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the cross-correlation function, which equals 1. It follows S = 
(pJ - l)p”-” for k # 0 mod T. 

We proceed with the proof of Lemma 10 since the result is 
easily read from Theorme 19: 

#{iI trJ” (a’> = 0 A trJ” ( ai+kl) = 0} 

= P((O,O), k) = 
M-J - 1 

pM-2J _ ; 
if k = OmodT 

P > if k $ OmodT’ 

Since the sum of the cardinalities of all three sets equals 
PM- 1, the cardinal@ of the outstanding set is readily calcu- 
lated as 

#{iltrJM(a8’) = 0 i/ trJM(ai+kl) = O} 

=P M- 1 - N&k,) - #{iltrp(a!i) = 0 A trJM(czi+kl) = 0) 

( 
0, ifk=OmodT 

= 2pM-ZJ(pJ - l), i fk+OmodT 

and the proof for Lemma 9 is completed. 
Remark: The determination of #{iI try (a’) = 0 A 

trJM ( cxi+kl > = 0) may also be performed with cyclic difference 
sets: a set of elements, annihilated by a linear function from 
GF(p”> onto GF(pJ)-which may be given as the trace func- 
tion-constitutes a (u, k’, A) cyclic difference set CDS, whereby 
the parameters are given by [21] 

“=T,k’=’ 
M-J - 1 P M-2J _ 1 

pJ- 1 
,A= 

pJ-1 . 

The cardinality of the set equals k’, and the number of solutions 
to the equation u - u = t mod u, u, v E CDS equals A. We ob- 
tain 

#{iI tr,M (a’> = 0 A tr,M (fxi+kl) = 0) 

= k’(pJ - 11, 

i 

if k = OmodT 
h(pJ - 11, if k  Z OmodT. 

(We have to multiply A and k’ by pJ - 1 since i runs over 
PM 
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is further shown that the symmetric capacity of the channel determined 
by these same sequence multisets is equal to the sum capacity. 

Index Terms-CDMA, capacity region, sum capacity, symmetric ca- 
pacity, Welch’s hound. 

I. INTRODUCTION 

Code-division multiple-access (CDMA) is a multiplexing tech- 
nique in which several independent users access a common 
communications channel by modulating their channel-input sym- 
bols with preassigned spreading sequences. In this correspon- 
dence, we consider synchronous CDMA (S-CDMA) systems, 
where in each symbol interval, the receiver observed the sum of 
the transmitted signals from one symbol interval embedded in 
additive white Gaussian noise (AWGN). Although such com- 
plete synchronization of the users rarely holds in practice, its 
study gives insight into the limits of CDMA systems. 

In this correspondence, we consider the spreading sequences 
to be part of the specification of the S-CDMA channel. These 
spreading sequences should be chosen to create the best (in an 
appropriate sense) channel for the users. In conventional CDMA 
systems, the decoder for a given user treats the sum of the 
interfering signals from the other users as noise. The spreading 
sequences are chosen to create good single-user channels for the 
individual coding systems. In fact, however, the channel created 
by the spreading sequences is a multiple-access channel (or 
MAC for short). To transmit data reliably from all users at the 
maximum sum rate possible for a MAC requires the use of a 
“joint decoder” that knows all channel codes. Since the joint 
decoder can separate the users, the spreading sequences them- 
selves need not all be different, i.e., they may form a multiset 
rather than a set. In the following, we show that, when all users 
have the same average-channel-input energy constraint, then the 
sequence multisets that achieve Welch’s lower bound on total 
squared correlation are precisely the sequence sets that maxi- 
mize the “capacity” of the S-CDMA channel. 

