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ABSTRACT

A generalization of binary stream cipher systems {s
proposed that retains the desirable features of such
systems (no ciphering delay, limited error-propagation,
and analyrable security) but avoids their synchroniza-
tion difficulty. Reception of a specified number of
correct consecutive ciphertext digits always restores
the decrypter of the proposed system to correct opera-
tion, regardless of the prior state of the decrypter.
The general structure of such self-synchronizing inverse
rystems {s identified, and a fundamental sufficient
condition is obtained for such encrypters to be true
scramblers {n the sense of transducers of periodic se-
quences. This condition is shown also to be the condi-
tion for non-singularity of an associated nonlinear
shift-register and for state irreducibility of the en-
crypter. Some principles for designing secure scramblers
of the proposed type are given together with some les-
sons learned from an experimental study of such scram-
blers with a 16 bit key used to encrypt 32 Xbps delta-
modulated speech.

1. INTRODUCTION

This paper introduces a type of cryptographic sys-
tem that is intended to retain the main advantages of
conventional stream cipher systems while avoiding their
principal disadvantage. We begin our discussion, there-
fore, with a brief review of stream cipher principles.

In a binary stream cipher system, the plaintext
¥ = (xy, X3, X3, ...) is a (semi-infinite) binary se-
quence that i{s converted into the ciphertext y =
(Y1e Y20 Yy ...), another binary sequence, under the
control of the key K in the manner shown in Fig. 1.1.
The sequence z = (23, 23, 23, ...) is called the
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Fig.1l.1: A Binary Stream Cipher Encrypter

running key and is added bit-by-bit to the plaintext x
to produce the ciphertext Y. i.e.,

(98]

where here and hereafter the addition is modulo-two
(i.e., addition in the finite field GF(2) ) unless in-
dicated otherwise. Adding z, to both sides of (1), we
obtain

(2)

as follows from the fact that 0 + D = 1 4+ 1 = 0 in

GF(2), i.e., from the fact that addition and subtrac-
tion coincide in GF(2). It follows that the decrypter
for a binary stream cipher coincides with the encrye-
ter. A binary stream cipher system can thue be con-
structed as shown in Fig. 1.2. The transmission means

Key Stream Key Stream

|

Generator Generator

bd
Zn n

Insecure N
Transmission
eans

Yn

W/

Fig.1l.2: A Complete Stream Cipher

Cryptosystem

is designated "insecure” to imply that the enemy crypt-
analyat can also observe the received binary cipher-
text y' = (yy', y2', ¥3's «..). In the absence of trans-
mission errors, yn' = y, so that x,' = y,°' + Zn ¥ X,
according to (2). Moreover, a single transmission err~r
causes only a single decrypting error; this limited
error-propagation is a very desirable feature cf stream
cipher systems. Another desirable feature is the delay-
less character of the encipherment; the first n bivts ~¢
the plaintext can be obtained from the first n bits of
the ciphertext for all n. The fact that the encirher-
ment is delayless implies also that there is no ex-
pansion of the plaintext, i.e., that {f the plaintext
has finite length N then so also does the ciphertex:

When assessing the security of a stream cipher sys-
tem, it is customary to assume a known-plaintext attack,
i.e., to assume that the cryptanalyst knows the fire+r N
bits of the plaintext for some large N. From (2), it
follows that this is equivalent to knowing the firs* N
bits of the running key z. The system is said to he «a-
cure if, given Z)r Z3s eees Zy, it 1S extremely diffi-
cult to predict reliably the future bits of the runnirag
key. In particular, if the system is secure, it mis* he
extremely difficult to determine the secret key X from
these N bits of the running key, as knowledge of ¥ w-uld
permit perfect prediction of the entire running key. A
desirable feature of key stream systems {s that their
structure lends itself to an analysis of their securi‘’y,
i.e., they possess analyzable security, at least to
some practically significant degree if not to a complere-
ly satisfactory one. In general, one can describe a key
stream generator by the relation
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which emphasizes that, for each choice of the key K,
the key stream generator {s an autonomous (i.e., no
input) erquential machine. By selecting this sequential
machine always to be of a type whose security can be
quantified, say a maximal-length linear feedback shift-
register with nonlinear output logic [IJ-[}], one can

ensure a certain degree of security for the crypto-
system,

A binary stream cipher system, however, has one
major disadvantage, namely its synchronization diffi-
culty. This is the Achilles' heel of stream cipher
sy~tems that precludes their use in many practical
situations. As can be seen from (2) and A3), it is in
genrral necessary at the decrypter always to have the
same clock time n as at the encrypter. The encrypter
and decrypter must run in perfect synchronism. The de-
crypter can "jump into" an on-going ciphertext sequence
only {f it can determine the corresponding time instant
n registered by the encrypter's clock. Bit losses or
gains during transmission will result in garbles in the
decrypted plaintext that can be remedied only be search-
ing over the resulting possible offsets between the en-
crypter's and decrypter's clocks. These are serious
practical problems whose solution generally constitutes
an appreciable fraction of the cost and effort required
to implem-~t a stream cipher system.

