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Correspondence 
A Spectral Characterization of Correlation-Immune 

Combining Functions 

XIAO GUO-ZHEN AND JAMES L.MASSEY,FELLOW,IEEE 

Abstract -It is shown that a Boolean combining function f(x) of n 
variables is mth-order correlation immune if and only if its Walsh trans- 
form F(w) vanishes for all w with Hamming weights between 1 and m, 
inclusive. This result is used to extend slightly Siegenthaler’s characteriza- 
tion of the algebraic normal form of correlation-immune combining func- 
tions. 

I. I~R~DuCTI~N 

A common form of running key generator for use in stream 
ciphers consists of n binary linear feedback shift registers 
(LFSR’s) whose outputs are combined by a memoryless device, 
as illustrated in Fig. 1. The Boolean combining function 
/(x1, X2,’ ., x,,) generally is chosen to be nonlinear over the 
finite field GF(2) so as to increase the “linear complexity” of the 
resulting running key stream, i.e., to increase the length of the 
shortest LFSR that can generate this binary sequence. 

Siegenthaler [l] has recently shown that several combining 
functions previously proposed in the literature can be broken by 
a ciphertext-only correlation attack. In subsequent work [2] 
Siegenthaler introduced the concept of mth-order correlation 
immunity for combining functions as a measure of their resis- 
tance against such correlation attacks. He also showed how, by 
iteration, to construct a limited family of m th-order correlation- 
immune combining functions for every m, 1 I m I n. 

In this correspondence we characterize all mth-order correla- 
tion-immune combining functions for every m, 15 m < n, in 
terms of their Walsh transforms. We use this result to extend 
slightly Siegenthaler’s characterization of the algebraic normal 
form of the combining function of correlation-immune combin- 
ing functions. 

II. WALSH TRANSFORM OF A BOOLEAN FUNCTION 

Let x=(x1,x2,...,x,) and o=(~i,w~,...,w,,) be n-tuples 
over GF(2), and define their dot product as 

x~o=x,w,+xp2+ ... +x,w,,. 

Let f(x) be any real-valued function whose domain is the vector 
space GF(2)” of binary n-tuples. Then the Walsh transform [3] of 
f(x) is another real-valued function over GF(2)” that can be 
defined as 

F(w) =Cf(X)(-l)X.u (1) 
x 

where (here and hereafter) the sum is over all x in GF(2)” and 
x. w in the exponent is treated as the integer 0 or 1 rather than as 
an element of GF(2). The function f(n) can be recovered by the 
inverse Walsh transform 

f(x) =2?CF(w)(-1)“‘“. (2) 
0 
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By treating the values of a Boolean function as the real numbers 
0 and 1, one can use (1) to define the Walsh transform F(o) of a 
Boolean function of n variables [4], and one can then use (2) to 
recover f(x) from its Walsh transform. Hereafter, f(x) will 
always denote a Boolean function of n binary variables. 

It is convenient in Walsh transforming of Boolean functions to 
introduce the integer-valued functions 

Nfo(w) =#{x: f(x) =l and x.w=O} (34 
N/,(o) =#{ x: f(x) =l and x.w=l} (3b) 

where # {. } denotes the cardinality of the indicated set. It 
follows from (1) that 

F(o) = +h4 - ~,I(+ (4) 

III. CORRELATION IMMCJNITY AND WALSH TRANSFORMS 

A binary [i.e., GF(2)-valued] random variable is said to be 
balanced if it is equally likely to take on the values 0 and 1. 
Siegenthaler [2] has defined the combining function f(x) to be 
mth-order correlation immune if the random variable Z = 
f(x,, x2,.. ., X,,,) is statistically independent of every set of m 
random variables chosen from the balanced and independent 
binary random variables Xi, X, , . . . , Xv. To see the implications 
of correlation immunity on the Walsh transform of f(x), we 
require the following result that we prove for an arbitrary dis- 
crete random variable 2. 

Lemma: The discrete random variable Z is independent of the 
m independent binary random variables Y,, Y,; . . , Y,, if and 
only if Z is independent of the sum X,Y, + X,Y, + . + X,,Y,, 
for every choice of Xi, h,; . , X,,, not all zeros, in GF(2). 

