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Therefore for an input state p = Zf=,A, E, (0 < N < co) with 
Z,,X,, = 1 and X, * h, (k *j), the compound state and the 
trivial compound state introduced in Section IV are given by 

a E- - B,X,E,, @ A*E, = Z~&X&,X,~C;~~E, 8 I?‘,, 

a, = Z,,X,E,, @ Z,X,A*E, = Z,,,~~,~=,X,X,~C,~~~E~ @ 6’,, 

where 6’, is defined by Bj = ]a,)( Q,] E T( x2) +, , . Thus we can 
calculate the mutual information as follows: 

I(p; A*) = -ZJ.logX, - ~J$)(B,N_,x,]c;]2) 

This result is also obtained from the Shannon’s formula with 
an initial probability (X,} and the conditional probability (Icy ] *) 
given above. As the above model is very simple, this conditional 
probability can be calculated [20] without introducing a channel 
A* explicitly. Once the conditional probability is known (e.g., 
when every eigenvalue of p is nondegenerate and A* is given 
explicitly, it can be obtained by taking proper CONS’s at the 
input and output systems), Shannon’s expression for the mutual 
information is equivalent to ours. Without formulating a channel 
and a compound state precisely, neither have we a general rule to 
compute the mutual information (the joint probability) nor can 
we study quantum communication processes in general or the 
properties of a channel and the mutual information in particular. 
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Capacity of Interconnected Ring Communication 
Systems with Unique Loop-Free Routing 

MARCEL SCHLATTER, MEMBER, IEEE, AND 
JAMES L. MASSEY, FELLOW, IEEE 

Abstract-Capacity is defined for a given distribution of offered traffic 
as the maximum rate with which packets can be sent with finite delay 
through the network by appropriate routing. It is shown how capacity 
depends on the traffic characteristics and on the topology of ring communi- 
cation systems interconnected so as to provide unique loop-free routing. 
First, the traffic conditions are given under which the capacity of a single 
ring attains its maximum and its minimum. For the case of uniform traffic 
it is shown that the capacity is equal to twice the minimum capacity. Then 
it is shown that, for uniform traffic, the capacity relative to a single ring 
communication system can be increased by as much as 33.3 or 80 percent 
when the stations are split up into two or three separate rings, respectively, 
interconnected to give unique loop-free routing. Exact formulas are given 
for the capacity of systems with an arbitrary number of stations split up 
into an arbitrary number of separate rings interconnected to give unique 
loop-free routing. Finally, it is shown that connecting local rings through a 
star network with a central switching node is particularly useful when 
stations can be segregated into local groups of stations which often 
communicate with stations from the same local group but only rarely with 
stations from the other groups. Exact formulas are given to calculate the 
capacity of such interconnected ring communication systems. 

I. INTRODUCTION 

In a communication network with many senders and/or many 
receivers, the ultimate limit of reliable communications can be 
specified by a capacity region with one coordinate for each 
source-destination pair. Alternatively, one can consider “capac- 
ity” to be a scalar which depends on the offered traffic distribu- 
tion, i.e., on what fraction of the total traffic originates at station 
i and is destined for station j for all i * j. For a given offered 
traffic distribution, capacity is the upper limit of the total offered 
traffic rate such that there exist protocols that deliver this traffic 
with finite average delay. If the total offered traffic exceeds 
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Fig. 1. Examples of communication networks with unique loop-free routing. 

capacity, then the average packet delay must be infinite because 
the network buffers hold a store of packets that almost surely 
increases without bound as further traffic arrives; here we assume 
that all buffers are of infinite length so that no packets are lost 
because of buffer overflow. 

The capacity of general networks has been discussed, for 
example, in [I]-[6], but the interesting and easily analyzed class 
of networks with unique loopyfree routing has apparently not been 
singled out previously. In Section II, we find the capacity region 
of this class of networks and show how capacity depends on the 
offered traffic vector, a quantity that describes the offered traffic 
characteristics. In Section III, we ,discuss the capacity of the 
simplest network with unique loop-free routing, namely, a single 
ring with unidirectional links. In Sections IV and V, we discuss 
the capacity of connected ring systems with exchange nodes for 
the uniform and certain nonuniform traffic distributions. 