II. S-CDMA CHANNEL MODEL 

We consider the discrete-time, baseband S-CDMA channel 
model depicted in Fig. 1, where the K users encode their 
information sequences into the complex-valued, channel-input 
sequences X,[.], k = l;.., K. As in any multiple-access problem, 
the sequences X,[.] are assumed to be independent random 
processes. We assume further that there is an average-input- 
energy constraint 

E[ &hll’] 5 wk (1) 

for all time instants n on the k-th user, k = l;.., K. Without 
loss of essential generality, we may assume that E[ Xk[n]] = 0, 
all n. For convenience, we define the diagonal energy-constraint 
matrix W = diag(w,;.+, wK). The maximum total average-input- 
energy 

wtot = fwk (2) 
k=l 

is just the trace of W. 
In the n-th symbol period, the k-th user transmits the signal 

xkbd Sk, where _s, is his complex L-chip spreading sequence. 
The sequence multiset 9’= {sr;.. , _sK} will conveniently be rep- 
resented by the L X K sequence matrix S whose k-th column is 
_s,. Each spreading sequence _s,, or equivalently each column of 
S, is assumed to have energy L, i.e., 

&k = L, (3) 

x”[‘1* 1” 
. . . SK p-$J- H.1 

x1 I.1 
+ 

X 

31 

Fig. 1. Discrete-time, baseband S-CDMA channel model. 

where the superscript “H” denotes transposition and complex 
conjugation. It follows from (1) and (3) that the average energy 
of the spread symbol X,[n] s,, all n, is at most Lw,. 

Omitting the symbol-time index, we can write the sum of the 
transmitted symbols at a given time as the L-chip vector 

_u = sg, (4) 

where the MAC input vector X = [X1;.., XKIT and where the 
superscript “T” denotes transposition. The receiver observes 
this L-chip sum signal embedded in AWGN, i.e., the output of 
the MAC is the L-chip vector 

_Y=_U+_N, (5) 

where _N = [N,;.., NLIT is a zero-mean, proper’. complex 
Gaussian vector with covariance matrix E[&iVH] = N,,ZL and 
where IL denotes the L x L identity matrix. Together, (4) and 
(5) specify the MAC corresponding to the S-CDMA channel as 

_y=sg+_N. (6) 

III. SUM CAPACITY AND SYMMETRIC CAPACITY 

The S-CDMA channel determined by a given sequence matrix 
S is a special case of the K user Gaussian MAC (GMAC) with 
average-input-energy constraints [2, pp. 403-4041, whose capac- 
ity region is the closure of the convex hull of the union over 
p&l in rx of the rate regions - - 

9(S, P,(&)> = - 

where, here and hereafter, rx denotes the set of product 
probability densities p,(x) = p&xl) .px,(x2) ... pxK(xK) on the 
channel-input symbols that satisfy the average-input-energy con- 
straint (1). Here, J” denotes the complement of the non-empty 
subset J of {1,2;.., K}, I(.; . ] . > denotes conditional mutual 
information, and the vectors & and & are obtained by 
striking out the components of & whose indices do not lie in I 
and J”, respectively. Equation (6) can be rewritten as y = S,& 

iIn [l], a complex random vector z  is called proper if its pseudoco- 
variance matrix vanishes, i.e., if E[(Z - E[_Z])@ - E[zlr] = 0. The 
properness of the zero-mean, complex noise vector _N with E&NH] = 
&IL means simply that the real and the imaginary part of its compo- 
nents N,, 1 = l;.., L, are uncorrelated and have the same average 
energy N,/2. 
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+ S,XJc + Zj, where the L X ]J] matrix S, and the L X (K - 
]J]) matrix S,, are obtained by striking out the columns of S 
whose indices do not belong to the subsets J and Jc, respec- 
tively, and where ].Z] is the cardinal@ of .Z. The conditional 
mutual information in (7) is thus given in terms of differential 
entropies h(.) as 

I(&;_yI&c) = h(_YIXJC) - h(_YIX) 

= h(SJJ + ly> - h(_N). (8) 

