
Paper from European Trans. on Telecomm., Vol. 5, pp. 421-429, July-August 1994.

Some Applications of Source Coding in Cryptography
James L. Massey

Signal and Information Processing Laboratory
Swiss Federal Institute of Technology

ETH-Zentrum
CH-8092 Zürich

Abstract. It is shown that the techniques of source coding (or "data compression")
can be usefully applied in cryptography. Five source coding schemes (Shannon-
Fano coding, Huffman coding, Lynch-Davisson coding, Elias-Willems coding,
and Lempel-Ziv coding) are reviewed and their characteristics delineated. It is
then shown how the last three of these schemes, which are of the universal
source coding type, can be advantageously used to create strongly-ideal ciphers, to
perform "universal" homophonic substitution, to test random bit generators,
and to strengthen running-key generators for stream ciphers.

2

Some Applications of Source Coding in Cryptography
James L. Massey

Signal and Information Processing Laboratory
Swiss Federal Institute of Technology

ETH-Zentrum
CH-8092 Zürich

1. Introduction

Whereas there has been a healthy influx of ideas from channel coding into
cryptography, the concepts of source coding have had relatively little impact on
cryptography. In this paper, we attempt to show that the techniques of source
coding can readily be applied in cryptography.

In the next section, we present an introduction to the basic notions of
source coding and point out the fundamental difference between "source-
specific" and "universal" source-coding schemes. We then review five source
coding schemes of considerable interest, three of which are of the universal kind.
In the following section, we show how these universal source coding schemes in
particular can be advantageously used to create strongly-ideal ciphers, to perform
a new kind of "universal" homophonic substitution, to test random bit
generators for statistical weaknesses, and to strengthen "weak" running-key
generators for additive stream ciphers.

2. Principles of Source Coding

The goal of source coding is to represent the output of an information
source with as few code digits per source letter as possible. In this paper, we
consider only so-called lossless source coding (or "data compression") in which
the source output can be reconstructed exactly from its compressed
representation. We will also consider only binary encoding, both because this is
the only case of real practical interest and because the generalization to arbitrary
encoding alphabets is quite straightforward.

Let U1, U2, U3, ... denote the output sequence of a discrete information
source. Such a source is said to be stationary if, for every positive integer L and
every sequence u1, u2, ... uL of letters from the source alphabet, the probability
P(Ui+1, Ui+2, ... Ui+L = u1, u2, ... uL) is the same for all i ≥ 0. A stationary source is
further said to be ergodic if the number of times that the sequence u1, u2, ... uL
occurs within the source output sequence U1, U2, ..., UN+L-1 of length N + L - 1,
when divided by N, equals P(U1, U2, ... UL = u1, u2, ... uL) with probability 1 as
N → ∞. In other words, a stationary source is ergodic when, with probability 1, it
will emit an output sequence whose "time statistics" coincide with the ensemble
statistics of the source. Discrete stationary and ergodic sources (DSES's) are
general enough to model well any real information source so we will restrict our

3

attention to this class of information sources with no loss of essential generality.

All source-coding schemes of which we are aware can be modeled as the
cascade of a message parser and a message encoder as shown in Fig. 1. The

DSES
MESSAGE
 PARSER

MESSAGE
ENCODER

U , U , ...X , X , ... V , V ,...
1 2 1 21 2

Fig. 1: A General Source Coding Scheme.

function of the message parser is to separate the source output sequence into
phrases or messages. The simplest such message parser is the L-block parser for
which each message consists of L source letters. For instance, the 3-block parser
would parse the particular output sequence 001000100001000... of a binary DSES in
the manner 001 000 100 001 000 ... so that V1 = 001 is the first message, V2 = 000
is the second message, etc. A variable-length parser, however, might parse this
same sequence as 0 0 1 00 01 000 010 00... so that V1 = V2 = 0, V3 = 1, V4 = 00,
etc. Moreover, this same parser might parse a different source sequence into
phrases of entirely different lengths. The function of the message encoder is to
map each message, Vi, into a binary codeword, Xi, in such a manner that the
message sequence can be recovered from the binary sequence formed by the
concatenation of the codewords. A sufficient condition for such recovery is that
this encoding be prefix-free, i.e. that no codeword for some value of Vi be the first
part or "prefix" of the codeword for some other value of Vi. This prefix-free
condition is equivalent to the condition that a decoder be able to recognize the
end of a codeword as soon as it sees the last digit of that codeword (so-called
"instantaneous decoding"). It is well known (cf. [1, p. 49]) that weaker notions of
recoverability of the message sequence from the codeword sequence do not lead
to more efficient message encoding, so we will insist with no loss of real
generality that the message encoding be prefix-free. However, the message
encoder may have memory, i.e., the codeword for Vi = v may depend on the
values V1, V2, ..., Vi-1, in which case the decoder will also have memory. On the
other hand, every message parser is trivially reversible -- one simple removes the
"markers" between phrases. Thus there is no limitation on the message parser of
Fig. 1 (except the practical one that it be realizable) corresponding to the prefix-
free limitation on the message encoder.

