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INTRODUCTION

The thesis of this presentation is that the
methods of information theory, in particular the
techniques employed in connection with error=-
correcting codes, will play an increasingly
important role in advancing mathematical systems
theory. Systems theory is here understood to
embrace the studies of time-continuous differen-
tial systems, time-discrete amplitude-continuous
systems, and fully discrete systems or automata,
We will attempt to justify this thesis by citing
instances where systems theory has already been
influenced by each of the following aspects of
coding theory: (1) The central importance of
finite structures in information theory and in
coding, (2) The fundamentally algebraic nature of
parity-check coding, (3) The fertility of coding
theory as a spawning ground for new systems prob-
lems, and (4) The availability of coding tech-
niques applicable to a broad class of problems in
systems theory.

FINITE SYSTEMS

This author is indebted to L. Zadeh for calling
to his attention the fact that the so-called
‘Mealy machine'' of automata theory was in fact
precisely defined by C. Shannon in the latter's
foundation paper [1] for information theory some
several years prior to Mealy's contributions.
This bit of technical history is vivid evidence
of the fact that finite alphabets and finite
transducers lie at the very core of information
theory and coding. Thus, it is hardly surprising
that the minimization problem for finite-state
machines was first formulated and solved by D.
Huffman, [2] one of the first workers in coding
theory.

LINEAR CODES AND LINEAR SYSTEMS

The pioneering work of R, Hamming [3], later
generalized by D, Slepian and others, established
the importance to information theory of linear
codes (also known as parity-check codes and as
group codes.) The basic mathematical structure
for linear codes is the vector space over a
finite (or Galois) field. The importance of this
fact for systems theory is that such coding
systems provided an application for linear alge-
bra freed from the narrowing dependence on the
real and complex number fields characteristic of
former systems problems., When such normed fields
are exorcised, only the purely algebraic aspects
of the systems remain. Thus it was again the
same D. Huffman--motivated by studies of such
linear codes--who was led to introduce the linear
finite-state machine and who began the develop-

ment of the now elegant theory of these useful
and intriguing devices [4]. The development of
linear sample-data systems, influenced by its
outgrowth from the study of differential systems,
had previously been grounded more on analysis
than on algebra. The impact of the successes in
linear automata has been felt in the construction
of unified algebraic theories which include the
sample-data systems,

NEW SYSTEMS PROBLEMS

The fundamental decoding problem is that of
recovering the input to the encoder from a noisy
or corrupted version of its output. The least
condition which one could impose on a useful
encoder is that the input be recoverable when
this corruption is nil, i, e, that the encoder be
an invertible system, D, Huffman formulated this
condition as a new systems property which he
termed "information losslessness." [5] This
author and M. Sain [6] noted the practical fur-
ther necessity in coding that the inverse system
be feedback-free and solved the problem as to
when a feedback-free linear system has a feed-
back-free inverse, G, Forney [7] has recently
given an elegant formulation of these results,
and has shown how to handle such algebraically
similar questions as when does a stable linear
system have a stable inverse, These coding stu-
dies led M, Sain and the author to pose the
general problem of invertibility of linear dif-
ferential systems and to find that the discrete
systems results carried through in toto. [8]
Invertibility is a striking example of a new and
fundamental systems problem whose origin lies in
coding theory,

NEW SYSTEMS TOOLS

In their attempts to design simple decoders,
coding theorists have developed techniques with
great promise for wide applicability in systems
theory., E, Berlekamp's ingenious "iterative al-
gorithm" for decoding the Bose-Chaudhuri-Hocquen=
ghem codes was shown by the author to be an ef-
ficient method to find the shortest linear feed-
back shift-register (i. e. the linear recursion of
minimum order) which generates a prescribed finite
sequence of digits in any field. [9] Although
this is a common problem in systems synthesis and
in systems identification, its efficient solution
awaited coding theory and Berlekamp's technique
should find many applications.

Sequential decoding [10], originated by J. Woz-
encraft, is recognized in coding theory as the
natural and minimal=computational method for the
search of a branch-weighted tree to find, with
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near certainty, the path of highest (or lowest)
weight for the trees associated with convolu-
tional error-correcting codes, A, Viterbi later
formulated the optimum search procedure for such
trees which J. Omura [11] has recognized to be
equivalent to dynamic programming. The point
could be made that coding theorists would be
well-advised to look more closely at the methods
available in systems theory., Another viewpoint
follows from the observation that Viterbi's
algorithm is practical only for short constraint
length codes whereas the computational complexi-
ty of sequential decoding is independent of the
code constraint length. Systems theorists would
be well-advised to investigate the conditions
under which sequential decoding would be a de=-
sirable practical alternative to dynamic pro-
gramming.

REFERENCES

[1] C. Shannon and W. Weaver, The Mathematical
Theory of Communication, Univ, of Illinois Pres:

1949, p. 26.

[2] D. Huffman, 'The Synthesis of Sequential
Switching Circuits," The Journal of the Franklin
Institute, v. 257, 1954, pp. 161-190, 275-303.

[3] R. Hamming, “Error Detecting and Error Cor=-
recting Codes,' Bell Sys, Tech, Journal, v. 29,
1950, pp. 147-160,

This work was supported in part by the
National Science Foundation under
Grant GK-13618 to Univ. of Notre Dame.

355

{4] D. Huffman, "The Synthesis of Linear Se=-
quential Coding Networks,' in Information Theory
(Ed. C. Cherry), 1955 London Symp. on Info. Th.,
PP. 77-95.

[5] D. Huffman, "Information Conservation and
Sequence Transducers,'" Proc. Symp. on Info,.
Networks, Poly. Inst. of Brooklyn, April 12-14,
19510, pp. 29]‘307-

[6] J. Massey and M. Sain, "Inverses of Linear
Sequential Circuits,'" IEEE Trans. Computers,
ve C=17, April 1968, pp. 330-337.

[7] G. Forney, '"Convolutional Codes I: Algebraic
Structure,'" to appear in IEEE Trans. Info, Th,.

[8] M. Sain and J. Massey, "Invertibility of
Linear Time-Invariant Dynamical Systems,' IEEE
Trans. Auto. Cont., v. AC=14, April 1969, pp.
141-149,

[9] J. Massey, "'Shift-Register Synthesis and BCH
Decoding,'" IEEE Trans. Info. Th., v. IT=-15,
January 1969, pp. 122-127,

[10] J. Wozencraft and I. Jacobs, Principles of
Communication Engineering, John Wiley, New York,

1965, pp. L425-475,

[11] J. Omura, *"On the Viterbi Decoding Algo-
rithm," IEEE Trans. Info. Th,, v. IT=15, Janu=
ary 1969, pp. 177-179.