Proceeding essentially as in [3] by applying the maximum-ent- 
ropy lemma for complex random vectors [l] to ZZ(S,&~ + 8) in 
(8) and dividing by L to obtain rates in bits per chip, we get 

with equality if and only if S,zJ is a zero-mean, proper complex 
Gaussian vector with covariance matrix S,W,Sy. Here, the 
].ZJ x ]ZJ matrix W, is obtained by striking out both the columns 
and rows of W whose indices do not belong to J. A sufficient 
condition [l] for equality in (9) is that & be a zero-mean, 
proper complex Gaussian vector with covariance matrix 
E[gJXy] = W,. The corresponding p&) is in r, and maxi- 
mizes Z(&;_Y]&J,) for all choices of .Z. Thus, Ihe capacity 
region 5?‘(S) [in bits/chip] of the S-CDMA channel is given 
simply by 

s?(S) = (RI,-., R,)IO I CRk 
k=J 

J#( } 

(10) 

and is usually an irregularly beveled box that strongly depends 
on the particular choice of the sequence matrix S (cf. Example 1 
below). 

One reasonable criterion of goodness for the sequence multi- 
set 9 is the resultant sum capacity C,,,(S), which is defined by 

K 

C,,,(S) = max c Rk 
(Rl;-,RKkg7(S) k= 1 

and can be computed as [4] 

C,,,(S) = max Z(X;_Y). 
P&)E “x 

(12) 

Therefore, it follows from (9) and the choice .Z = {l;.., K} that 

)I . (13) 

In practice, however, the criterion of goodness of greatest inter- 
est for the sequence multiset 9 is usually the symmetric capacity 
C,,(S), which we define as the sum rate of the maximum 
achievable equal-rate point in the capacity region g(S), i.e., 

c,,,w = 
~R,-~,mR?‘~W 

K’R’. (14) 

Because the K tuple (R;.., R) has to fulfill all the inequalities 
in (lo), it follows that the symmetric capacity C,,(S) can be 

Rl 

Fig. 2. Capacity region a(S) of the S-CDMA channel given in Exam- 
ple 1. 

computed as 7, 
(15) 

. (16) 

C,,(S) = . -52 (Is,), 
J$” K) IJI s”m 

Jl( i 
where C,,,(S,) is given by 

Csum(SJ) = i log 

It follows immediately that C,,,,(S) 5 C,,,(S) with-equality if 
and only if .Z = {l;.., K} is among the minimizing subsets in 
(1.5). 

Example 1: Consider the S-CDMA system in which K = 3 
users employ the bipolar sequence multiset 9 of length L = 2 
sequences corresponding to the sequence matrix 

Note that users 2 and 3 have the same spreading sequence. Fig. 
2 shows the resultant capacity region &Y(S) of this S-CDMA 
channel when W = w,ZK, so that all users have equal average- 
input-energy, and when the signal-to-noise ratio (SNR) w,/N, is 
0 dB. 

Because user 1 and user 2 have mutually orthogonal spreading 
sequences, both can reliably communicate at the single-user 
capacity 0.79 bits per chip when user 3 is silent; see point A in 
Fig. 2. The same conclusion holds for users 1 and 3 when user 2 
is silent; see point B. However, this is not the case for user 2 
and user 3 when user 1 is silent, because the sequences of users 
2 and 3 are not uncorrelated (and in fact coincide), see line 
C - D. The rate tuples (R,, R,, R,) E @Y(S) with the maximum 
sum rate C,,,(S) = 1.95 bits per chip lie on the line E - F. The 
maximum achievable equal-rate point is G  and the correspond- 
ing sum capacity is C,,,(S) = 1.74 bits per chip. Note that 
C,,,(S) is strictly less than C&S) in this example. 

IV. UPPER BOUND ON SUM CAPACITY 

A trivial upper bound on the sum capacity C,,,(S) of the 
S-CDMA channel is the sum capacity of the “unrestricted” 
S-CDMA channel, where all spreading sequences have length 
L = 1. This latter channel, however, is the K user GMAC and 
its sum capacity Corn,, (K) in the case of the average-energy- 
constraint (1) is given by CGwc(K) = log(1 + w,,,/No) bits 
per chip [2, p. 3781. We now show that C,,,(S) can indeed 
achieve Co-J K) even when L > 1 and we determine the 
necessary and sufficient conditions for equality. 
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Proposition 1: Let Y= {x1;.. , zK} be a sequence multiset con- 
sisting of K complex sequences of energy L, let S be the 
corresponding sequence matrix and let W  be the diagonal 
energy-constraint matrix. Then, 

[bits/chip], 

where wtot is given by (2>, with equality if and only if SWSH = 
wt tZL, i.e., if and only if the modified sequence matrix SW1j2 = 
[&_s,,-., &&I h as mutually orthogonal and equal-energy 
rows. 