Remark: In our subsequent use of this lemma the random 
variables Y, , Y, , . . , Y,, will all be balanced; however, the proof 
of the more general result is as easy as that of this special case. 

Proof: The necessity of the stated condition is obvious, and 
it remains only to show its sufficiency. Sufficiency is trivial for 
m = 1. Consider m = 2, and suppose that Z is independent of Y1, 
of Y,, and of Y, + Yz. This implies the following relations among 
probability distributions for every possible value z of Z with 
Pz(z) > 0: 

P Y,Y,(Z(LW) + PY,Y2,Z (l,Olz) = pq,zol4 = PI 

pY,q,z(Lw + pY,Y2,zw14 = PY*,ZW) = P2 

PY,,;,ZWl4 + ~Yy,z(0Jlz) = PY,, Y*,ZW 

=Pl(l-P*)+(l-P1)P2 
P Y,Y,,zwlz) + PY,Y,,Z (%Olz) = ~Y&w) =1-p, (5) 

where p, = P,((l) and p2 = P,*(l). It is easily checked that these 
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four linear equations are independent and have the unique solu- follows that the probability distribution for Z = f(X) satisfies 
tion P,(l) = 22”F(O). (8) 

P v,v*,z@Jl4 = (I- PdP2 Moreover, it follows from (3a) and (3b) that for all o, NrO(o)+ 
P v,r,,&w) = p1(1- P2) 

Nfl( o) equals the number of x such that f(x) = 1, and hence 
that 

P Y*Y2,ZW14 = (I- AN- P2) 

P v,v*,z(Lw = PlP2 (6) 

which is just the product distribution for Y, and Y,. Thus the pair 
Yi, Y, is independent of Z, and hence the triple Y,, Y,, Z is 
independent. 

Now assume that the sufficiency of the condition stated in the 
lemma has been established for m < M. To show sufficiency for 
m = M, we argue as follows. Suppose that Z is independent of 
the sum X,Y, + A,% + . . . + X,Y, for all A,, A,; . ., A,, not 
all zeroes, in GF(2). Choosing A, = X2 = 0 implies, by the induc- 
tion hypothesis, that &; . . , Y,, Z are independent. Moreover, 
choosing A, = 0 implies, by the induction hypothesis, that Y, is 
independent of Y,, . . . , Y,, Z. Similarly, the choice X, = 0 and 
the choice A, = A, imply, respectively, that & is independent 
of Y,;.., Y,, Z and that the binary random variable Y, + Y, 
is independent of Y,, . . . , Y,, Z. Thus for every choice of 
Y3,. . ., y,,,, z, (5) and (6) still apply after replacing 

pqu,,z(Y,~Y2lz) 

by 

everywhere. It follows from (6) so rewritten that the pair Y,, Y2 is 
independent of Y,, . . . , YM, Z and thus that the random vari- 
ables Y,, Y,, Y,; . ., Y,, , Z are all independent, as was to be shown. 

In what follows, X,, X,; . . , X,, will always denote n indepen- 
dent and balanced binary random variables, X will always de- 
note the random n-tuple [Xi, X2; . ., X,,], and Z will always 
denote the binary random variable f(X). Let W(w) denote the 
Hamming weight of the binary n-tuple w, i.e., the number of 
nonzero components in w. Then for any w + 0, the random 
variable w.X=w,X,+ ... + w,? X,, is a GF(2) sum of W(o) of 
the random variables Xi,. . . , X,. Because all 2” ’ values x of X 
that give x.w = b are equally likely, it follows from (3a) and (3b) 
that 

f’,,,.,(W) = 2-“+‘N/d4> for w f 0 (7) 

for b = 0,l. The relation (7) is the key to the following theorem, 
which is the main result of this correspondence. 

Theorem: The Boolean combining function f(x) for n binary 
variables is m&order correlation immune, where 15 m I n, if 
and only if its Walsh transform satisfies 

F(w) =o, forllW(w) sm. 