II. THE CAPACITY REGION 

We consider communication systems with m stations (shown as 
nodes in Fig. 1) interconnected by identical unidirectional links 
to give unique loop-free routing; we assume that each link is an 
error-free delayless binary channel and hence has a capacity of 1 
(bit per bit-time). The networks shown in Fig. 1 are typical 
examples of such communication systems. The exchange nodes 
(shown as squares) route the traffic from all incoming links to the 
appropriate outgoing links; they neither generate nor absorb any 
traffic. To illustrate what we mean when we say that the networks 
in Fig. 1 have unique loop-free routing we show, in Fig. 2, two 
examples of networks with nonunique routing. In these networks 
there are, as illustrated by the dashed lines, cases where an 
exchange node can route the incoming traffic to more than one 
possible outgoing link without creating a closed-loop within the 
resulting path. 

We  assume that each station comprises a sender S and a 
receiver R. Under the assumption here and hereafter that the 
senders do not transmit to receivers at the same station, there are 
n = m( m  - 1) sender-receiver pairs (S,, Rj) with i * j to be 
considered. 

Fig. 2. Examples of communication networks with nonunique routing. 

We define the n-dimensional offered-traffic vector 

f=R9, (2.1) 
where R is the total offered traffic (in bits per bit-time) and where 

e= [e,,,,...,e,,,,e,,,,...,e,,,,...,e,,,,...,e,,,-,i 

(2.2) 
is the trkffic distribution vector for which Bi,, > 0 and 

Cei,, =  1. 
i.j 

(2.3) 

i-=j 

The component ei,, is the fraction of the total offered traffic that 
originates at station i and is destined for station j. The quantity 

fi,j =  Re,,j (2.4) 

is the t ime-average offered traffic (in bits per bit-time) from 
sender S, to receiver Rj. Obviously, 

A., 2  09 alli, j. (2.5) 
Equations (2.3) and (2.4) also imply the obvious relation 

R = cfi.,. (2.6) 
i,J 

Any vector f that satisfies (2.5) is a possible offered traffic vector. 
Because of the unique loop-free routing, the traffic that must 

flow through link k, if all packets are to reach their destination, is 
given by 

Fk = C fs,j, (2.7) 
(i,j)ESk 

where S, is the set of all origin-destination Ijairs (i, j) such that 
the unique loop-free path from station i to station j traverses link 
k. What makes unique routing networks amenable to simple 
analysis is that the offered traffic uniquely determines the link 
flows according to (2.7) for all protocols that produce loop-free 
routes and that deliver all packets to their destinations; protocols 
not having these two properties are of no interest. 

Any vector f that satisfies (2.5) and Fk Q 1, 1 < k < m, is said 
to be a feasible offered traffic vector. (In general networks, an 
offered traffic vector is said to be feasible (see, e.g., [I]) if there 
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HOST 
exists a routing for the flows such that the total flow in each link 
for this routing does not exceed the capacity of that link; our 
usage of “feasible” is consistent with this general usage.) 

We now define the region C to be the set of all feasible offered 
traffic vectors, i.e., 

C=[f:f,,,>Oalli*jandF,<lallk]. P-8) 
The following observation establishes that C is in fact the capac- 
ity region of the network considered as a multi-user channel. 