Proof The proposition can be proved by applying first 
Hadamard’s inequality [2, p. 5021 on the determinant in (13) and 
then using Jensen’s inequality [2, p. 251. The following alterna- 
tive proof, however, gives more insight into the condition for 
equality. 

From Fig. 1 and the data processing inequality [2, p. 321, it 
follows that I(&; r) 5 Z(_U;_Y). Conversely, since _U = Sg is 
uniquely determined by 8, we also have I@; _Y> I I(&; 1) [2, p. 
331 so that Z(&_Y) = Z(_U;_Y). It now follows from (12) that 

C,,,(S) = max (17) 

where T1! denotes the set of all probability densities for _U that 
correspond to product probability densities for X satisfying (1). 
However, _Y = _U + _N can be viewed as the output of L parallel, 
proper complex AWGN channels. The constraint (1) implies the 
total average-input-energy constraint E[gH_U] I Lw,,, on these 
parallel channels. The corresponding capacity C, is given by [2, 
p. 2501 

[bits/chip] 

so that Z(_U;_Y)/L I C, and equality is achieved if and only if 
the inputs U,, 1 = l;.., L, are uncorrelated, zero-mean, proper 
complex Gaussian random variables with the same average en- 
ergy wtot, i.e., if and only if these zero-mean, proper complex 
Gaussian random variables satisfy E[UUH] = wtOtZL. It now 
follows that 

C,,,(S) I cp (19) 

with equality if and only if, for some maximizing p&> in (12), 
_U = Sx is a zero-mean, proper complex Gaussian-vector with 
E[UUH] = w,,rZL. But our derivation of the capacity region 
g(S) in (10) showed that for every such maximizing p,(z), 
E[cUH] = SWSH. We conclude that equality holds in (19y just 
when SWSH = wtotZL. 0 

If the K users of an S-CDMA system do not have equal 
average-input-energy constraints, i.e., if W  # w,ZK, it is gener- 
ally difficult to determine the sequence multisets 9 that maxi- 
mize C,,,(S) in Proposition 1. For example, if L = K, the 
optimum sequence multisets with respect to sum capacity do not 
consist of mutually orthogonal sequences when W  # w,ZK. If all 
users have equal average-input-energy constraints, however, the 
design of optimum sequence multisets becomes much simpler. 

Corollary 1: Let 9, S, and W  be as in Proposition 1. If 
W  = w,Z,, then 

[bits/chip] 

with equality if and only if SS N = Icr,, i.e., if and only if the 

sequence matrix S = [_si;+* , zK] has mutually orthogonal and 
equal-energy rows. 

We will call the sequence multisets Y satisfying the condi- 
tions for equality in Corollary 1 Welch-bound-equality (WBE) 
sequence multisets, since these are sequence multisets that were 
proved in [5] to yield equality in Welch’s bound [6] 

i-1 j-1 

on total squared correlation.’ It is important to note that the 
orthogonality of the rows of S as required for a WBE sequence 
multiset does generally not imply the orthogonality of the se- 
quences in S because these sequences appear as the columns of 
S. When W  = w,ZK, the orthogonality of the rows of S is 
equivalent to the uncorrelatedness of the components of _U, 
which is the crucial requirement for maximizing capacity. 

Note that a necessary condition for a sequence multiset 9 to 
be WBE is that K 2 L. In 151, many constructions of bipolar 
WBE sequence multisets were given. There are also large classes 
of non-bipolar WBE sequence multisets. For example, the se- 
quence set obtained by choosing one of each antipodal pair of 
the sequences in a permutation modulation code with sign 
changes [8] is a WBE sequence set. 

