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Abstract

A causal interpretation of random variables corresponds to the successive genera-

tion of these random variables by a sequence of random experiments, each of which

uses the results of previous experiments only. Causality graphs are introduced to

describe such a causal representation. It is shown that although the order of the ran-

dom variables in a causal interpretation is completely arbitrary, causality graphs are

nonetheless useful in deducing independencies among random variables.

1. Introduction

This paper is written in honor of the great Russian information theorist, Mark S.

Pinsker, on the occasion of his seventieth birthday and in recognition of his own

long interest in the information{theoretic aspects of probabilistic dependence

(cf. [1, Section I.3]).

In the next section, we introduce the notion of a causal interpretation of

random variables as corresponding to the successive generation of these random

variables by a sequence of random experiments, each of which uses the results

of previous experiments only. Causality graphs are introduced to describe such

causal interpretations. We stress that the order of the random variables in a

causal interpretation is completely arbitrary. Nonetheless, we show in Section
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3 that causality diagrams are useful tools for deducing independencies among

random variables. We close in Section 4 showing that not all independencies

among random variables can be represented in a single causality diagram and

by relating our results to prior work by Pearl [2].

2. De�nitions and preliminaries

Here and hereafter, let X1; X2; . . . ; XN be discrete random variables with

�nite joint entropy, which implies that any joint entropy [e.g., H(X2X4X6)] or

any conditional entropy [e.g., H(X2X4X6 j X1X3)] involving only these ran-

dom variables is also �nite. By a causal interpretation of X1; X2; . . . ; XN , we

mean an ordered list (Xi1 ; Xi2 ; . . . ; XiN ) of these N random variables such that

X1; X2; . . . ; XN can be produced by performing a sequence of N random exper-

iments, the n-th of which produces Xin as its output and may make use of the

outputs of the previous n� 1 random experiments but not of the outputs of the

following random experiments. Strictly speaking, we should say only that this

sequence of random experiments produces random variables with the same joint

probability distribution as the given random variables X1; X2; . . . ; XN . But be-

cause X1; X2; . . . ; XN are completely described by their joint probability distri-

bution in the sense that, even with repeated trials, an observer who sees only

the values of X1; X2; . . . ; XN cannot distinguish whether these random variables

were produced by the actual random experiment on which X1; X2; . . . ; XN are

de�ned or by the sequence of random experiments corresponding to the causal
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interpretation (Xi1 ; Xi2 ; . . . ; XiN ), we will continue to speak of these latter ran-

dom experiments as producing the random variablesX1; X2; . . . ; XN themselves.

It is important to note that every one of the N ! ordered lists of the random

variables X1; X2; . . . ; XN is a valid causal interpretation. The random experi-

ment producing Xin when given the outputs (xi1 ; xi2 ; . . . ; xin�1) of the preceed-

ing random experiments needs simply be designed so as to produce a random

variable whose probability distribution is the conditional probability distribu-

tion for Xin given the joint event Xi1 = xi1 , Xi2 = xi2 , . . . and Xin�1 = xin�1 .

The order of the random variables in a causal interpretation is completely ar-

bitrary, but we will see that causal interpretations are nonetheless useful in

identifying independencies among random variables.

With the causal interpretation (Xi1 ; Xi2 ; . . . ; XiN ) of X1; X2; . . . ; XN , it is

natural to consider the expansion of the joint entropy of these random variables

in the manner

H(Xi1Xi2 . . .XiN ) = H(Xi1) +H(Xi2 j Xi1) + . . . +H(XiN j Xi1 . . .XiN�1);

which we will call the causal{order expansion of H(Xi1Xi2 . . .XiN ). If the term

H(Xin j Xi1 . . .Xin�1) is unchanged when certain of the conditioning random

variables are removed, i.e., if Xin is independent of these removed random vari-

ables when conditioned on the remaining conditioning random variables, then

the random experiment producing Xin can be performed using only the out-

puts of the random experiments producing these remaining conditioning ran-

dom variables. Removing the other conditioning random variables gives what we
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will call the reduced{conditioning expression for H(Xin j Xi1 . . .Xin�1). We can

show such known independencies in the causality graph �(Xi1 ; Xi2 ; . . . ; XiN ),

which we de�ne as the directed graph with N vertices, which are labelled by

Xi1 ; Xi2 ; . . . ; XiN , such that there is an edge from vertex Xik to vertex Xin if