If the flow vector f lies within the outer boundary of the region 
Q: (i.e., if Fk < 1 for all links k), then a simple store-and-forward 
first-in first-out protocol at each node will serve all packets with 
finite average delay when the packet arrival processes are inde- 
pendent and memoryless and the second moment of the packet 
length is finite. Conversely, if the flow vector f lies beyond the 
outer boundary of the capacity region (i.e., if Fk > 1 for at least 
one link k) then no protocol can serve all packets with finite 
average delay since the average delay of packets traversing this 
link must be infinite regardless of the nature of the packet arrival 
process or the packet length distribution. We remark that those f 
that lie on the outer boundary of Q: (i.e., those f with Fk = 1 for 
some links k) can be served with finite average packet delay only 
in special cases such as periodic arrivals of packets of constant 
length. When packet arrivals are memoryless and independent, 
however, the average delay for packets traversing a link with 
Fk = 1 will be infinite regardless of the serving protocol. 

We now introduce the notation 

fT efT 

Fig. 3. Ring communication systems with terminal-to-host and host-to- 
terminal traffic. 

sender transmits only to its nearest neighboring receiver, i.e., 
when 8, = 1 and #, = 0 for i > 1. In this case, each link carries 
the flow from only one sender and (3.4) yields 

C(0) = max[R:f E @ andf = RO] (2.9) 
to denote the capacity as a function of the traffic distribution 
vector 8. In the case of networks with unique loop-free routing, 
C(e) is equal to that value of R which solves 

Fk’ = 1, (2.10) 

where k* is a value of k that maximizes Fk. We shall call (2.10) 
the most-congested-link equation. 

c max = m. (3.5) 

From (3.4), we see further that the symmetric capacity achieves 
its minimum Cmin when each sender transrmts only to its most 
distant receiver, i.e., when o,,-, = 1 and 8, = 0 for i < m - 1, 
namely, 

(3.2) 

(3.3) 

maximum value C,, when the offered traffic is such that each 

III. SINGLE RING NETWORKS 

Here we consider the case of single ring networks. We first 
assume that 8,. ,+, has the same value for all i (where here and 
hereafter, subscripts formally greater than m are understood to be 
reduced by m). This implies that the flows between S, and Ip,+,, 
l=$i<m, I<j<m-1, depend only on the distance j be- 
tween sender and receiver, and, also, that all senders S,, 1 < i < 
m, generate the same total amount of traffic. We shall call such a 
traffic distribution symmetric, and we write 

“, = me,.,+, (3.1) 
to denote the fraction of the total traffic destined j links from its 
origin. The traffic that must flow through link k in a single ring is 
given in general by 

m- 1 Cm- 1)-i 

Cmin = min.( 8) = 5. (3.6) 
Q 

In this case, each link carries the flow from m - 1 senders. For 
m > 1, Cmin is approximately 1. In other words, when all senders 
transmit only to their most distant destinations, ring capacity is 
approximately equal to the capacity of a single link between two 
stations. The maximum rate with which each station can send is 
approximately 1 /m. 

In real applications, the flows will in general be such that the 
symmetric ring capacity is between C,, and Cmin as given by 
(3.5) and (3.6), respectively. Unfortunately, however, it will usu- 
ally be much closer to Cmin than to C,,,,. Consider, for example, 
the case of uniform traffic which we define as the situation when 
the traffic is symmetric and 

Fk = R c c ek-r,k+/. 
j-1 i=o 

Because of (3. I), (3.2) reduces for symmetric traffic to 

Fk = a Tf’i6, 
1=l 

which, not surprisingly, is independent of k. Thus, the most-con- 
gested link-equation (2.10) gives the symmetric capacity as 

c(e) =+. (3.4) 
C i0, 
1=l 

From (3.5), we see that symmetric capacity C(e) attains its 

C",, = 2, (3.8) 

irrespective of the number of stations, Le., the ring as a whole can 
carry only twice as much traffic as a single link or, equivalently, 
that each link carries exactly half of the total traffic. 

(A minor modification of the above arguments shows that the 
maximum achievable rate for protocols that allow packets to be 
removed from the ring only when they reach their original sender is 
at most 1 in a single ring network regardless of the traffic 
distribution vector 8. Thus, with uniform traffic, such end-to-end 
protocols can at best operate at 50 percent of capacity.) 