V. UPPER BOUND ON SYMMETRIC CAPACITY 

If the K users do not have equal average-input-energy con- 
straints, i.e., if W  # w,Z,, then C,,,(S) is often smaller than 
C,,(S) and thus smaller than the upper bound on C,,,(S) given 
in Proposition 1. If the users have equal average-input-energy 
constraints, however, we have the somewhat surprising result 
that the symmetric capacity for WBE sequence multisets achieves 
the upper bound on sum capacity. 

Proposition 2: Let 9, S, and W  have the same meaning as in 
Proposition 1. If W  = w,ZK, then 

[bits/chip] 

with equality if and only if the sequence multiset 9 is a WBE 
sequence multiset, i.e., if and only if the sequence matrix S = 
bl,.‘. , sK] has mutually orthogonal and equal-energy rows. 

Pro08 Since C,,(S) I C,,,(S) and because of Corollary 1, 
we have only to prove that C,,(S) = C,,,,,(S) for all WBE 
sequence multisets. Equivalently, from (15), we must show that 
the value R = log(1 + Kw,/N,,)/K of the maximum achievable 
equal-rate point CR;.., R) satisfies 

IJIR I Csum(SJ) (21) 

for every non-empty subset J c {l;.., K} when SSH = ZUL. The 
following lemma will be useful. q 

Lemma 1: Let A,, 1 = l;.., L, be the L eigenvalues of the 
complex L X L matrix S,Sy and let Csum(SJ) be defined by 
(16). If W  = w,ZK, then 

CsumLsJ) = $log(l + 24). 

‘The bound (20) on total squared correlation was proved earlier by 
Sidelnikov [7] for more restricted sequence multisets. For even powers of 
the correlations greater than 2, Sidelnikov’s bound is often stronger than 
Welch’s. 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 4, JULY 1994 1265 

Proof: The following two simple facts about a complex 
L x L matrix M and its corresponding L eigenvalues A,, 1 = 
l;.., L, will be used: 

1) det(M) = llf=iA, [9, p. 6581; 
2) If p(M) is a polynomial in M, then p(A,), 1 = l;.., L, are 

the L eigenvalues of p(M) [9, p. 6611. 

Setting M = S,S,H and p(M) = Z, + (w,/N,)M gives 
det [p(M)] = rl,“= 1(1 + A,w,/N,). The lemma now follows from 
(16). 0 

We return now to the proof of Proposition 2. It follows from 
Lemma 1 that C,,,(S,) is a function of _A, where _h = [ Ai;.., ALIT 
is the vector of eigenvalues of SJp. These eigenvalues are real 
and non-negative because S,Sy is Hermitian [9, p. 6631 and 
positive semidefinite [9, p. 6671. Note that Csum(SJ) as given in 
Lemma 1 is convex-n on the convex set {_A: A, 2 0, 1 = l;.., L) 
and is a symmetric function of A. 

Because the trace of a square matrix equals the sum of its 
eigenvalues [9, p. 6581, we have Cf= i A, = tr (S,Sy> = tr (SyS,> 
=c kt JsF~k = 1 JI L. Here, we used the fact that tr (M,M,) = 
tr(M,M,) whenever the matrix products are meaningful [9, p. 
6581. Thus, _h E qJ, where qJ, is the convex set given by 

qJ, = 
i 

L 
_hl c A, = IJlL and A, 2 0 for 1 = l;.., L . 

I= 1 I 

For WBE sequence multisets, the set of _h vectors can be 
further restricted. Let (Ye, 1 = l;.., L, denote the L eigenvalues 
of S,‘SF and note that these eigenvalues are real and non-nega- 
tive. Since S,Sy + SJcS$ = SSH, it follows for all WBE se- 
quence multisets 9 that S,SF + S’,<SF = Icr,. Multiplying from 
the right by the eigenvector g1 corresponding to the eigenvalue 
A, gives S,Scq, = (K - A,)q,. It follows for all WBE sequence 
multisets 9 that the eigenfalues of S,<S$ and of S,Sy are 
related as (Y/ = K - A, for 1 = l;.., L. Moreover, since both A, 

and (Ye are real and non-negative, it follows that A E Z where Z 
is the convex set given by 

A?= {_A10 I A, I K for 1 = l;.., L}. 