Proof By definition, f(x) is m th-order correlation immune 
if and only if Z is statistically independent of every subset of m 
or fewer of the random variables Xi, X2; . . , X,1. It then follows 
from the Lemma that f(x) is mth-order correlation immune if 
and only if Z is independent of every random variable w .X for 
which 1 I W(o) I m. However, (7) shows that the binary random 
variable Z is independent of w .X just when N!,(o) = N/l(w). 
Thus f(x) is m&order correlation immune if and only if NfO (w ) 
= Nfl(w) for 1 I W(o) I m. However, (4) shows that this neces- 
sary and sufficient condition is equivalent to F(w) = 0 for 1 I 
W(W) I m, which proves the theorem. 

Because the 2” values of X are equally likely and because F(O), Thus the Theorem implies that if f(x) is m th-order correlation 
according to (l), is just the number of x such that f(x) =l, it immune and n - k I m, then the only nonvanishing term in the 

N/,b)+N/do) =F(O), all 0. 

Thus it follows from (4) that F(o) = 0 is equivalent to N,,,(w) = 
F(O)/2 for b = 0,l. Thus the condition of the Theorem may be 
written in the following equivalent form. 

Corollary: The Boolean combining function f(x) is m th-order 
correlation immune if and only if 

N,da) = F(O)/% forllW(o) Im, b=O,l. 

IV. APPLICATIONTOALGEBRAICNORMAL FORMS 
It is common in cryptology to work with combining functions 

expressed in algebraic normal form (i.e., in GF(2) sum-of-prod- 
ucts form), namely, 
f(x) =a,+a,x,+ ... +a,x, 

+ u12x1x2 + *. . + a12,,.nX1X2.. .x,. (9) 

It would thus be highly desirable to express the condition for 
correlation immunity in terms of the coefficients in the algebraic 
normal form of f(x). We now give some partial results in this 
direction. 

We begin by expressing the coefficients on the right of (9) in 
terms of the Walsh transform F(o). Note that a, = f(0) so that 
(2) gives 

uo=2-“~F(c+ (10) 
0 

Next, let U(i,, i,,. . . , ik) be the vector space of all 2k binary 
n-tuples x such that x, = 0 when i 4 (i,; . . , i, }. Any product of 
j of the variables xi, x2,. . . , x? vanishes for all x in 
U(i,, i,; . . , ik) unless these variables all have indices in 
{iI;.. , ik}, in which case the product equals 1 for exactly 2k-j 
n-tuples x in U(i,; . ., ik). Thus (9) implies 

ujljz . ..ik= c f(x) (mod4 (11) 
xEU(il,...,ik) 

where here and hereafter we treat the values of f(x) as the real 
numbers 0 and 1, and we write (mod2) after an expression only 
when that expression must be equal to an integer and to mean 0 
or 1 according as that integer is even or odd, respectively. 
Substituting (2) into (11) gives 

U ,1,2...ik=2-“CF((o) c (-l),., (mod2). (12) 
0 xEU(il....,ik) 

Now if w has any nonzero component with index in { i,, . . , i, }, 
then exactly half of the vectors x in U(i,, . . . , ik) will yield 
1.0 =l so that the second sum in (12) will vanish; otherwise, 
x.w = 0 for every x in U(i,; . ., ik) so that this sum equals 2k. 
Thus defining V( i,, . . . , ik) as the vector space of all 21-k binary 
n-tuples w such that wi = 0 when i E (i,; . ., i, }, we have from 
(12) 

‘rli2 ... tt 
,2-n+k C 

F(w) (mod2), (13) 
oEV(i,,,.,,ik) 

which is our desired expression. 
To relate (13) to correlation immunity, we note first that 

W(w) <n-k, if wEY(il;..,ik). (14) 
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sum (13) will be that for w = 0; hence 

U ,l,z ,~ = 2-“+“F(O) (mod2), if kLn-m. 

