Translated from *Problemy Peredachi Informatsii*, Vol. 32, No. 1, pp. 131–136, January–March, 1996.

J. L. Massey621.391.1:519.28

#### Abstract

A causal interpretation of random variables corresponds to the successive generation of these random variables by a sequence of random experiments, each of which uses the results of previous experiments only. Causality graphs are introduced to describe such a causal representation. It is shown that although the order of the random variables in a causal interpretation is completely arbitrary, causality graphs are nonetheless useful in deducing independencies among random variables.

# 1. Introduction

This paper is written in honor of the great Russian information theorist, Mark S. Pinsker, on the occasion of his seventieth birthday and in recognition of his own long interest in the information-theoretic aspects of probabilistic dependence (cf. [1, Section I.3]).

In the next section, we introduce the notion of a causal interpretation of random variables as corresponding to the successive generation of these random variables by a sequence of random experiments, each of which uses the results of previous experiments only. Causality graphs are introduced to describe such causal interpretations. We stress that the order of the random variables in a causal interpretation is completely arbitrary. Nonetheless, we show in Section 3 that causality diagrams are useful tools for deducing independencies among random variables. We close in Section 4 showing that not all independencies among random variables can be represented in a single causality diagram and by relating our results to prior work by Pearl [2].

## 2. Definitions and preliminaries

Here and hereafter, let  $X_1, X_2, \ldots, X_N$  be discrete random variables with finite joint entropy, which implies that any joint entropy [e.g.,  $H(X_2X_4X_6)$ ] or any conditional entropy [e.g.,  $H(X_2X_4X_6 \mid X_1X_3)$ ] involving only these random variables is also finite. By a *causal interpretation* of  $X_1, X_2, \ldots, X_N$ , we mean an ordered list  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  of these N random variables such that  $X_1, X_2, \ldots, X_N$  can be produced by performing a sequence of N random experiments, the *n*-th of which produces  $X_{i_n}$  as its output and may make use of the outputs of the previous n-1 random experiments but not of the outputs of the following random experiments. Strictly speaking, we should say only that this sequence of random experiments produces random variables with the same joint probability distribution as the given random variables  $X_1, X_2, \ldots, X_N$ . But because  $X_1, X_2, \ldots, X_N$  are completely described by their joint probability distribution in the sense that, even with repeated trials, an observer who sees only the values of  $X_1, X_2, \ldots, X_N$  cannot distinguish whether these random variables were produced by the actual random experiment on which  $X_1, X_2, \ldots, X_N$  are defined or by the sequence of random experiments corresponding to the causal

interpretation  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$ , we will continue to speak of these latter random experiments as producing the random variables  $X_1, X_2, \ldots, X_N$  themselves.

It is important to note that every one of the N! ordered lists of the random variables  $X_1, X_2, \ldots, X_N$  is a valid causal interpretation. The random experiment producing  $X_{i_n}$  when given the outputs  $(x_{i_1}, x_{i_2}, \ldots, x_{i_{n-1}})$  of the preceding random experiments needs simply be designed so as to produce a random variable whose probability distribution is the conditional probability distribution for  $X_{i_n}$  given the joint event  $X_{i_1} = x_{i_1}, X_{i_2} = x_{i_2}, \ldots$  and  $X_{i_{n-1}} = x_{i_{n-1}}$ . The order of the random variables in a causal interpretation is completely arbitrary, but we will see that causal interpretations are nonetheless useful in identifying independencies among random variables.

With the causal interpretation  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  of  $X_1, X_2, \ldots, X_N$ , it is natural to consider the expansion of the joint entropy of these random variables in the manner

$$H(X_{i_1}X_{i_2}\dots X_{i_N}) = H(X_{i_1}) + H(X_{i_2} \mid X_{i_1}) + \dots + H(X_{i_N} \mid X_{i_1}\dots X_{i_{N-1}}),$$

which we will call the causal-order expansion of  $H(X_{i_1}X_{i_2}...X_{i_N})$ . If the term  $H(X_{i_n} | X_{i_1}...X_{i_{n-1}})$  is unchanged when certain of the conditioning random variables are removed, i.e., if  $X_{i_n}$  is independent of these removed random variables when conditioned on the remaining conditioning random variables, then the random experiment producing  $X_{i_n}$  can be performed using only the outputs of the random experiments producing these remaining conditioning random variables. Removing the other conditioning random variables gives what we