Thus, A must belong to the convex set qJ, n 2 if S corresponds 
to a WBE sequence multiset. 

Because Csum(SJ) is convex-n and symmetric when consid- 
ered as a function of _A, it takes its minimum value on the 
extrema of the convex set qJ, n A? But the extrema of qJ, nZ 
are just the points A where [IJIL/K] components are equal to 
K, one component% equal to y = (JIL - K[IJIL/KJ (so that 
0 I y < K) and all other components are 0, where lx] denotes 
the largest integer not larger than x. Thus, for every non-empty 
subset J of {l;.., K], 

min C,,,( S, > 
!iE(q,,m 

=;[[~]log(l+K~)+log(l+y$)] 

=;[lJ”KYlog(l+K;) +log(l++]. 

But, since 0 5 y/K < 1, the simple inequality, (1 + xja I 1 + LLX 
for 0 I a I 1 and x 2 - 1, can be applied to give 

log(1 + $) 2 ;log(l +K;). 

5 

0 I I I 
-6 -4 -2 0 v&O 4 6 6 10 12 

[dB] 

Fig. 3. Sum capacity C,,,(S), symmetric capacity C,,,(S) and C4sum(S) 
in terms ,of S,, i = l;.., 4, given in Example 2 versus the SNR w,/N, 
when W = wcIK. 

It follows that 
IJI 

min 
!ite-j,,m 

Csum(SJ) 2 K log 

which implies the inequality (21) that was to be shown. 0 
Example 2: Consider the bipolar sequence multisets pi, Y;, 

Y3, and Yd with K = 8 sequences of length L = 4 and corre- 
sponding sequence matrices 

[ 

+ + + + + + + + 
I&= + 1 + + ; ; - - 

+ - - - - 
+ - + - + - + - 1 
L + + + + + + + + s,= 1 ; + - 1 ; + - - - - - + - - + + - - + I 
[ + + + + + + + + s,= 1 + + ; + + + + + - - - - - + - + + - _ - - 1 
[ + + + + + + + + s,= 1 + + ; 1 1 ; + + 1 + + + + + + + + 1 

where “ + ” and “ - ” denote 1 and - 1, respectively. The set Y1 
is a WBE sequence set and the multiset YZ is a WBE sequence 
multiset, i.e., S,SF = S,Sg = KIL. Y’ is a “good” sequence 
multiset whose total squared correlation is close to Welch’s 
bound (20) and whose corresponding sequence matrix S, has 
full rank. Finally, pd is a worst sequence multiset with respect to 
the sum capacity and the total squared correlation. 

Fig. 3 shows the sum and the symmetric capacities for these 
sequence multisets versus the SNR w,/N, when W = wcZK. As 
was proved in Corollary 1, we see that the sum capacity is indeed 
maximized by the WBE sequence multisets Y1 and p2, respec- 
tively. In accordance with Proposition 2, the symmetric capacity 
is this same maximum for 9’ and Y2. It is easily seen that 
C,,,(S,) = Csum(S4). The symmetric capacity C,,,(S,) is not 
shown, but it can be verified that C,,,(S,) < C&S& 
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VI. CONCLUDINGREMARKS 

In our derivation of the capacity region of the S-CDMA 
channel, we allowed the channel-input symbols to take any 
values in the complex field. In practice, one generally wishes to 
use proper complex, discrete-valued channel-input symbols. It is 
intuitively obvious that such equiprobable, discrete-valued sym- 
bols achieve capacity when the SNR is sufficiently small, since 
the condition for approximately achieving capacity is that _Y = _U 
+ & be approximately Gaussian, not that _U be approximately 
Gaussian, This is confirmed in Fig. 3 where we show the sum 
capacity C4&S) of the S-CDMA channel specified by the 
sequence sets 9 =-U;;, pZ, Y;, and y4 given in Example 2, 
when the quaternary phased-shift keying (QPSK) modulated 
channel-input symbols X,, k = l;.., K, have average energy 
E[]X,]‘] = w, and are in phase synchronism. Note that the 
sequence multiset pZ contains two repetitions of four orthogo- 
nal sequences. This means that the four-dimensional S-CDMA 
channel decomposes into four 2-user GMAC’s having quater- 
nary channel-input symbols, which is why the asymptotic (for 
large SNR) sum capacity C,,,,(S,) is 2. 1.5 bits per chip [2, p. 
3921. In this case, the joint decoder can be split into four 
separate decoders, each of which jointly decodes only two users. 