However, upon noting that 2- “+kF(0) must be an integer for 
k 2 n - m and thus must be an even integer for k > n - m, we 
see that this relation is equivalent to 
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land, for pointing out that an assumption in our Lemma that 
r,;. ., Y, be balanced could be avoided. 
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Example 1: The Walsh transform F( wl, w2, w3) of f(x,, 
xz, x3) = xi + x2 + xs + xix2 + x1x3 + x*x3 satisfies F(l,O,O) = 
F(0, 1,O) = F(O,O, 1) = 0, but F(l,l,O) = - 2. Thus by the Theo- 
rem, f(x) is correlation immune of order m = 1 (but not m = 2). 
Notice that the coefficients of all product terms of order n - m = 
2 in f(x) are equal to 1. 

Day, 1967, ch. VIII.)- - 
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Example 2: The Walsh transform F( oi, w2, 03, 04) of f( x1, 
$2 x3, x4) = x1 + x2 + x3 + xq + XIX3 + x2x3 + XIX4 + x2x4 
satisfies F(l,O,O,O) = F(O,l,O,O) = F(O,O,l,O) = F(O,O,O,l) =O, 
but F(O,O, 1,l) = - 4. Thus by the Theorem, f(x) is correlation 
immune of order m = 1 (but not m = 2). Notice that the coeffi- 
cients of all product terms of order n - m = 3 in f(x) are equal 
to 0. 

On PPM Sequences with Good Autocorrelation Properties 

COSTAS N. GEORGHIADES 

Finally, we note that one often demands in cryptographic 
applications that the random variable Z = f(X) be balanced. 
From (8), we see that Z is’balanced if and only if F(0) = 2”- ‘. In 
the previous examples, F(O,O,O) = 6 # 2’-’ = 4 and F(O,O,O,O) 
=12#2’-‘=8; thus Z=f(X) is not balanced. When Z is 
balanced, (15) becomes 

Absfruct -The problem of designing sequences of Q-ary pulse- 
position-modulation symbols that have good periodic autocorrelation prop- 
erties .is investigated. Two cases are considered. In the first it is assumed 
that only slot synchronization is present and thus cyclic shifts are one slot 
at a time; in the second PPM symbol synchronization is present, in which 
case cyclic shifts are by one symbol (Q slots) at a time. In both cases 
upper bounds are derived on the maximum peak-to-sidelobe distance, 
which are shown through a computer search to be nearly tight. When 
symbol synchronization is present, the bound reduces to the Plotkin bound, 
but it is slightly tighter in general. 

I. INTRODUCTION AND MOTIVATION 

a ,,,* . . . . n-n,= 2”-“-l (mod2), if n > m 

and hence these coefficients of order n - m must all vanish if 
m f n - 1 and must all equal 1 if m = n - 1, as has already been 
noted by Siegenthaler [2]. 

V. CONCLUDING REMARK 

Golomb [4], who was apparently the first to consider Walsh 
transforms of Boolean functions, used this technique at the Jet 
Propulsion Laboratory (JPL) in the late 1950’s for, among other 
things, the design of an interplanetary ranging system [5]. The 
objective then was to design a Boolean combiner for shift-register 
sequences of short relatively prime periods to produce a sequence 
whose period was the product of the component periods and 
which was highly correlated with each component sequence to 
facilitate the calculation of range. This ranging problem is virtu- 
ally dual to the cryptographic problem posed by Siegenthaler [2] 
and considered in this correspondence; the interested reader can 
find details of the ranging problem in the work of Titsworth [6]. 
In fact, our results for m =1 (first-order correlation immunity) 
can be deduced immediately from the work of Golomb and 
Titsworth; the Lemma in this paper is needed, however, to extend 
the results to the general case where m > 1. 

Sequences with “good” autocorrelation properties have appli- 
cations in a variety of areas, including ranging, spread spectrum, 
and synchronization. The motivation for our work stems from 
previous results. on frame synchronization for the optical direct- 
detection channel utilizing pulse-position modulation (PPM) [l], 
[2]. However, the general results derived herein are by no means 
limited to the optical channel, although they are of current 
interest for the latter where PPM has been shown to be optimal 
in a variety of ways [3]-[5]. Under PPM, information is conveyed 
by the position of a signal pulse in one (and only one) of Q 
subintervals (slots) dividing the symbol interval. This restriction 
will be referred to in the sequel as the PPM constraint. 
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