Let Wi denote the length of the binary codeword Xi in Fig. 1 and let Yi
denote the length in source letters of the corresponding message Vi. The rate (in
encoded bits per source letter) of the coding scheme is defined as

R = l im
n→∞

 (
 W1+W2+ ... + Wn

 Y1+Y2+ ... + Yn). (1)

For each n, the ratio on the right of (1) is a random variable. However, if the
message parser and message encoder can be realized by finite state machines as

4

we may assume with no loss of essential generality, then the ergodicity of the
DSES ensures in general that this sequence of random variables tends to a
constant with probability 1 as n → ∞, so that the rate R is generally well defined by
(1). The information rate (in bits per source letter) of a DSES is its per-letter
entropy (in bits) defined as H∞(U) = lim

n→∞
 Hn(U) where

Hn(U) =
1
n H(U1U2...Un). (2)

The lossless source coding theorem of information theory (cf. [1, p. 693]) states
that source-coding schemes with R < H∞(U) are impossible but that, for any ε > 0,
there exist source-coding schemes with R < H∞(U)+ε. An optimum source-coding
scheme is one whose rate R is (essentially) equal to H∞(U).

If the source itself is binary (which is the usual case), then γ = 1/R is called
the compression factor of the source-coding (or "data-compression") scheme. An
optimum scheme is one whose compression factor is essentially equal to
1/H∞(U). For any DSES, H∞(U) ≤ H(U1) with equality if and only if the source is
memoryless, i.e. when its output is a sequence of independent and identically
distributed (i.i.d.) random variables (cf. [1, p. 57]). For a binary memoryless source,
H(U1) ≤ 1 (bit) with equality if and only if P(U1 = 0) = P(U1 = 1) = 1/2, in which
case the DSES is called the binary symmetric source (BSS). The output of the BSS
is just a coin-tossing sequence for a fair coin. Because H∞(U) ≤ 1 for a binary DSES
with equality if and only if the source is the BSS, it follows that the BSS is the
only binary source that cannot be compressed, i.e., for which source coding with
 γ > 1 is impossible. But we may consider the binary sequence emitted by the
source coding scheme in Fig. 1 itself to be the output of an information source. If
this source coding scheme is optimum, then we cannot further compress this
source so that it must be the BSS. Thus, one can view the task of source coding
(or data compression) as the task of reversibly transforming the source output to
a coin-tossing sequence (or a good approximation thereto). This viewpoint is
often useful in devising source-coding schemes and it is particularly useful in
applying such schemes for cryptographic purposes.

3. Five Source-Coding Schemes

In this section, we review five source coding schemes of substantial
theoretical and practical interest. Source-coding schemes can be classified as either
source specific or universal. In a source-specific scheme, either the message
parser or the message encoder (or both) of Fig. 1 requires explicit knowledge of
the source statistics in order to perform its function. Such source-coding schemes
tend to perform poorly for sources other than that for which they were designed.
In a universal source-coding scheme, neither the message parser nor the message
encoder requires knowledge of the source statistics. Such source-coding schemes
tend to perform well (in an asymptotic sense) for all sources in some fairly large
class. The first two schemes that we describe are of the source-specific type; the
other three are universal. Our emphasis on universal schemes reflects our

5

conviction that such schemes are the most appropriate ones for cryptographic
applications as the source statistics are seldom known with much precision in
such applications. Our mention of two source-specific schemes is motivated by
the fact that these two schemes best illustrate the fundamental principles of
source coding.

3.1 Shannon-Fano Coding

Shannon-Fano coding [2, p. 53] is a technique for realizing the message
encoder of Fig. 1 that explicitly aims to make the resulting sequence of codeword
digits a good approximation to the output of the BSS. The Shannon-Fano
algorithm is a "greedy" algorithm in the sense that it makes each subsequent
codeword digit as nearly as equally likely to be a 0 or a 1 as possible, at the expense
of possible severe biasing of later codeword digits. The algorithm is simple. One
first makes a list of all possible messages in order of decreasing probability. Then
one splits this list at the point where the two resulting sublists are as nearly
equally probable as possible, assigning the first codeword digit as a 0 for messages
in the first sublist and as 1 in the second sublist. One then repeats this splitting
process on sublists to assign subsequent codeword digits to messages until all
sublists contain a single message. The Shannon-Fano algorithm is illustrated in
Fig. 2 for a set of five messages with probabilities 0.4, .15, .15, .15 and .15.

(root) 1

2

3

4

1.0

0.55

0.45

0.30

.15

.15

.15

.15

.40

0

0

0

0

1

1

1

Fig. 2: An Example of Shannon-Fano Coding.

As Fig. 2 illustrates, the codewords in any prefix-free code correspond to
the leaves of a binary tree, and conversely. Each node in Fig. 2 corresponds to a
point of splitting in the Shannon-Fano algorithm and is labelled with the total

6

probability of all codewords that pass through this node. By the path-length
lemma (cf. [3]), the average length of the codewords (i.e., the average depth of the
leaves in the corresponding rooted tree with probabilities) is the sum of the node
probabilities. Thus, the average length of the codewords in the Shannon-Fano
code of Fig. 2 is E[W] = 2.30. We note from Fig. 2 that the first codeword digit is a 0
with probability 0.55, which is quite close to 1/2. However, given that the first
digit is a 0, the second codeword digit has probability 0.4/(0.4 + .15) = 8/11 of being
a 0, which is quite far from 1/2 and is the price of "greediness" in the choice of the
first letter of the codewords.