will call the reduced-conditioning expression for  $H(X_{i_n} | X_{i_1} \dots X_{i_{n-1}})$ . We can show such known independencies in the causality graph,  $(X_{i_1}, X_{i_2}, \dots, X_{i_N})$ , which we define as the directed graph with N vertices, which are labelled by  $X_{i_1}, X_{i_2}, \dots, X_{i_N}$ , such that there is an edge from vertex  $X_{i_k}$  to vertex  $X_{i_n}$  if and only if  $X_{i_k}$  is one of the conditioning random variables in the reducedconditioning expression for  $H(X_{i_n} | X_{i_1} \dots X_{i_{n-1}})$ . There is sometimes a choice as to which random variables can removed from the conditioning. To obtain uniqueness of the reduced-conditioning expression for  $H(X_{i_n} | X_{i_1} \dots X_{i_{n-1}})$ , we assume that  $X_1$  is first removed from the conditioning if possible, then  $X_2$ is removed from the conditioning if possible, etc., but the reader will see easily that, although the uniqueness of the reduced conditioning is required in this section, none of the results of Section 3 depend on the rule used for reducing conditioning or, indeed, on whether as many random variables as possible are removed from the conditioning.

*Example.* Consider the causal interpretation  $(X_1, X_2, X_3, X_4, X_5, X_6)$  of the random variables  $X_1, X_2$ ,

 $X_3, X_4, X_5, X_6$  and suppose that  $H(X_2 | X_1) = H(X_2), H(X_3 | X_1X_2) = H(X_3), H(X_4 | X_1X_2X_3) = H(X_4 | X_1X_2), H(X_5 | X_1X_2X_3X_4) = H(X_5 | X_2X_3)$  and  $H(X_6 | X_1X_2X_3X_4X_5) = H(X_6 | X_4X_5)$  are the reduced-conditioning expressions for the entropies in the causal-order expansion of  $H(X_1X_2X_3X_4X_5X_6)$ . The causality graph ,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  is shown in Fig. 1.

We will say that the random variable  $X_{i_k}$  is causally prior to the random



Figure 1: The causality graph ,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  for the example.

variable  $X_{i_n}$  with respect to the causal interpretation  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  if, in the causality graph,  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$ , there is a directed path from vertex  $X_{i_k}$  to vertex  $X_{i_n}$ . If there is an edge from vertex  $X_{i_k}$  to vertex  $X_{i_n}$ , then we will say further that  $X_{i_k}$  is causally directly prior to  $X_{i_n}$ . [For instance, in Fig. 1,  $X_2$  is causally prior to  $X_4$ , to  $X_5$  and to  $X_6$  and is causally directly prior to  $X_4$  and to  $X_5$ .] Note that  $X_{i_k}$  is causally directly prior to  $X_{i_n}$  if and only if  $X_{i_k}$  is one of the conditioning random variables in the reduced-conditioning expression for  $H(X_{i_n} | X_{i_1} \ldots X_{i_{n-1}})$ .

We will say that the causal interpretation  $(X_{j_1}, X_{j_2}, \ldots, X_{j_N})$  is equivalent to the causal interpretation  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  if, whenever  $X_k$  is causally directly prior to  $X_n$  with respect to the causal interpretation  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$ , then  $X_k$  appears before  $X_n$  in the list  $(X_{j_1}, X_{j_2}, \ldots, X_{j_N})$ . Note that if the causal interpretation  $(X_{j_1}, X_{j_2}, \ldots, X_{j_N})$  is equivalent to  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$ , then, for every n, every random variable  $X_k$  causally prior to  $X_n$  with respect to  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  must appear before  $X_n$  in the list  $(X_{j_1}, X_{j_2}, \ldots, X_{j_N})$ , which is a fact that we will soon use. The following proposition shows that this notion of equivalence of causal interpretations is indeed an equivalence relation. **Proposition 1.** Two causal interpretations of  $X_1, X_2, \ldots, X_N$  have the same causality graph if and only if they are equivalent.