This paper reports research whose goal was to de-
sign cryptnsystems that retained insofar as possible the
main advantages of binary stream ciphers but that were
easy to synchronize. These design goals are made precise
in the next section of this paper where it is proved
that all such cryptosystems must have a particular sys-
tem structure. Section 3 addresses the security of such
cryptosystems and further specifies the system structure,
Secticon 4 reports on an experimental system that was
built and tested to confirm the practicality of such
cryptosystems, and gives some of the lessons learned
from this experimental study.

2. STRUCTURE OF SELF-SYNCHRONIZING GENERALIZED STREAM
CIPHERS

A stream cipher encrypter is, for each choice of the
key X, a finite-state machine (FSM) with a binary input
and binary output alphabet. The general FSM of this type
is described by the equations

-\
yn K(xn' sn) 4

Shey ” GK(xn, sn) (5)
where =, is the state at time instant n, Ax i{s the out-
put function and &K is the next-state function. Notice
that both the next-state and the output functions may
depend on the key K. A binary stream cipher encrypter
is the special case of such a FSM where the next-state
has no dependence on x, (1.e., X, is an idle variable
in (5)) and where the dependence of the output function
on the {nput is additive, {i.e.,

- (‘
lx(xn, sn) x + fx(sn). ()

The former of these restrictions is rather arbitrary,
but the latter is unavoidable if the encrypter is to
be delayless, as we now prove.

Proposition 1: A binary-input binary-output FSM is in-
vertible without delay (when the initial atate sy is
known) if and only {f the output function is as speci-
fied by (6), 1.e., {f and only {if

- . 7
Y, . + fx(sn) (%))

Proof: Suppose first that (7) holds, then
+ . ray
xn - yn fK(sn)

But (5) and (8) now show that the FSM of Fig. 2.1 s a
delayless inverse nf the original FSM when both Few'eg
have the same initial state.

Suppose conversely that (7), or equivalently ‘¢,
does not hold. Then there is some choice of s,, say -,
such that 1y (0,0) = lx(l,c). Thus, when sy = 0, it
follows from (4) that both x) =0 and x; = 1 will yield
the same value of Y1. Thus X) cannot always be recovered

from S] and y; so that a delayless inverse doms no*
exist.
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Fig. 2.1: A General Delayless

Inverse for a FSw™

We remark that Proposition 1 is the generaliza®i~n
of a result for FSM's with finite input memory due +o
Preparata | 3 [ We also remark that we have nead the
notation zn = fx(sp) in Fig. 2.1 to emphasize the cor-
respondence to the decrypter for a stream cipher. In
fact, if the next state function S(xp, Sp) in Fig. 2.1
has no dependence on the input variable Xpn, then the
general delayless inverse of Fig. 2.1 becomes Frecisely
the decrypter for the general binary stream cipher of
Filg. 1.2.

Our interest here is in cipher systems that are
particularly simple to synchronize or, more precisely,
that automatically synchronize themselves upon receipt
of a given number M of correct consecutive ciphertext
digits without any knowledge of the clock time at the
encrypter. We shall say, therefore, that a delayless
inverse of a binary-input binary-output FSM i{s self-
synchronizing in M steps if the output digits of the
inverse coincide with the input digits x, of the FSw
for all n > M, regardless of the initial statec choecen
for the FSM and for the inverse and regardless ~f ¢hn
input sequence x. The smallest such positive inteqer w
will be called the synchronization delay. The condf*irn
that a delayless inverse be self-synchronizing in ™
steps is equivalent to the condition that the "running
key" digit z, in Fig. 2.1 depends only on the “ci{pher-
text” digits Yn-1¢ Yn-2¢ cecs Yn_y for all n > M, { e,