To illustrate that the symmetric and uniform analysis can yield 
substantially incorrect performance estimates for other traffic 
distributions, consider a ring used for terminal-to-host and 
host-to-terminal computer traffic as depicted in Fig. 3. Terminals 
1,2; . ., m - 1 each transmit with rate fT only to station m, the 

i.e., when each sender sends with the same rate to each of the 
m - 1 receivers at the other stations. Equation (3.4) now gives 
the capacity, which we denote by Cunif, as 
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Ring 1 Ring 2 
ml stations1 tm2 StatlO”S) 

Fig. 4. Communication systems consisting of two rings which are intercon- 
nected by an exchange node. 

host computer. The host computer sends return messages at the 
same rate f,, to each of the terminals, and there is no other traffic. 
Let a denote the ratio of host- to-terminal traffic, i.e., 

For a > 1 (as in an inquiry system where a short message from a 
terminal usually causes the host computer to send a large amount 
of data such as a full screen of text back to the terminal) the most 
congested link is that from the host computer to the first down- 
stream station; its flow is 

F, = 
R 

m(1 + a) 
ma=RL 1 +a’ (3.10) 

The capacity, which we now denote as C,, is found from (3.4) to 
be 

which is equal to 2 (as in the case of uniform traffic) when a = 1 
but decreases rapidly to Cmin = 1 as a increases. 

For LY < 1 (as in a data collection system where all terminals 
send their data to the host which sends only short acknowledg- 
ment messages back to the terminals) the flow is maximum in the 
link just before the host computer; its flow is 

F, = 
R R 

m(l + a) m=i-T-L. (3.12) 

The capacity is found from (3.4) to be 
c,= 1 +a, O<a<l. (3.13) 

Again, ring capacity is less than 2; for a << 1, C is reduced to 
almost Cmin = 1. Thus, either for a <<: 1 or a Z+ 1, the capacity 
of the ring is only about half its uniform capacity. 

IV. CAPACITYOFINTER~ONNECTEDRINGSYSTEMSWITH 
UNIFORMTRAFFIC 

When, in a given application, the ring capacity would not be 
sufficient for the desired offered load, one must either increase 
the capacity of the individual links-or choose a network with an 
alternative topology which reduces the flow through some links. 
In this section we consider a special case of the latter approach 
which is particularly useful to increase the capacity of an existing 
ring communication system when either more stations are to be 
connected or when, in the course of time, stations have more data 
to send than when the system was initially planned and built. 

We first consider a system of two rings which are connected by 
an exchange node (Fig. 4). Of the total of m stations, m, are 
connected to ring 1 and m2 = m - m, are connected to ring 2. 
We assume uniform traffic, i.e., that each station i sends with the 

Bang 1  .-T 2  
rn’ = m/3 StatlonS ml’ = m/3 StalO”S 

Fig. 5. Communication system consisting of three rings which are intercon- 
nected by a star network. 

same rate 

fL,= R m(m - 1) (4.1) 

to all other stations j * i. To find capacity in this case, we note 
from inspection of Fig. 4 that the traffic which must flow through 
any link in ring 1 is the same as the traffic R/2, which would 
flow through that link if all stations had been connected to form 
one ring less half of the traffic R,,, that both originates in and is 
destined for stations in ring 2. Thus, 

where 

R m2On2 - 1) R 
2.2 = m(m - 1) . 

Combining these equations gives 

Fk(‘) = 

(4.2) 

(4.3) 

Assuming m, > m2, the links in ring 1 become completely used 
before the links in ring 2, so (2.10) yields 

@& = 2m(m- 1) 
m*(2m - m* - 1) 

where we also include the case m z < m , by defining 

m* = max(m,, m,). (4.6) 