Example (continued). The causal interpretation  $(X_2, X_3, X_5, X_1, X_4, X_6)$  is equivalent to the causal interpretation  $(X_1, X_2, X_3, X_4, X_5, X_6)$ , whose causality graph was given in Fig. 1, because in the former list both  $X_1$  and  $X_2$  appear before  $X_4$ , both  $X_2$  and  $X_3$  appear before  $X_5$ , and both  $X_4$  and  $X_5$  appear before  $X_6$ . The reader can verify that there are in fact twelve causal interpretations of  $X_1, X_2, X_3, X_4, X_5, X_6$  in this equivalence class.

PROOF. Two causal interpretations of  $X_1, X_2, \ldots, X_N$  having the same causality graph are trivially equivalent. Suppose conversely that the causal interpretation  $(X_{j_1}, X_{j_2}, \ldots, X_{j_N})$  is equivalent to another causal interpretation that, with no loss of essential generality, we take to be  $(X_1, X_2, \ldots, X_N)$ . Suppose further that  $X_{j_n} = X_k$ . Then, before reducing of the conditioning, the *n*-th term in the causal-order expansion of  $H(X_{j_1}, X_{j_2}, \ldots, X_{j_N})$  has the form  $H(X_{j_n} \mid X_{j_1} \ldots X_{j_{n-1}}) = H(X_k \mid X_A X_B X_C)$  where  $X_C$  is the random vector whose components are the random variables causally directly prior to  $X_k$  [in the causal interpretation  $(X_1, X_2, \ldots, X_N)$ ], where  $X_B$  is a random vector whose components are the remaining random variables among  $X_{j_1} \ldots X_{j_{n-1}}$  that are equal to some  $X_i$  with i < k, and where  $X_A$  is a random vector having components  $X_i$  with i > k such that every random variable causally prior to  $X_k$  and not in  $X_A$  itself is a component of either  $X_B$  or  $X_C$ . Because all the components of  $X_B$  and  $X_C$  are among  $X_1, X_2, \ldots, X_{k-1}$  and  $H(X_k \mid X_1, \ldots, X_{k-1}) = H(X_k \mid X_C)$ , it follows from the causal interpretation  $(X_1, X_2, \ldots, X_N)$  that  $H(X_k \mid X_B X_C) = H(X_k \mid X_C)$ . Similarly, because all the random variables causally prior to each component of  $X_A$  are components of  $X_A$  or  $X_B$  or  $X_C$  and  $H(X_A \mid X_1 \ldots X_k) =$ 

 $H(X_A \mid X_B X_C)$ , it follows that  $H(X_A \mid X_B X_C X_k) = H(X_A \mid X_B X_C)$ . Hence,

$$H(X_k X_A X_B X_C) = H(X_B X_C) + H(X_k \mid X_C) + H(X_A \mid X_B X_C)$$
$$= H(X_A X_B X_C) + H(X_k \mid X_C).$$

Thus  $H(X_k \mid X_A X_B X_C) = H(X_k X_A X_B X_C) - H(X_A X_B X_C) = H(X_k \mid X_C)$ . We have now shown that  $H(X_{j_n} \mid X_{j_1} \dots X_{j_{n-1}}) = H(X_k \mid X_C)$ . But  $H(X_k \mid X_C)$  is precisely the reduced-conditioning expression for  $H(X_k \mid X_1 \dots X_{k-1})$  with respect to the causal interpretation  $(X_1, X_2, \dots, X_N)$ . Thus, the causality graph for the causal interpretation  $(X_{j_1}, X_{j_2}, \dots, X_{j_N})$  is the same as that for the causal interpretation  $(X_1, X_2, \dots, X_N)$ .  $\Delta$ 

## 3. Deducing independence

We now show how a causality graph can be used to deduce independence and conditional independence of the random variables labelling its vertices. To this end, let  $X_A$  be any random vector with components in  $(X_1, X_2, \ldots, X_N)$ . Then by the *subgraph* of ,  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  causally relevant to  $X_A$ , which we will denote simply by  $\Sigma_r(X_A)$ , we mean the subgraph of ,  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$ 



Figure 2: The causally relevant subgraphs (a)  $\Sigma_r(X_3, X_4)$  and (b)  $\Sigma_r(X_4, X_5 \mid X_2)$  of ,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  for the example.

consisting of only those vertices that are either components of  $X_A$  or causally prior to components of  $X_A$ , together with the edges connecting these vertices. The causally relevant subgraph  $\Sigma_r(X_3, X_4)$  of ,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  of Fig. 1 is shown in Fig. 2(a).