Although we have considered only synchronous CDMA, our 
upper bound on the sum capacity applies also to general (i.e., 
asynchronous) CDMA systems of bandwidth W = 1/(2T,), where 
T, is the chip period. The proof of Proposition 1 can be modified 
to show in this case that the upper bound on the sum capacity is 
achieved when the samples U(nT,>, all n, of the transmitted sum 
signal U(t) are zero-mean, proper complex, Gaussian random 
variables that are uncorrelated and have the same variance. This 
happens, for example, whenever L = 1, the spectrum of the chip 
waveform is flat over the specified frequency band, and the 
channel-input sequences X,[.], k = l;.., K, are sequences of 
independent and zero-mean, proper complex, Gaussian random 
variables. 
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On the Existence of Cyclic Hadamard 
Difference Sets 

Hong Y. Song and Solomon W. Golomb 
Abstract-The main conjecture of this note is the following: if a cyclic 

(v = 4n - 1,k = 2n - 1, X = n - 1) Hadmard difference set exists, the 
the value of v must be either a prime, or a product of “twin primes,” or 
one less than a power of 2. Six cases, u = 399, 495, 627, 651, 783, and 
975, which were once listed as the possible exceptions for v < 1000, are 
now fully investigated, and all the cases of v < 10000 are now verified 
relative to this conjecture, with at most 17 possible exceptions. 

Index Terms-Cyclic Hadamard difference sets, classification of bal- 
anced binary PN sequences, two-level autocorrelation sequences. 

I. INTRODUCTION 

Consider a binary sequence ai of length u for aj E { + 1, -l}. 
The (unnormalized) periodic autocorrelation function f(~> for 
7 = 0, 1,2;.., u - 1 is defined to be 

u-1 

f(T) p c upi+, (1.1) 
i=O 

where the subscripts are taken modulo v. Balanced binary 
sequences for which the function f(T) has only two distinct 
values are known to be important because of their applications 
to various digital communications systems [7]-[9], [ll], [17]. This 
property of balanced binary sequences is called the two-level 
uutocowelution propeq [a], and can be stated as follows: 

f(T) = (“y,” ;;;I;,, ,)...) v - 1. (1.2) 

A balanced binary “two-level autocorrelation sequence” of 
length v is also known as a “cyclic Hadamard sequence” be- 
cause of its relation to cyclic Hadamard matrices of order v + 1, 
and hence to (u = 4n - 1, k = 2n - 1, A = n - 1) cyclic dif- 
ferences sets [l], [7], [14]. Specifically, such a sequence has 
length v = 4n - 1 for some positive integer n, consists of k = 
2n - 1 + l’s (and k + 1 = 2n - l’s), and has out-of-phase auto- 
correlation f(T # 0) = - 1 for all out-of-phase positions T f 0 
(mod v). The question is then: 1) for which values of v = 4n - 1 
do these “cyclic Hadamard sequences” of length v exist?, and 2) 
what constructions canbe used to generate these sequences? In 
Baumert’s book [l], it is mentioned. that all known examples of 
cyclic Hadamard sequences have values of v from only three 
different “families”: 

(A) v = 4n - 1 is a prime number, 
(B) v = p(p + 2) is a product of “twin primes,” 
(C) v = 2’ - 1, for t = 2,3,4;.*. 
It is also reported in 111 that there are no other values of 

v < 1000 with cyclic Hadamard sequences, except for the six 
cases v = 399, 495, 627, 651, 783, and 975, not fully investigated. 
It turned out that these six cases are also ruled out (Section II) 
for the existence of cyclic Hadamard sequences. In conclusion, 
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