and only if Xik is one of the conditioning random variables in the reduced{

conditioning expression for H(Xin j Xi1 . . .Xin�1). There is sometimes a choice

as to which random variables can removed from the conditioning. To obtain

uniqueness of the reduced{conditioning expression for H(Xin j Xi1 . . .Xin�1),

we assume that X1 is �rst removed from the conditioning if possible, then X2

is removed from the conditioning if possible, etc., but the reader will see easily

that, although the uniqueness of the reduced conditioning is required in this

section, none of the results of Section 3 depend on the rule used for reducing

conditioning or, indeed, on whether as many random variables as possible are

removed from the conditioning.

Example. Consider the causal interpretation (X1; X2; X3; X4; X5; X6) of the

random variables X1; X2;

X3; X4; X5; X6 and suppose that H(X2 j X1) = H(X2), H(X3 j X1X2) =

H(X3), H(X4 j X1X2X3) = H(X4 j X1X2), H(X5 j X1X2X3X4) = H(X5 j

X2X3) andH(X6 j X1X2X3X4X5) = H(X6 j X4X5) are the reduced-conditioning

expressions for the entropies in the causal{order expansion ofH(X1X2X3X4X5X6).

The causality graph �(X1; X2; X3; X4; X5; X6) is shown in Fig. 1.

We will say that the random variable Xik is causally prior to the random
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Figure 1: The causality graph �(X1; X2; X3; X4; X5; X6) for the example.

variable Xin with respect to the causal interpretation (Xi1 ; Xi2 ; . . . ; ; XiN ) if, in

the causality graph �(Xi1 ; Xi2 ; . . . ; XiN ), there is a directed path from vertex

Xik to vertex Xin . If there is an edge from vertex Xik to vertex Xin , then we

will say further that Xik is causally directly prior to Xin . [For instance, in Fig.

1, X2 is causally prior to X4, to X5 and to X6 and is causally directly prior

to X4 and to X5.] Note that Xik is causally directly prior to Xin if and only

if Xik is one of the conditioning random variables in the reduced{conditioning

expression for H(Xin j Xi1 . . .Xin�1).

We will say that the causal interpretation (Xj1 ; Xj2 ; . . . ; XjN ) is equivalent

to the causal interpretation (Xi1 ; Xi2 ; . . . ; XiN ) if, whenever Xk is causally di-

rectly prior to Xn with respect to the causal interpretation (Xi1 ; Xi2 ; . . . ; XiN ),

then Xk appears before Xn in the list (Xj1 ; Xj2 ; . . . ; XjN ). Note that if the

causal interpretation (Xj1 ; Xj2 ; . . . ; XjN ) is equivalent to (Xi1 ; Xi2 ; . . . ; XiN ),

then, for every n, every random variable Xk causally prior to Xn with respect

to (Xi1 ; Xi2 ; . . . ; XiN ) must appear before Xn in the list (Xj1 ; Xj2 ; . . . ; XjN ),

which is a fact that we will soon use. The following proposition shows that this

notion of equivalence of causal interpretations is indeed an equivalence relation.
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Proposition 1. Two causal interpretations of X1; X2; . . . ; XN have the

same causality graph if and only if they are equivalent.

Example (continued). The causal interpretation (X2; X3; X5; X1; X4; X6) is

equivalent to the causal interpretation (X1; X2; X3; X4; X5; X6), whose causality

graph was given in Fig. 1, because in the former list both X1 and X2 appear

beforeX4, bothX2 andX3 appear beforeX5, and bothX4 andX5 appear before

X6. The reader can verify that there are in fact twelve causal interpretations of

X1; X2; X3; X4; X5; X6 in this equivalence class.