**Proposition 2.** If all components of the random vector  $X_A$  lie in a part of  $\Sigma_r(X_A, X_B)$ , the subgraph of,  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  causality relevant to  $(X_A, X_B)$ , unconnected (when edges are considered without direction) with the part in which the components of  $X_B$  lie, then  $X_A$  and  $X_B$  are independent.

Example (continued). From the causally relevant subgraph  $\Sigma_r(X_3, X_4)$  of Fig. 2(a), we can conclude that  $(X_1, X_2, X_4)$  is independent of  $X_3$ ; in particular,  $X_4$  is independent of  $X_3$ . This deduction is "obvious" from "causal reasoning" applied to the causality graph,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  of Fig. 1-but the main purpose of this paper is to justify rigorously such intuitive reasoning.

**PROOF.** Suppose that the components of  $X_A$  do indeed lie in a part of  $\Sigma_r(X_A, X_B)$  unconnected with the part in which  $X_B$  lies. Let  $X_{A+}$  and  $X_{B+}$  be random vectors whose components are all the random variables in the former

part and latter part, respectively, of  $\Sigma_r(X_A, X_B)$ , and each with components ordered so that no component precedes a component to which it is causally prior. Then there is an equivalent causal interpretation of  $X_1, X_2, \ldots, X_N$  that begins with  $(X_{A+}, X_{B+})$ . But no component of  $X_{A+}$  is causally prior to a component of  $X_{B+}$  so that  $H(X_{B+} | X_{A+}) = H(X_{B+})$ . Thus  $X_{A+}$  and  $X_{B+}$ are independent and, in particular, the subvectors  $X_A$  and  $X_B$  are independent.  $\Delta$ 

Let  $X_A$  and  $X_C$  be any random vectors with components in  $(X_1, X_2, \ldots, X_N)$ . Then by the subgraph of ,  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  causally relevant to  $X_A$  when conditioned on  $X_C$ , which we denote by  $\Sigma_r(X_A \mid X_C)$ , we mean the graph obtained from  $\Sigma_r(X_A, X_C)$  by deleting all edges leaving vertices that are components of  $X_C$ . The subgraph  $\Sigma_r(X_4, X_5 \mid X_2)$  of ,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  in Fig. 1 causally relevant to  $(X_4, X_5)$  when conditioned on  $X_2$  is shown in Fig. 2(b).

**Proposition 3.** If neither  $X_A$  nor  $X_B$  has components in common with  $X_C$ and if all components of the random vector  $X_A$  lie in a part of  $\Sigma_r(X_A, X_B | X_C)$ , the subgraph of ,  $(X_{i_1}, X_{i_2}, \ldots, X_{i_N})$  causally relevant to  $(X_A, X_B)$  when conditioned on  $X_C$ , unconnected (when edges are considered without direction) with the part in which the components of  $X_B$  lie, then  $X_A$  and  $X_B$  are independent when conditioned on  $X_C$ .

*Example (concluded).* From the subgraph  $\Sigma_r(X_4, X_5 \mid X_2)$  in Fig. 2(b) of the causality graph

,  $(X_1, X_2, X_3, X_4, X_5, X_6)$  of Fig. 1, we can conclude that  $(X_1, X_4)$  is indepen-

dent of  $(X_3, X_5)$  when conditioned on  $X_2$ ; in particular,  $X_4$  is independent of  $X_5$ when conditioned on  $X_2$ . But we cannot conclude that  $X_4$  is independent of  $X_5$ when conditioned on  $X_6$  because  $\Sigma_r(X_4, X_5 | X_6) = , (X_1, X_2, X_3, X_4, X_5, X_6)$ , which has no unconnected parts.