3.2 Huffman Coding

The algorithm for optimum (i.e., minimum E[W]) prefix-free
encoding of a message set was given by Huffman [4]. The trick is to be entirely
"non-greedy" and to choose the last digits of codewords first. The algorithm is
extremely simple. One assigns a last digit of 0 and 1, respectively, to the two least
likely messages, then merges these two messages to a single message whose
probability is the sum of those of the two merged messages. One then repeats this
merging on the new message set until one has only a single message left. The
Huffman algorithm is illustrated in Fig. 3 for the same message set used in Fig. 2.
The average codeword length is seen by the path-length lemma to be E[W] = 2.20,
which is slightly better than for the corresponding Shannon-Fano code. Note that
the first codeword digit in the Huffman code has probability 0.40 of being a 0,
which is not as close to 1/2 as for the Shannon-Fano code, but note also that there
are no later badly biased digits in the Huffman code (in fact, for this example, all
later codeword digits have probability exactly 1/2 of being a 0 in the Huffman
code).

(root)
.15

.15

.15

.15

.400

1

0

1

0

1

0

1
1

2

3

4

Fig. 3: An Example of Huffman Coding.

1.0

0.60

0.30

0.30

7

A standard argument in information theory (cf. [1, p. 58]) shows that if the
Huffman code is used for the L-block message set, then the average length of the
codeword X1 for V1 = [U1, U2, ... UL] satisfies

HL(U) ≤
E[W1]

 L < HL(U) +
1
L. (3)

Because the length Yi of each message Vi is L for all i and because, for Huffman
coding of each message, the length Wi of the i-th codeword Xi has the same
probability distribution for all i so that (W1 + W2 + ... + Wn)/n becomes equal to
E[W1] with probability 1 as n → ∞, it follows from (1), (2) and (3) that the rate RL
for Huffman coding of L-block messages satisfies

l im
L→∞

 RL = H∞(U). (4)

Thus, any DSES can be optimally encoded in this manner by choosing L
sufficiently large. The asymptotic optimality (4) can also be shown for the non-
optimum (but often easier to implement) Shannon-Fano coding of the L-block
message set.

The major drawback of Huffman coding (and also of Shannon-Fano
coding) is that it requires knowledge of the message probabilities. [In practice, this
is often done by "learning" these statistics from the past output of the source,
which leads to so-called "adaptive Huffman coding".]

3.3 Lynch-Davisson Coding

The first, and still an interesting, universal source coding scheme was that
independently given by Lynch [5] and Davisson [6], cf. also [2, pp. 139-142 and 164-
167]. The Lynch-Davisson source coding scheme uses an L-block message parser.
The message encoder first determines the Hamming weight (i.e., the number of
1's) WH in the message V1 = [U1, U2, ..., UL], then determines the index I of this
message in an indexed list of all (LWH

) binary L-tuples of Hamming weight WH.
The codeword X1 is then the log(L + 1) bit binary code for WH followed by the
 log (LWH

) bit binary code for I, where here and hereafter all logarithms are to the
base 2. Because the length of the code for WH does not depend on the particular
message V1, the decoder can determine WH from this code to determine where
the codeword will end, so this encoding of the message V1 is indeed prefix-free.

For practical implementation, one needs a simple algorithm to determine
the index I from V1, and vice-versa. The heart of Lynch-Davisson coding is the
simple algorithms for this enumeration and its inverse. The index of v in the list

8

of all L-tuples with Hamming weight w is taken simply as its lexicographical
order in this list, where 0 precedes 1 and where the index of the first entry is zero.
If the first 1 in v occurs in position n, then v is preceded lexicographically by all
(
L-n
 w) (L-tuples of Hamming weight w that begin with n 0's, hence the index I of

v is (
L-n
 w) plus the index in the list of L-tuples of Hamming weight w-1 of the

word obtained by setting the n-th bit of v to 0. Thus, if the 1's in v occur at
positions ni for i = 1, 2, ..., w, where ni < ni+1, then the index of v is just

I = ∑
i=1

w
 (L-ni

 w-i+1)

and thus is easily computed from a stored table of binomial coefficients. The
inverse mapping is easily accomplished recursively from the fact that n1 is the
smallest integer n such that I > (

L-n
 w), i.e., such that v is preceded lexicographically

by all the L-tuples of Hamming weight w that begin with n leading 0's.

Suppose that the information source is a binary memoryless source (BMS)
with P(U1 = 1) = p. The information rate is H∞(U) = H(U1) = h(p) where h(p) =
- p log p - (1-p) log (1-p) is the binary entropy function. For large L, the law of large
numbers ensures that WH/L will be close to p with high probability. Thus, the
length W of the Lynch-Davisson codeword will be close to log (L+1) + log (L

pL)
with high probability. But log (

 L
pL)/L ≈ h(p) so that the rate RL of the Lynch-

Davisson code will approach H∞(U) as L → ∞ for any BMS. One says that the
Lynch-Davisson source-coding scheme is universally asymptotically optimum
(or simply "universal") for the class of all binary memoryless sources. As one
might expect, it also works well for DSES's with weak memory [i.e., H∞(U) ≈
H(U1)], but can be very inefficient for such sources with strong memory [i.e.,
H∞(U) << H(U1)].