The capacity gain over a single ring (which has Cunif = 2) is 
largest when m , = m 2 = m/2; in this case (4.5) reduces to 

c$, = S(m - 1) 
3m-2' 

which quickly approaches 8/3 as the number of stations m 
increases. In other words, the best that can be achieved (in the 
case of uniform traffic) is a 33.3 percent increase in total capacity 
when the number of stations in a given ring system is split up 
into two rings which are connected by an exchange node. If this 
increase is not sufficient, the stations must be split up further, 
e.g., into three separate rings. Such a splitting is shown in Fig. 5 
where the exchange nodes are interconnected by a star network. 
We assume that the links between the exchange nodes and the 
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exchanw ratio e  

Fig. 6. Capacity of a  system with M  + co stations which are equally split 
into L  separate rings which are interconnected by a  star network (5.3). 

central switching node in the star network have ample capacity to 
guarantee that they do not become bottlenecks. 

In general, when m stations with uniform traffic (where m is a 
multiple of L) are equally split into L  rings connected through a 
star network, the resulting uniform capacity can be shown to be 

CA;; =  2L2(m - 1) 
m(2L- 1)-L’ (4.8) 

As m increases for fixed L, C$ approaches 2L2/(2L - 1) 
which is very nearly L  for even modestly large values of L. 

V. CAPACITY OF CONNECTED RING SYSTEMS W ITH 
NONUNIFORM TRAFFIC 

In the previous section we saw that ring communication sys- 
tems with uniform traffic have a higher capacity when the sta- 
tions are split up into a number of local rings which are con- 
nected through a star network. In this section we show that, in 
applicatians where the stations’can be grouped into stations 
which often communicate with stations from the same group but 
only rarely with stations from other groups, the capacity ad- 
vantage of such connected ring systems compared to a single ring 
is even greater. 

Suppose that m stations are split equally into L  (L > 2) rings 
where each ring has m’ = m/L stations which send with the same 
rate to all other stations in the same ring and with a fraction e of 
this rate to all stations in all the other rings. We  call e  the 
exchange ratio of the offered traffic. All links then carry the same 
traffic and it is straightforward to show that (2.10) gives the 
capacity as 

pJ”;lunif = 2L[m(l + 4L - 1)) - Ll 
m[l+2e(L- 1)]-L (5.1) 

For e = 0, i.e., when there is no exchange traffic, we have L  

separate local rings with uniform traffic. Because each of these 
local rings has a capacity of 2, the system capacity must be 2L. 
At the other extreme, when e is large we have, in the limit, 

lim Cn(oLn)unif = L. (5.2) e-tee 
This is illustrated in Fig. 6 where 

lim  Ci:Lf = 2L ’ + e(L - ‘) 
1 + 2e(L - 1) m+oO (5.3) 

is plotted versus e for L  = 2, 3, 4, and 5 separate local rings. 

VI. CONCLUSION 

We have shown how capacity, the maximum rate with which 
packets can be sent through a ring communication system, de- 
pends on how the senders and receivers are physically located 
relative to each other. For the case of uniform traffic, i.e., when 
each sender sends with the same rate to all receivers at the other 
stations, the capacity of a single ring is equal”to twice the 
capacity of a transmission link between two stations. 

A way to increase the capacity of a single ring without increas- 
ing the capacity of the individual transmission links is to split the 
system up.into separate rings. For uniform traffic, the capacity of 
a ring communication system’with two separate identical rings 
connected through an exchange node is approximately 2.6 times 
the capacity of a single transmission link. W ith three rings, the 
capacity is approximately 3.6 times the capacity of a single 
transmission link. Exact formulas have been given for the general 
case with an arbitrary number of stations and arbitrary numbers 
of individual rings. 

Ring’ communication systems with separate local rings which 
are connected through a star network with a central switching 
node are particularly well suited to applications where stations 
can be segregated into local groups of stations which often 
communicate with stations from the same local group but only 
rarely ‘with stations from the other groups. When there is much 
exchange. traffic between the individual rings, system capacity’is 
approximately equal to half the sum of the capacities of the 
individual rings. When, however, there is little exchange traffic, 
system capacity approaches the sum of the capacities of the 
individual rings. 
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