z =g (y

Sh
n n-l' Yn_zr coep yn_H) (

for some boolean function gx of M variables for all
n> M,

It follows from (9) that any inverse that is self-
synchronizing in M steps can be realized as shown in
Fig. 2.2, at least in the sense that the circuit of
Fig. 2.2 will duplicate the input/output behavior of
the true inverse at all time instants n such that n > wm,
The structure of the circuit in Fig. 2.2 is that of a
simple M-stage shift-register without feedback whnose
state determines the running key digits according to (7,
It should be pointed out that the circuit of Fig. 2.2
may not duplicate the input/output behavior of *he true
inverse for time instants n, 1 € n ¢ M, for the reason
that the original FSM [and hence also its true 1nver--]
may possess "transient” states that can occur only with-
in this initial time span; it is possible that some of
these transient states in the true inverse are not



equivalent to any of the 2M states of the circuit {n
Fig. 2.2. Such transient phenomena are, however, of no
interest in a (generalized) stream cipher system. Thus,
we might as well assume that the original FSM has no
snurh transient states so that the circuit of Fig, 2.2
is a true {nverse of the original FSM. Equivalently,
the original FSM is an {nverse of the circuit in Fig.
2.2 so that we may apply our previous reasoning (with
the role of x, and y, interchanged) to conclude that
the original FSM can be realized as shown in Fig. 2.3,
which is the specialization of the inverse in Fig.2.1
for the FSM of Fig. 2.2. Note that the original FSM as
shown in Fig. 2.3 has the structure of a feedback shift-
register in which the input is an additive component

of the feredback digit., We summarize our observations

in the following proposition,

Proposition 2: Any FSM (without transient states) that
has a delayless inverse that is self-synchronizing in
M steps can be realized as shown in Fig, 2.3, and its
inverse can be realized as shown in Fig, 2.2.
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Fig. 2.2 : General Delayless Inverse that is
Self-Synchronizing in M-Steps.
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Fia. 2.3 : The FSM Inverted by the Circuit

of Fig. 2.2,

The FSM of Fig. 2.3 and its inverse in Fig. 2.2 are
our desired generalizations of the delayless encrypter
and decrypter in a stream cipher system with no syn-
chronization difficulty. Even if the initial state of
the encrypter is unknown, the decrypter (started in an
arbitrary initial state) will begin decrypting correct-
ly after M (possibly) incorrect output digits, More-
over, a transmission error (i.e., an incorrect value
of yn) will affect the output of the decrypter for only
M 4+ 1 *ime units as can be seen from Fig. 2.2. Thus,
the error propagation {s limited; a transmission error
can cause at most M + 1 decryption errors. It remains
to show that we can obtain cipher systems with "analyz-
able security” within this class of generalized stream
ciphers.

J. SCRAMBLERS AND SECURITY CONSIDERATIONS

A scrambler is a FSM that, regardless of the initial
state, converts a periodic input sequence into a period-
ic output sequence with generally higher, but at least
the same, period. As remarked by Zegers | 4, p. sz,
scramblers "have a randomizing effect on the data
patterns transmitted” and thus "can reduce the sensi-

tivity of synchronization systems to specific periodic
data patterns”. As we shall soon arque, scramblere are
also useful cryptographic devices. We first prove *he
following result, which will lead to a ra*her completo
characterization of the connection between scrambler-
and FSM's with self-synchronizing delayless fnvereaes,

Proposition 3: The following three statements are
equivalent:

(1) The feedback function in Fig. 2.3 is of *he
form

= '
gK(yn-l'yn—2""'yn-M) Ynm * TxWnoyeeeey L

n-ws}

(11) with no input ({.e,, with x, ¥ 0), the FSm of
Fig. 2.3 is a nonsingular nonlinear feedback shift-
register (NFSR), i.e., an NFSR all of whose states lie
on closed cycles.

(111) The binary-input binary-output FSM of Fiq.2.1
is state irreducible, i.e.,no two of its 2™ arares ara
equivalent.

Proof: We first show the equivalence of statements '1{)
and (iii).

Suppose that (10) does not hold. Then there exis*®
binary digits by, bz, ..., by-] such that I by, ...,
by-1,0) and gg(by, ..., by_j, 1) have the same value,
say bg. But then s; = (bys voes by-j. 0) and sy =
(by, ...y by_1» 1) in the FSM of Fig. 2.3 will bcth
give z) = by and hence will both give the same Y1 =
bg + x; and the same s3 = (bgy + x1, by,...,bu_y), for
any x;. Thus, y2, ¥Y3,..., will also be the same so
that the states (by,..., by-1, 0) and (by,...,bw_;, D
are equivalent.