3.4 Elias-Willems Coding

Before describing the next source-coding scheme, we first digress to
consider Elias' two prefix-free coding schemes [7] for the positive integers Z Z+

 = {1, 2, 3,...}. Consider the natural binary coding B(n) for n ε Z Z+, i.e., B(1) = 1, B(2) =
10, etc. We note that this natural binary code is not a prefix-free code for Z Z+ [in
fact B(1) = 1 is a prefix of every other codeword] and that the length L(n) of B(n) is
 log n + 1. Elias' first coding scheme for Z Z+ encodes n as B1(n) where B1(n)
consists of L(n) - 1 0's followed by B(n). For instance, because L(13) = log 13 + 1 =
4, one obtains Β1(n) = 0001101. The length of B1(n) is L1(n) = 2 L(n) - 1 = 2 log n +
1, about twice that of B(n). However, the encoding B1(n) is prefix-free because the
number L(n) - 1 of leading 0's in B1(n) determines the length of the codeword,
i.e., where the codeword will end. Elias's second prefix-free coding scheme for Z Z+

builds on the first. The codeword B2(n) is B1(L(n)) [i.e., the first coding applied to
the length of n in the natural binary code] followed by B(n) with its now "useless"
leading 1 removed. [Elias was interested in asymptotic results in [7] and did not
bother with removing this unneeded digit, but this refinement is important in
practical applications.] For instance, because L(13) = 4, B1(4) = 00100, and B(13) =

9

1101, one obtains B2(13) = 00100101. The length of B2(n) is easily computed to be

L2(n) = log n + 2 log (log n + 1) + 1 (5)

so that L2(n)/L(n) ≈ 1 for large n.

A direct check shows that L1(n) = L2(n) for n = 1 and 4 ≤ n ≤ 7 and 16 ≤ n ≤
31, that L1(n) = L2(n) - 1 for 2 ≤ n ≤ 3 and 8 ≤ n ≤ 15, but that L1(n) > L2(n) for all n
≥ 32. Thus, the "asymptotic superiority" of B2(n) over B1(n) begins to prevail
already for rather small n.

For any positive-integer-valued random variable J with large entropy such
that

P(J = n+1) ≤ P(J = n), n ε Z Z+, (6)

B2(n) is an essentially optimum prefix-free encoding of J in the sense that the
expected codeword length E[L2(J)] will be close to its minimum possible value,
which is the entropy H(J) of J. In other words, (6) together with H(J) >> 1 bit
ensures that

E[L2(J)]
H(J) ≈ 1. (7)

This follows from the fact that (6) implies that P(J = n) ≤ 1/n and hence that
- log P(J = n) ≥ log n, which further implies that H(J) ≥ E[log J]; but (5) gives
E[log J]/E[L2(J)] ≈ 1 when H(J) >> 1 bit.

In the Elias-Willems source-coding scheme, as we shall call the scheme in
this section which is based on ideas introduced independently by Elias [8] and
Willems [9], the message parser is again the L-block parser. The message encoder
first transforms the message Vi to a positive integer Ji that indicates how long it
has been since that message was last seen. For instance, if Vi = v but Vi-1 ≠ v, Vi-2
≠ v and Vi-3 = v, then Ji = 3. [This scheme clearly requires an initialization, say by
arbitrarily assigning times of last occurrence from -(2L-1) to 0 to the 2L possible L-
block messages. We ignore this unimportant practical detail and assume that the
coding system is already in its "steady state" when encoding first begins.] The
message Vi is then encoded as Xi = B2(Ji), i.e., as Elias' second coding applied to
the time since the most recent previous occurrence of Vi. [Elias [8] describes a
scheme similar to that described here but again he does not bother to remove the
"useless" 1 in his second coding scheme; this removal is usually important in
practical applications where L cannot be too large.]

The ergodicity of a DSES implies that the relative frequency of a particular
message v in the message sequence V1, V2, V3, ... will equal P(V1 = v) with
probability 1. Thus, the time average value of Ji when Vi = v must be exactly
1/P(V1 = v). Again by ergodicity, this time average must equal the corresponding

10

conditional expectation so that

E[J1 V1 = v] = 1/P(V1 = v). (8)

Equation (8) suggests that small values of J1 arise from messages with large
probability and hence should be more likely than large values of J1. Thus
condition (6) should be fulfilled at least roughly, which is the main motivation
for using B2(n) to code J1. But H(V1) = LHL(U) and E[W1] = E[L2(J1)]. Thus, when
H(V1) >> 1 bit (which will be the case for sufficiently large L for any DSES with
H∞(U) ≠ 0), the rough satisfaction of (6) should ensure that (7), which now
becomes

E[W1]
L ≈ HL(U), (9)

should be satisfied when H(V1) >> 1 bit. This can be rigorously shown to be true
by starting from (8) and (5), then overbounding E[W1 V = v] by making repeated
use of Jensen's inequality for the expectation of concave functions of random
variables, and finally averaging over v with a further use of Jensen's inequality.
But (9) implies that the rate RL of this Elias-Willems source coding scheme
satisfies

l im
L→∞

 RL = H∞(U) (10)

for any DSES. Thus, the Elias-Willems source-coding scheme is universal for the
class of all discrete stationary and ergodic sources.

3.5 Lempel-Ziv Coding

Unlike the two previous universal source-coding schemes, the Lempel-
Ziv scheme uses variable-length message parsing; indeed this parsing is its most
distinctive feature. There are rather many versions of the Lempel-Ziv scheme, all
of which are based on the ideas originally proposed in [10]. We will consider the
version described by Welch [11], which seems to be the one most often
implemented, and we will refer to this version as the LZ-W source-coding
scheme.