PROOF. Suppose that the components of  $X_A$  lie in a part of  $\Sigma_r(X_A, X_B \mid X_C)$  unconnected with the part in which  $X_B$  lies. This implies, in the causally relevant subgraph  $\Sigma_r(X_A, X_B, X_C)$ , that both  $X_A$  and  $X_B$  cannot have components causally prior to  $X_C$ . We suppose then that there may be components of  $X_A$ , but not of  $X_B$ , causally prior to  $X_C$ . It follows that there is an equivalent causal interpretation of  $(X_1, X_2, \ldots, X_N)$  that begins with  $(X_A, X_C, X_B)$ . Moreover, because all the random variables causally directly prior to components of  $X_B$  must be components of either  $X_C$  or  $X_B$  itself,  $H(X_B \mid X_A X_C) = H(X_B \mid X_C)$ . Thus  $H(X_A X_C X_B) = H(X_A X_C) + H(X_B \mid X_C)$  and  $H(X_A X_C X_B) - H(X_C) = H(X_C) + H(X_A \mid X_C) + H(X_B \mid X_C)$ . Hence,  $H(X_A X_B \mid X_C) = H(X_A X_C X_B) - H(X_C) = H(X_A \mid X_C) + H(X_B \mid X_C)$ , which shows that  $X_A$  and  $X_B$  are indeed independent when conditioned on  $X_C$ .

### 4. Concluding remarks

It is not difficult to see that the deductions of independence given in Propositions 2 and 3 are the strongest that can be made from the causality graph alone in the sence that one can always define random variables  $X_1, X_2, \ldots, X_N$ that would have the same causality diagram but for which there would no inde-



Figure 3: The causality graph of a secret-key cipher (a) in general and (b) when the cipher provides perfect secrecy where  $X_1$ ,  $X_2$  and  $X_3$  are the plaintext, secret key and cryptogram, respectively.

pendencies or conditional independencies among these random variables beyond those specified by Propositions 2 and 3.

It must be stressed, however, that not every known independence of random variables can be incorporated into a single causality graph. To see this, suppose that  $X_1$ ,  $X_2$  and  $X_3$  are the plaintext, secret key and cryptogram, respectively, for some cipher. The secret key is always chosen independently of the plaintext so that the "natural" causality diagram for these random variables is that shown in Fig. 3(a). But if the cipher provides *perfect secrecy* in the sense of Shannon [3], then the plaintext  $X_1$  and the cryptogram  $X_3$  are also independent so that the causality diagram in Fig. 3(b) is also valid. Each of these two causality diagrams provides independence information about  $X_1$ ,  $X_2$  and  $X_3$  that cannot be garnered from the other. We remark further that all the results of this paper obviously hold also for the case where  $X_1, X_2, \ldots, X_N$  are continuous random variables with finite joint differential entropy.

We cannot claim much novelty for this paper. What we have called a

causality graph coincides, when no additional random variables can be removed from the reduced-conditioning expressions for  $H(X_{i_n} | X_{i_1} \dots X_{i_{n-1}})$ ,  $n = 2, 3, \dots, N$ , that were used to generate this graph, with what Pearl calls a *Bayesian network*, and our Propositions 2 and 3 characterize, perhaps more clearly, what Pearl calls *d-separation* in such networks (cf. [2, p. 117]). Moreover, Pearl explicitly points out the dependence of the Bayesian network on the ordering of the random variables in question (cf. [2, p. 117]), the inability of such a network to model all independencies that may be known (cf. [2, p. 126]), and the general absence of independencies not deducible from this network, (cf. [2, p. 122]). At most we have formulated a sharper notion of "causality" and given a more transparent mathematical formulation that facilitates proofs. The reader is also referred to [2] for an historical account of the development of methods for deducing independence, both in probabilistic reasoning and in more general models of reasoning.

#### REFERENCES

 M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden Day, San Fransisco (1964).
J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, Calif. (1988).
C. E. Shannon, "Communication theory of secrecy systems", Bell System Tech. J., 28, No. 4, 656-715 (1949).