Proof. Two causal interpretations of X1; X2; . . . ; XN having the same

causality graph are trivially equivalent. Suppose conversely that the causal

interpretation (Xj1 ; Xj2 ; . . . ; XjN ) is equivalent to another causal interpretation

that, with no loss of essential generality, we take to be (X1; X2; . . . ; XN ). Sup-

pose further that Xjn = Xk. Then, before reducing of the conditioning, the

n-th term in the causal{order expansion of H(Xj1 ; Xj2 ; . . . ; XjN ) has the form

H(Xjn j Xj1 . . .Xjn�1) = H(Xk j XAXBXC) where XC is the random vec-

tor whose components are the random variables causally directly prior to Xk [in

the causal interpretation (X1; X2; . . . ; XN )], whereXB is a random vector whose

components are the remaining random variables among Xj1 . . .Xjn�1 that are

equal to some Xi with i < k, and where XA is a random vector having compo-

nents Xi with i > k such that every random variable causally prior to Xk and

not in XA itself is a component of either XB or XC . Because all the compo-
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nents of XB and XC are among X1; X2 . . . ; Xk�1 and H(Xk j X1 . . .Xk�1) =

H(Xk j XC), it follows from the causal interpretation (X1; X2; . . . ; XN ) that

H(Xk j XBXC) = H(Xk j XC). Similarly, because all the random variables

causally prior to each component of XA are components of XA or XB or XC

and H(XA j X1 . . .Xk) =

H(XA j XBXC), it follows that H(XA j XBXCXk) = H(XA j XBXC). Hence,

H(XkXAXBXC) = H(XBXC) +H(Xk j XC) +H(XA j XBXC)

= H(XAXBXC) +H(Xk j XC):

Thus H(Xk j XAXBXC) = H(XkXAXBXC) �H(XAXBXC) = H(Xk j XC):

We have now shown that H(Xjn j Xj1 . . .Xjn�1) = H(Xk j XC). But H(Xk j

XC) is precisely the reduced{conditioning expression for H(Xk j X1 . . .Xk�1)

with respect to the causal interpretation (X1; X2; . . . ; XN ). Thus, the causality

graph for the causal interpretation (Xj1 ; Xj2 ; . . . ; XjN ) is the same as that for

the causal interpretation (X1; X2; . . . ; XN ). 4

3. Deducing independence

We now show how a causality graph can be used to deduce independence

and conditional independence of the random variables labelling its vertices. To

this end, let XA be any random vector with components in (X1; X2; . . . ; XN ).

Then by the subgraph of �(Xi1 ; Xi2 ; . . . ; XiN ) causally relevant to XA, which we

will denote simply by �r(XA), we mean the subgraph of �(Xi1 ; Xi2 ; . . . ; XiN )
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Figure 2: The causally relevant subgraphs (a) �r(X3; X4) and (b)

�r(X4; X5 j X2) of �(X1; X2; X3; X4; X5; X6) for the example.

consisting of only those vertices that are either components of XA or causally

prior to components of XA, together with the edges connecting these vertices.

The causally relevant subgraph �r(X3; X4) of �(X1; X2; X3; X4; X5; X6) of Fig.

1 is shown in Fig. 2(a).

Proposition 2. If all components of the random vector XA lie in a part of

�r(XA; XB), the subgraph of �(Xi1 ; Xi2 ; . . . ; XiN ) causality relevant to (XA; XB);

unconnected (when edges are considered without direction) with the part in which

the components of XB lie, then XA and XB are independent.

Example (continued). From the causally relevant subgraph �r(X3; X4) of

Fig. 2(a), we can conclude that (X1; X2; X4) is independent of X3; in particular,

X4 is independent of X3. This deduction is \obvious" from \causal reasoning"

applied to the causality graph �(X1; X2; X3; X4; X5; X6) of Fig. 1{but the main

purpose of this paper is to justify rigorously such intuitive reasoning.

Proof. Suppose that the components of XA do indeed lie in a part of

�r(XA; XB) unconnected with the part in which XB lies. Let XA+ and XB+

be random vectors whose components are all the random variables in the former
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part and latter part, respectively, of �r(XA; XB), and each with components

ordered so that no component precedes a component to which it is causally

prior. Then there is an equivalent causal interpretation of X1; X2; . . . ; XN that

begins with (XA+; XB+). But no component of XA+ is causally prior to a

component of XB+ so that H(XB+ j XA+) = H(XB+). Thus XA+ and XB+

are independent and, in particular, the subvectors XA and XB are independent.

4

LetXA andXC be any random vectors with components in (X1; X2; . . . ; XN ).

Then by the subgraph of �(Xi1 ; Xi2 ; . . . ; XiN ) causally relevant to XA when con-

ditioned on XC , which we denote by �r(XA j XC), we mean the graph obtained

from �r(XA; XC) by deleting all edges leaving vertices that are components

of XC . The subgraph �r(X4; X5 j X2) of �(X1; X2; X3; X4; X5; X6) in Fig. 1

causally relevant to (X4; X5) when conditioned on X2 is shown in Fig. 2(b).