The key idea in any Lempel-Ziv source-coding scheme is to parse the
source sequence according to its innovations, i.e., according to the subsequences
or "strings" that appear for the first time within the source sequence. In the LZ-W
version, one parses a binary source by assuming that the length-one strings 0 and
1 are the only previously encountered strings. Let L1 = (0,1) denote this initial list.
The parsing rule is then as follows. For each i, i = 1, 2, ..., mark the end of the i-th
phrase at the point where including the next digit would give a string not in the
list Li of previously encountered strings, then place this string with the next digit
appended at the end of the list Li to form the list Li+1. Applying this parsing rule
to the sequence 001000100001000... gives

11

0 0 1 00 01 000 010 00..

as we now explain. The initial string 0 is in L1 = (0,1), but the string 00 is not.
Thus, we place a marker after the initial 0 and form the list L2 = (0,1,00). Looking
forward from this first marker, we first see 0, which is in L2 , then we see 01,
which is not. Thus we place a marker after this second 0 and form the list L3 =
(0,1,00,01), etc.

The messages V1, V2, V3, ... of the LZ-W scheme are the phrases of the
parsed source sequence. Note that the list Li contains exactly i+1 strings. In the
LZ-W scheme, the message Vi is encoded as the Wi = log (i+1) bit binary code
for its index in the list Li. [Note that, for i > 1, the last string in the list Li is placed
there only after the parsing of Vi-1, which requires examination of the first digit
of Vi. Thus, for i > 1, the decoding of the codeword Xi to the message Vi, when Xi
is the codeword pointing to the last entry in Li , cannot be performed by table
look-up as the decoder will then have formed only the list Li-1. But the last entry
in Li is always a string having Vi-1 as a prefix. Thus, when i > 1 and Xi points to
this last string in Li, the first digit of Vi must be the same as the first digit of Vi-1
and hence the decoder can "prematurely" form the list Li that it needs to decode
Xi.]

Because the length Wi of the i-th codeword Xi does not depend on the
source sequence, the LZ-W coding is prefix-free; moreover, the lengths of the first
n codewords sum to

∑
i=1

n
 Wi = ∑

i=1

n
 log (i+1) .

The corresponding sum of message lengths, however, depends strongly on the
statistics of the DSES encoded. Lempel and Ziv [10] have shown (by an argument
that applies also to the LZ-W version) that, for any DSES, the code rate R of (1)
satisfies

R = H∞(U),

i.e., that the Lempel-Ziv source-coding scheme is universal for the class of all
discrete stationary and ergodic sources.

As we have described the LZ-W scheme, the list of previously encountered
strings grows without limit. In practice, one generally places a limit (say 2m) on
the size of this list so that m becomes a system parameter. When the maximum
list size is reached, one either restarts the algorithm or reverts to a new parsing in
which successive parsing marks are placed after the longest string still in the list
so that encoding and decoding can continue with this largest list. Lempel-Ziv
source coding, and in particular the LZ-W version, has proved to be a very
popular data-compression scheme in practice, as much because of the ease with

12

which it can be implemented as because of its universality.

4. Cryptographic Applications

In this section, we describe several potential applications of source coding
in cryptography. In particular, we show the cryptographic utility of the three
universal source-coding schemes described in the previous section. We wish to
stress here that the applications that we describe are intended to be illustrative,
not exhaustive. Other possible applications of source coding in cryptography will
undoubtedly occur to the thoughtful reader. We consider, in particular only
secret-key (or "symmetric") ciphers. We will also always assume that the
plaintext source is a binary information source and that the ciphertext digits are
also binary.

4.1 Creating Strongly-Ideal Ciphers

By a non-expanding cipher, we mean a cipher for which there is an
increasing sequence of positive integers n1, n2, n3, ... such that the first ni digits
Y1, Y2, ... Yn

i of the ciphertext together with the secret key uniquely determine the

first ni digits X1, X2, ..., Xn

i of the plaintext for i = 1, 2, 3,... . Additive stream

ciphers in which Yi = Xi ⊕ Z'i, where Z'1, Z'2, Z'3, ... is the running-key
generated from the secret key Z are non-expanding; one can simply choose ni = i.
Block ciphers, in which the plaintext and ciphertext blocks both have the same
length N, are also non-expanding; one can choose ni = iN. Our interest in non-
expanding ciphers stems from the following fact.

Random-in/Random-out Property of Non-Expanding Ciphers : For every choice
z of the secret key Z, the cascade of a binary symmetric source (BSS) and a non-
expanding cipher is another BSS. Moreover, for any probability distribution for
the secret key, the cascade of a BSS with a non-expanding cipher yields a
ciphertext sequence Y1, Y2, Y3, ... that is statistically independent of the secret key
Z.

To prove this fact, we must show, for any choice z of the secret key Z and
any positive integer m, that the ciphertext sequence Y1, Y2, ... Ym of length m is
equally likely to be equal to any of the 2m binary sequences of length m. Let n,
with n ≥ m, be such that Y1, Y2, ... Yn uniquely determine X1, X2, ... Xn. Because all
2n possible values of the BSS output sequence X1, X2, ... Xn of length n are equally
likely, it follows that all 2n possible values of Y1, Y2, ... Yn must also be equally
likely. Thus, Y1, Y2, ... Ym must also be a BSS output sequence of length m so that
all 2 m values of this sequence are also equally likely, as was to be shown. Our
argument shows further that, for every m, P(Y1, Y2, ... Ym = y1, y2, ... ym Z = z) =
2-m, independent of z, and hence that the output sequence Y1, Y2, Y3,... is indeed
statistically independent of Z, regardless of the probability distribution for Z.