Conversely, suppose that there are two distinct
equivalent states, 0 and 0', in the FSM of Fig. 2.2.
Let | be the first component in which these equivalent
states differ so that we may write 0 = (by, ...,
by_y» O, byy1s «c.s by) and 0 = (by,..., by, 1,
b'is1s coer b'y). Consider applying the all-zero in-
put sequence, x, T 0. Because the initial states are
equivalent, the output sequences must be the same when
S} = 0 and when sy = 0', say y = (ay, ap, aj,...0.
Thus, one obtains

S M-t ™ (aM-i' ceaes al, bl' cene bi-l

1’ bl' «ees b

,» 0) and

(a » eeey A

S1am-1 T Buoy 1) according as

1-1'

51 = 0 or s1 = 0', respectively. In either case,

Yiem-1 = Z1am-t must be the same, so it follows *hat

=g (a e @, b, ... b s, 0) =

Zrem-1 © Ix'Pu-1’ 1’01 1-1

gK(aM-i' cees al' bl' cess bi—l' 1) and hence 17) dres
not hold. This completes the proof of the equivalence
of statements (i) and (ii{).

When x, = 0, the FSM of Fig. 2.3 becomes the auto-
nomous nonlinear feedback shift-register (NFSR) <chow—
in Fig. 3.1, Condition (10) is the well-known S,

PP. 115-116] necessary and sufficient condition +ha+
such an NFSR be nonsingular, {.e., that all its s*acmg
lie on closed cycles. This follows from the fac® *>a"
the NFSR will be nonsingular {f and only if each s¢are
has a single predecessor. But the only possitle pre-
decessors of state (b, bZ' «.s by) in the NFSR of
Fig. 3.1 are (by, .., by, 0) and (by, .., by, 1.
Thus, there will be a state with two predeceresacrs (and
one with none) if and only if gg(by, .., by, ™ =
qx(bz. «+s by, 1) for some choice of by, b3. cer Dyt
but this is precisely the condition that (197} not be
satisfied. It follows then that statements (i) and (i}



are equivalent, and this completes the proof of the
proposition.

C i D),

Fig.3.1: The Nonlinear Feedback Shift-
Register (NFSR) Obtained from
the FSM of Fig. 2.3 when xn: 0.

When the circuit of Fig. 2.3 is employed as a
generalized stream cipher, it appears desirable for
security purposes that its state complexity be as large
as possible. Thns, statement (ii1i) of Proposition 3 is
a persuasive argument that the feedback function should
be chosen, for each choice of the key X, such that (10)
is satisfied. The following proposition provides a
further argument that the feedback function should be
co choeen,

Proposition 4: When the feedback function of the FSM
in Fig. 2.1 satisfies (10), then this FSM is a scram-
bler. Moreover, when (10) is satisfied, the period of
the output sequence is a multiple of the period of the
input sequence; this multiple (which may depend on the
initial state and on the input sequence) is at most oM,

(10) is a linear function were proposed by Savage

for randomizing "periodic" data patterns; equivalent
linear scramblers were independently proposed in a
different realization by Zegers |7 ]. These linear
scramblers were all proposed precisely for their self-
synchronizing properties., Proposition 4 generalizes a
result proved by Savage for linear scramblers whose
corresponding shift-register in Fig., 3.1 is a maximal-
length linear fredback shift-register., It may well be
that (10) is both a sufficient (as asserted in Propo-
sition 4) and necessary condition for the FSM of Fig.
2.3 to be a scrambler when the synchronization delay
is exactly M; however, we have not succeeded in proving
this, Nonetheless, in light of Proposition 4, we shall
use the terminology self-synchronizing digital scram-
bler (SSDS) to describe the FSM of Fig., 2.3 when the
fredback function satisfies (10). The general SSDS is
ehown in Fig. 3.2 and the corresponding descrambler is
shown in Fig. 2.1,

Remarksg: Scramblers of the type in Fig. 2.3 when ff in
6

XJ ea lyn-y et Yn-mser | Yn-m

k4

——o
&

Fig. 3.2: The General Self-Synchronizing
Digital Scrambler (SSDS).
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Fig. 3.3 : The Descrambler for the General
SSDS of Fig.3.2.