Proposition 3. If neither XA nor XB has components in common with XC

and if all components of the random vector XA lie in a part of �r(XA; XB j XC),

the subgraph of �(Xi1 ; Xi2 ; . . . ; XiN ) causally relevant to (XA; XB) when condi-

tioned on XC , unconnected (when edges are considered without direction) with

the part in which the components of XB lie, then XA and XB are independent

when conditioned on XC .

Example (concluded). From the subgraph �r(X4; X5 j X2) in Fig. 2(b) of

the causality graph

�(X1; X2; X3; X4; X5; X6) of Fig. 1, we can conclude that (X1; X4) is indepen-
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dent of (X3; X5) when conditioned on X2; in particular, X4 is independent of X5

when conditioned on X2. But we cannot conclude that X4 is independent of X5

when conditioned on X6 because �r(X4; X5 j X6) = �(X1; X2; X3; X4; X5; X6),

which has no unconnected parts.

Proof. Suppose that the components of XA lie in a part of �r(XA; XB j

XC) unconnected with the part in which XB lies. This implies, in the causally

relevant subgraph �r(XA; XB ; XC), that both XA and XB cannot have com-

ponents causally prior to XC . We suppose then that there may be compo-

nents of XA, but not of XB , causally prior to XC . It follows that there

is an equivalent causal interpretation of (X1; X2; . . . ; XN ) that begins with

(XA; XC ; XB). Moreover, because all the random variables causally directly

prior to components of XB must be components of either XC or XB itself,

H(XB j XAXC) = H(XB j XC). Thus H(XAXCXB) = H(XAXC) +H(XB j

XC) = H(XC) + H(XA j XC) + H(XB j XC). Hence, H(XAXB j XC) =

H(XAXCXB) �H(XC) = H(XA j XC) +H(XB j XC), which shows that XA

and XB are indeed independent when conditioned on XC . 4

4. Concluding remarks

It is not di�cult to see that the deductions of independence given in Propo-

sitions 2 and 3 are the strongest that can be made from the causality graph

alone in the sence that one can always de�ne random variables X1; X2; . . . ; XN

that would have the same causality diagram but for which there would no inde-
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Figure 3: The causality graph of a secret{key cipher (a) in general and (b) when

the cipher provides perfect secrecy whereX1, X2 andX3 are the plaintext, secret

key and cryptogram, respectively.

pendencies or conditional independencies among these random variables beyond

those speci�ed by Propositions 2 and 3.

It must be stressed, however, that not every known independence of random

variables can be incorporated into a single causality graph. To see this, suppose

that X1, X2 and X3 are the plaintext, secret key and cryptogram, respectively,

for some cipher. The secret key is always chosen independently of the plaintext

so that the \natural" causality diagram for these random variables is that shown

in Fig. 3(a). But if the cipher provides perfect secrecy in the sense of Shannon

[3], then the plaintext X1 and the cryptogram X3 are also independent so that

the causality diagram in Fig. 3(b) is also valid. Each of these two causality

diagrams provides independence information about X1, X2 and X3 that cannot

be garnered from the other. We remark further that all the results of this paper

obviously hold also for the case where X1, X2, . . . , XN are continuous random

variables with �nite joint di�erential entropy.

We cannot claim much novelty for this paper. What we have called a
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causality graph coincides, when no additional random variables can be re-

moved from the reduced{conditioning expressions for H(Xin j Xi1 . . .Xin�1),

n = 2; 3; . . . ; N , that were used to generate this graph, with what Pearl calls

a Bayesian network, and our Propositions 2 and 3 characterize, perhaps more

clearly, what Pearl calls d-separation in such networks (cf. [2, p. 117]). More-

over, Pearl explicitly points out the dependence of the Bayesian network on the

ordering of the random variables in question (cf. [2, p. 117]), the inability of

such a network to model all independencies that may be known (cf. [2, p. 126]),

and the general absence of independencies not deducible from this network,

(cf. [2, p. 122]). At most we have formulated a sharper notion of \causality"

and given a more transparent mathematical formulation that facilitates proofs.

The reader is also referred to [2] for an historical account of the development

of methods for deducing independence, both in probabilistic reasoning and in

more general models of reasoning.
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