Shannon [12] has defined a cipher to be strongly ideal if the secret key Z is

13

statistically independent of the ciphertext sequence Y1, Y2, Y3,... . In a ciphertext-
only attack on a strongly ideal cipher, an attacker can obtain no information
about the secret key Z in effect, no matter how much ciphertext he or she
examines, i.e., the security of the cipher does not diminish with the quantity of
plaintext enciphered before changing of the secret key. The random-in/random-
out property above implies that every non-expanding cipher is strongly ideal
when the plaintext source is a BSS.

Because a "perfect" source-coding scheme converts the information source
into a BSS, as we discussed in Section 2, it follows that applying perfect source
coding to an information source before encryption with a non-expanding cipher
creates a strongly ideal cipher. No practical source-coding scheme for a realistic
information source, however, is perfect; there is always some residual
redundancy ρ = 1 - H∞(X) in the compressed sequence X1, X2, X3, ... used as
plaintext. Such compression is still very useful since it increases the unicity
distance of the cipher (i.e., the least amount of ciphertext for which, with
sufficient effort, the attacker in a ciphertext-only attack can find the secret key).
According to Shannon's celebrated formula [12], the unicity distance can
generally be well estimated as

nu =
H(Z)

ρ
 . (11)

Thus, even such "imperfect" source coding can greatly strengthen a cipher by
reducing the redundancy ρ and thus increasing its unicity distance.

The above considerations show the value of compressing any real
information source by a suitably universal source-coding scheme, such as Elias-
Willems coding or Lempel-Ziv codings, that will yield low redundancy ρ. A
word of caution, however, is in order. Both of these universal source-coding
schemes pass through an "initialization phase" before they settle down to
efficient coding. In Elias-Willems coding, this initial phase is needed to remove
the effect of the arbitrary choice of most recent times of occurrence of the possible
messages that is required when coding first begins. In Lempel-Ziv coding, this
initial phase is needed to produce many typical long source phrases in the list of
previously encountered phrases. Thus, for both of these universal source-coding
systems, it is wise, whenever possible, to perform "plaintext stuffing" (i.e., the
insertion of truly random bits at pre-arranged positions in the plaintext sequence)
on the first suitably-long portion of the plaintext to ensure redundancy reduction
up to the point where the universal source-coding scheme can be expected to
reach essentially its asymptotic efficiency in redundancy removal.

Of course, removing redundancy from the plaintext is an old cryptographic
trick for increasing the security of a cipher. Shannon [12] explicitly recommends
this practice. In the earlier days of hand enciphering, redundancy was often
removed by deleting "unneeded" letters from the plaintext -- ths s n xmpl.
Universal source-coding, however, now offers quite practical ways to reduce the

14

redundancy of a plaintext source in a scientific manner, even for very high speed
encipherment.

4.2 Universal Homophonic Coding

The general form of homophonic coding (or "multiple substitution") is
indicated in Fig. 4. The output of a BSS is the randomizer that is used to map the
output of the actual information source randomly into the plaintext sequence in
such a way that the actual source sequence can be recovered from the plaintext
sequence without knowledge of the randomizer. In this way, many particular
plaintext sequences become possible substitutes (or "homophones") for a
particular source sequence, the choice being determined by the particular
randomizer sequence. Perfect homophonic coding makes the resulting plaintext
sequence a BSS output sequence, with all the advantages described in Section 4.1.
For recent treatments of such perfect homophonic coding, see [13] and [14]. These
perfect homophonic coding schemes, however, have a major practical drawback
in that they require specific and exact knowledge of the statistics of the actual
information source.

Information
 Source

Reversible
 Mapping

BSS

Plaintext

Randomizer

Fig. 4: General Homophonic Coding.

To avoid having to know the source statistics in order to perform
homophonic coding, we propose in Fig. 5 a kind of universal homophonic
coding. By the (m,n) multiplexer shown in Fig. 5, we mean a device that first
outputs m randomizer digits from the BSS, then n digits from the actual binary
information source, then the next m randomizer digits from the BSS, then the
next n digits from the information source, etc. The homophonic coder output is
then obtained by processing the multiplexer output with a suitably universal
source-encoding scheme. The actual information source sequence can be
recovered from the homophonic coder output without knowledge of the
randomizer simply by passing this output through the decoder for the source-
coding scheme and then discarding the randomizer digits.

15

Information
 Source

BSS

 (m , n)

Multiplexer

Universal
 Source
 Encoder

Fig. 5: Universal Homophonic Coding.