Proof of Proposition 4: Let (ay, a5, .., ap)™ denote
the semi-infinite periodic sequence consisting of re-
petitions of the sequence a;, aj, .., ap; the perio? {«
either T or a divisor of T, and every sequence of peri~d
T can be so represented. Thus, when the input sequercs
x in Fig. 2.3 is periodic with period T, the outpu*
sequence y will be the same as the output sequence v cf
the autonomous FSM in Fig. 3.4 consisting of the FS% n¢
Fig. 2.3, whose input is now the output sequence of a
pure cyclicing register (PCR) of T stages whose in{*tal
loading is the first period of x. The cutput sequence
b4 will surely be periodic if the state sequence of *this
autonomous FSM is periodic. Moreover, the state se-
quence will be periodic if and only if every state

O = (ay, a3, .., ap) by, by, .., by) has a unique pre-
decessor. But a predecessor of this state 7 mua* be of
the form 0' = (ap, &y, .., &p_y3 by, .., by, C) where
the binary digit c must satisfy

b1 = a, + qx(bz, e bM. [N fmn
But (10) is precisely the necessary and sufficient con-
dition that (11) have a unique solution c for every
choice of by, by, .., by and ap. It follows that (10)
is a sufficient condition for y to be periodic whenever
the input x to the FSM of Fig.~2.3 is periodic. T <how
that this FSM is a scrambler, it remains to show *hat
the period of y is a multiple of the period of x.

The period of the state sequence s of the FSM in
Fig. 2.3 coincide with the period T' of the outpu*
sequence y because s, = (Y _ 1, Yn=2s .0 Yn-m). Now
the running key z is determined by (9) so that surely
ZnaT' * Zn. But X = y + z so it follows also that
Xnart = Xp and hence that the pariod T of x is efther
T' or a divisor of T'. This proves that the FSM of
Fig. 2.3 is indeed a scrambler whenever (10) is =atis-
fied.

When x = (aj, .., ap)®™ has period T and s; =
(bys «uv b"), the period T' of the output sequence
cannct exceed the period T" of the state sequence of
the autonomous FSM in Fig. 3.4 when its {nitial state
is s)' = (a3, a3, .., api by, by, .., by). The firse T
components of 8p' will coincide with those of s ' if
and only if n =1 4+ { T for some positive integer {.
Now consider the state subsequence $y'y S1ar’e a7’
All of these states have the same first T components.
Because there are only 2M possible values for the las®
M components of the state, this subsequence can have
period at most 2M. Thus,

°1 7 %1 4 nr
for some integer N satisfying 1 § N < 2". It follows
that the state sequence has period at most 2™r, and
thus the output sequence y also has period at most
2MT, This completes the proof of Proposition 4.
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Fig. 3.4: The Autonomous FSM Determined by
the FSM of Fig, 2.3 with an Inpn*
Sequence of Period T.




Remarks: It should be pointed out that the output se-
quence y of the autonomous FSM in Fig. 3.4 can be
periodic even when the state sequence is not. For ex-
ample, it can readily be checked that the FSM in Fig.
3.5 (a) always gives a periodic output sequence, but
the state sequence is not periodic when the initial
state sl‘ = (ay; by, bz) is any of the following:

(03 1,0), (03 0,1) or (1 0,0). For instance, for

sy’ = (03 0,1), the output sequence is y = (0f°of
pericd 1, but the state sequence (0; 0,1), (00,00,
(0,0,0), ... is not perjodic. Note that the invertible
subcircuit portion of Fig. 3.5(a) i3 an FSM of the
type in Fig. 2.3 in which

T Yno1® Yao2) T Yno1*¥noo 12)

so that (10) is not satisfied. The autonomous FSM of
Fig. 1.5(b) consists of this same FSM, but now with a
period T = 2 PCR providing the input. It can be checked
that now, with the initial state sy' = (1,0; 1,0),
neither the state sequence nor the output sequence {s
periodic. Thus, the invertible subcircuit described by
(12) is not a scrambler. It is an open question whether
(10) must be satisfied in order for the FSM of Fig.2.3
to be a scrambler.
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(a) T = (b) T = 2

Fig. 3,5: Two Autonomous FSM's Determined
by the Same FSM of the Type in
Fiag. 2.3.

We turn our attention now more directly to security
considerations for the SSDS shown in Fig. 3.2, for which
the feedhack function gy is given by (10). We shall
find {t convenient to represent 9 in so~called alge-
braic normal form as a (modulo-two) sum of products of
its factors; by way of convention, the binary constant
1 is considered a zero-order product. The first-order
terms are also called linear terms., Note that (10)
specifies that gy must have at least one linear term.
The order of gy is the maximum of the order of its pro-
duct terms; by way of convention, the zero function has
order 0. For example,

“x(bl' b2. e bd) - b1b2b3 + b4

is a third-order function.

