565737700616552 
1557376050313 

511 340 20  82"  33.5 48.0 1O36O75427O6247462322O662O47l226l l6773635l  
1364110105517777 

511 331 21  87"  35.2 48.3 154064472110605057034277240511717745321513 
6663677461641457321 

511 322 22  91"  37.0 48.1 115361467550611121137436667562467075523652 
3645062677061770735073 

511 313 23  96"  38.7 48.5 103704300534641110277451644704707073560232 
7224637421536736251517437 

511 304 25  100 40.5 48.3 151073621227213335350235253632070341014722 
5273064337077160035254047351 

511 295 26  104"  42.3 48.1 111263O47753OO3317OO44524747727767532752O4 
6612603077472052247671744467035 

511 286 27  108 44.0 48.0 13174634O3265645O42O64775326O447757374167 l  
4071756016714523650022734505401471 

511 277 28  114s 45.8 48.7 111117075212254710034142277366030225623031 
7751245413717303607737426401526326045 

511 268 29  118* 47.6 48.6 124116024715136716561537202317022126442722 
6437653163043503436310631425301735205601 

511 259 30  121"  49.3 48.0 112131411116210153237072224371101446333347 
7256025051656614354713760662350433214646117 

t is the BCH lower bound on the random-error-correcting-limit, r = n  - k, g(x) is the 
code-generating polynomial, and the asterisk denotes that addition of an overall 
parity-check digit will increase B. 

ously available methods would have been  computationally 
prohibitive. The  codes are described by their generator 
polynomials g(x), which are given in the octal notation of 
Peterson [2, pp. 472-5341;  h(x) can of course be  found 
from h(x) = (x” - 1)/g(x). 

The  F ire codes listed in Table I are those of the “best” 
F ire codes as found by Wagner  [9] for which the lower 
bound  on  B as given in [9] is not exact. For comparison 
this lower bound  is also listed in Table I. It will be  seen 
that this lower bound,  due  to F ire [7], is often very 
pessimistic. 

It may at first seem strange that it is necessary to list 
the specific g(x) for the BCH codes in Tables II and  III. 
However, unlike the random-error-correcting lim it, the 
burst-correcting lim it of a  BCH code depends on  the 
particular primitive element used to define the code. This 
dependence on  g(x), or, equivalently, on  h(x), could be  
anticipated from the content of Theorem 3; it is illustrated 
by numerous instances in Table III where primitive BCH 
codes with the same n  and  k, but different g(x), have 
different B. All of the binary primitive BCH codes of 
length 63  or less are given in Table III, except for those 
for which g(x) is the reciprocal of that of a  code already 
given so that its codewords are just the reverse of the 
other’s and  hence has the same B. Only a  partial list is 
given in Table III of the primitive codes with lengths 127, 
255, and  5  11. In all cases an  asterisk indicates a  code for 
which the addition of an  overall parity check increases B. 

We remark.that it seemed surprising to us, at this late 
date in the development of coding theory, that there 
appeared to be  so much yet to be  said about single-burst- 
correction for a  cyclic code. We  remark also that the 
connection between persymmetric matrices and LFSR’s, 

given in Section III, seems so basic. that there well may be  
applications of this principle to other problems in coding 
theory. 
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