Except when the actual information source, which we assume to be a
discrete stationary and ergodic source (DSES), is also a BSS (in which case there
would be no need for homophonic coding), the output sequence of the
multiplexer is not that of a true DSES as the multiplexing introduces non-
stationarity. However, the sequence V1, V2, V3, ... of L-block messages from this
source do indeed form the output of a DSES (whose output alphabet is the set of
binary L-tuples) whenever L is a multiple of m + n. This message source is easily
seen to have an information rate

H∞(V) = m + nH∞(U) (12)

where H∞(U) is the information rate of the actual binary information source.
This implies that the Elias-Willems scheme will efficiently compress this
message source, and that the simple Lynch-Davisson code will also work
reasonably well, particularly when m ≥ n, since then this message source will
have rather weak memory as H∞(V) ≥ m bits and H(V1) ≤ m + n bits. Either of
these universal source-coding schemes when used with an L-block parser for
which L is a multiple of m + n will make the universal homophonic coding
scheme of Fig. 5 very strong indeed.

It is also possible to view the homophonic coding scheme of Fig. 5 as a
generalized form of "plaintext stuffing". We mention this fact only to make it
evident that the "initialization problem" encountered in Section 4.1 hardly arises
for the universal homophonic coding scheme of Fig. 5.

4.3 Statistical Testing of Random Bit Generators

By a random bit generator (RBG), we mean a physical device intended to be
a realization of a BSS. Such RBG's are of much utility in cryptography,
particularly for the generation of secret keys, but also for such purposes as
providing the bits for plaintext stuffing or providing the randomizer for
homophonic coding. A perennial problem in cryptography is how to make
statistical tests on the output of an RBG to ensure that it is a sufficiently faithful
realization of a BSS. Maurer [15] has recently given a thorough treatment of how
universal source coding provides a natural solution to this testing problem so we

16

will content ourselves here with outlining Maurer's arguments and theory.

The essence of Maurer's approach is the observation that defective RBG's
are generally defective in such a way that they can be well modelled as a DSES
that is not the BSS. For instance, an RBG with an internal thermal noise
generator and threshold detector can be expected to generate independent digits
with some probability p of being a 1; such an RBG is thus well modelled as a
binary memoryless source. If the output of a possibly defective RBG is processed
by a suitably universal source-coding scheme, the rate R of this encoding will be
a good approximation to the information rate of the RBG. Thus, an R
significantly less than 1 will signal a defective RBG. The beauty of this approach
lies in the fact that 1 - R provides an objective measure of the degree of departure
of the RBG from the BSS that does not depend on more or less arbitrary
"confidence levels" or "significance levels". From (1), one sees that the
determination of R requires knowledge only of the lengths of codewords and not
of the codewords themselves. The happy consequence is that one can shortcut the
source-coding algorithm to deliver only lengths of codewords when using this
algorithm for testing of RBG's.

In [15], Maurer proposes using essentially Elias-Willems coding to test
RBG's in the manner just described, except that he replaces the exact codeword
length L2(Ji) as given by (5) with the simple but sufficiently accurate
approximation log(Ji), which has the further virtue that its statistics are readily
computable for the true BSS. Maurer's paper provides a wealth of information to
assist one in a practical implementation of this test.

If it is known that the possibly defective RBG is well modelled by a BMS,
then it would be preferable to base the statistical test for such an RBG on Lynch-
Davisson coding rather than Elias-Willems coding, as the convergence of RL to R
for the former and simpler scheme is essentially optimally fast among source-
coding schemes with L-block parsing that are universal for the class of all BMS's.
The use of the more-widely-universal Elias-Willems coding will, however,
rescue the test should the RBG, contrary to assumption, not in fact be well
modelled by a BMS.

4.4. Strengthening Running-Key Generators

In this section, we propose an application of universal source-coding
schemes in cryptography that is considerably more speculative than the three
previously described applications. We propose using such schemes to strengthen
"weak" running-key generators. By a running-key generator (RKG), we mean a
finite-state machine which, when initialized in some manner by the secret key Z,
produces the running key Z'1, Z'2, Z'3, ... for an additive stream cipher. The goal
of RKG design is to produce a running key that is difficult to predict reliably from
its past history, when one does not know the secret key Z. For instance,, a linear
feedback shift-register (LFSR) of length L, whose initial state is the secret key, is a

17

"weak" RKG as it is easy to predict the future of the resulting running key
without error from any 2L consecutive digits of this sequence [16].

In a certain sense, the "ideal" RKG would be equivalent to a BSS to an
attacker ignorant of the secret key. Given any number of past output bits from a
BSS, the attacker can predict the next bit with an error probability no better (and
no worse) than 1/2. Because good source-coding schemes for a discrete stationary
and ergodic source (DSES) convert such a source to a good approximation to a
BSS, it might seem natural to try to strengthen a "weak" (i.e., easily predictable)
RKG by merely applying such a data compression scheme to its output as shown
in Fig. 6(a). This approach, however, is naive for two reasons. First, by simply
applying the decoder of the source-coding scheme to the output of the system of
Fig. 6(a), an attacker can recover the running-key of the "weak" RKG so that there
has in fact been no real strengthening of its unpredictability (although errors in
such prediction might propagate more because of the subsequent source coding).
Second, and more fundamentally if less important, the "weak" RKG cannot be
well modelled by a DSES. The reason is that the entropy of any portion of the
running key, no matter how long, cannot exceed the entropy of the secret key Z,
which is the only source of randomness in the running key.

"Weak"
 RKG

Universal
 Source
 Encoder

(a) Naive Version.

"Weak"
 RKG

Universal
 Source
 Encoder

 Bit
Deleter

(b) Proposed Version.

Fig. 6: Strengthening a "Weak" RKG with Source Coding.

To convert the naive system of Fig. 6(a) into a useful "security amplifier"
for a "weak" RKG requires first that we destroy the inherent invertibility of the
source-coding scheme. This invertibility is essential in true source-coding
schemes, but it is not at all necessary when the source coding scheme is being
used only to increase the randomness of some sequence. A simple and effective
way to do this is by bit deletion, i.e., by deleting the digits in prearranged positions
in the output of the source encoder. The strengthened RKG obtained in this
manner is shown in Fig. 6(b). In general, one will want to delete more bits during
the initialization phase of the source encoding than during the "steady state" and
one will also want to choose the bits to be deleted with some care to maximize

18

the resulting confusion for an attacker who does not know the deletion pattern.
For instance, if Elias-Willems coding is used, one will probably want to delete all
of the leading 0's and the first 1 of each codeword, as this will make it extremely
difficult to determine the boundaries between codewords. If Lempel-Ziv coding is
used, one will probably want to delete the most significant bits of each codeword
as this will make it very difficult to find the location in the list of previously
encountered strings to which this codeword is pointing. If Lynch-Davisson
coding is used, one will probably want to delete the "Hamming weight" portion
of the codeword as the remainder of the codeword will then appear very random
indeed.

Of course any RKG, whether "weak" or not, cannot be well modelled as a
DSES for the reason mentioned above, which casts some suspicion on the use of
source coding to strengthen RKG's in the manner shown in Fig. 6(b).
Nonetheless, we anticipate that such security amplifiers would actually work
quite well for the reason that even a "cryptographically weak" RKG should
produce an output sequence that is difficult to distinguish from a DSES output
sequence. Only if a universal source coding scheme with a large parameter L were
allowed to operate for a very long time would one expect this source-coding
scheme to compress such an information source near to its true information rate
of 0 bits per source symbol. Even "cryptographically weak" RKG's should be
confusing enough to a universal source-coding scheme that such a scheme will
requires a very long time to learn the real nature of such a source.

5. Concluding Remarks

It should be apparent from the above that we have only skimmed the
surface of the possible applications of source coding in cryptography. We will
consider it to be a very satisfactory outcome of this paper if it should stimulate
the reader to devise creative new cryptographic applications of source coding.

References

[1] R. G. Gallager, Information Theory and Reliable Communications. New
York: Wiley, 1968.

[2] T. J. Lynch, Data Compression: Techniques and Applications. Belmont, CA:
Lifetime Learning (Wadsworth), 1985.

[3] J. L. Massey, "An Information-Theoretic Approach to Algorithms," pp. 3-20
in The Impact of Processing Techniques in Communications, (Ed. J. K.
Skwirzynski) NATO Advanced Study Institutes Series E91. Dordrecht, The
Netherlands: Nijhoff, 1985, .

[4] D. A. Huffman, "A Method for the Construction of Minimum Redundancy
Codes," Proc. IRE, Vol. 40, pp. 1098-1101, Sept. 1952.

19

[5] T. J. Lynch, "Sequence Time Coding for Data Compression," Proc. IEEE, Vol.
54, pp. 1490-1491, Oct. 1966.

[6] L. D. Davisson, "Comments on 'Sequence Time Coding for Data
Compression'", Proc. IEEE, Vol. 54, p. 2010, Dec. 1966.

[7] P. Elias, "Universal Codeword Sets and Representations of the Integers,"
IEEE Trans. Inform. Th., Vol. IT-21, pp. 194-203, March 1975.

[8] P. Elias, "Interval and Recency Rank Coding: Two On-Line Adaptive
Variable-Length Schemes," IEEE Trans. Inform. Th., Vol. IT-33, pp. 3-10, Jan.
1987.

[9] F. M. J. Willems, "Universal Data Compression and Repetition Times," IEEE
Trans. Inform. Th., Vol. IT-35, pp. 54-58, Jan. 1989.

[10] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data
Compression," IEEE Trans. Inform. Th., Vol. IT-23, pp. 337-343, May 1977.

[11] T. A. Welch, "A Technique for High Performance Data Compression," IEEE
Computer, Vol. 17, pp. 8-19, June 1984.

[12] C. E. Shannon, "Communication Theory of Secrecy Systems", Bell Sys.
Tech. J., vol. 28, pp. 656-7l5, Oct. l949.

[13] C. G. Günther, "A Universal Algorithm for Homophonic Coding", pp.
405-414 in Advances in Cryptology - Eurocrypt '88 (Ed. C. G. Günther, Lect.
Notes in Comp. Sci. No. 330. Heidelberg and New York: Springer l988.

[14] H. K. Jendal, Y. J. B. Kuhn, and J. L. Massey, "An Information-Theoretic
Approach to Homophonic Substitution," pp. 382-394 in Advances in
Cryptology-Eurocrypt '89 (Eds. J.-J. Quisquater and J. Vandewalle), Lect.
Notes in Comp. Sci., No. 434. Heidelberg and New York: Springer, 1990.

[15] U. M. Maurer, "A Universal Statistical Test for Random Bit Generators," J.
Cryptology, Vol. 5, No. 2, pp. 89-105, 1992.

[16] J. L. Massey, "Shift-Register Synthesis and BCH Decoding," IEEE Trans. on
Info. Th., Vol. IT-15, pp. 122-127, Jan. 1969.