The linear complexity of a binary sequence, defined
as the length of the shortest linear feedback shift-
register (LFSR) that can produce this sequence as its
output, has proved to be a very useful measure in the
study of stream cipher systems. Roughly, the linear
complexity is a measure of how difficult the sequence
is to predict. If the linear complexity if L, there is
a well-known and efficient algorithm | 8] that finds the
minimal generating LFSR after processing 2L digits and
predicta the sequence exactly thereafter. Linear com-
plexity has its limitations, however. Note that a
pericdic sequence has linear complexity at most equal
to its period T since it can be produced by the PCR of
length L, which is an LFSR. The sequence (0,0,..,0,1)%
has linear complexity exactly equal to its period T,
but is "easy to predict” if one is satisfied with good,
but imperfect, prediction. Nonetheless, for the bulk of
periodic sequences, linear complexity is a reasonable
measure of the work that will have to be done by an
observer of the sequence before he can reliably pre-
dict its future values.

In an important paper 21, Key has shown a reel»
that can be stated equivalently for the FSM of Fi~. 2.7
as follows: when the input sequence y in Fig. 2.2 is a
maximal-length sequence of perind 2M - 1 and 'the €unc-
tion gy has 9x(0,0,..,0) = 0 and has order N, then the
sequence z has linear complexity L satisfyinag

N M
L g 2(1>. (m
i=1

Moreover, equality, or near equality, will hold {n (1M
for most functions gx of order N. It {s important %o
note that Key's result speaks to the difficulty of pre-
dicting the entire future of z from a small number ¢
its leading digits when neither the particular maxi~al-
length sequence y nor the particular function ag Ls
known. In this case, we must examine the first 2L dizics
of z, for instance with the algorithm of (8], before *“e
rest of z can be predicted exactly. We nex* cbserve *%ac,
even when Yy is known, there appears to be no way

to simplify substartially the prediction of .z -- the
simplest way still apears to be to ignore y and to u<e
the algorithm of | 8| only on z. Moreover, even {f ore
could find a practical way to use y in the prediction

of z, one would still need to process at least half as
man§ digits of z as when y was unknown, as we shall now
prove,

Proposition 5: If the sequence y in Fig. 2.2 is such
that knowledge of y and the digits in B specified
positions of the s;quence z uniquely determines gy when
gk is known to have order N or less and to have
gK(OIO'l!lo) = 0, then

N
B 2 I (:)QBN. (14
=]

Moreover, gx is only very infrequently uniquely de-
termined from y and substantially fewer than By diqi*s
of the sequence z.

Remark: If the condition gg(0,0,..,0) is removed, the
bound (14) on B can be improved by one by including
the { = 0 term in the summation. We have not removed
this condition only to make our result directly com-
parable to that of Key.

Proof: The function gy(by, by, ..., by) has ™ posseitle
product terms of order i. Thus, By as defined in (14}
is the number of distinct product terms with orders
between 1 and N, inclusive. Thus, every function g3y

of order N with gg(0,0,..,0) = O can be identified with
a binary vector of length By that has a 1 at each
position where the corresponding product term {s pre-
sent in gy , and every such vector corresponds to some
such function. It follows that finding g 1s equivalent
to solving for the By independent binary variables *>at
form this vector, given y and the known digits of z.
But, according to (9) each known digit of z provides
one (not necessarily independent ar} in qcﬁeral non-
linear) binary equation satisfied by these Ry variables.
There are at most 2" possible values for the known n
digits in z and exactly 2B possible values for the un-
known B variables. Thus, the variables cannot all be
determined uniquely unless n 2 By. Moreover, the max:-
mum fraction (2M-1)/2BN of functions that can be de-
termined when n < By is small when n is significantly
less than B -~ here we have used the fact tha* a* leas*
1 of the at most 2" possible values of the n known 2:g-
its of z must correspond to those functions that have
not yet been determined uniquely from the n known Ziqt*s
of z.



Remar¥: Because a maximal-length sequence Y of period
27-1 has the property that (Ynoye Yn-20 «oer Ypop)
takes on all 2M-1 possible non-zero values for any M
consecutive values of n, it follows that one can always
drtermine gy uniquely from y and the first By = M-
values of z when {t {8 known only that 9x(0,0,..,0)=0.
This gives insight into Key's bound (13)) but it is in=-
deed surprising that (as Key has shown) the first 2BN
digite of z always suffice to determine gx when it is
also known that 9k has order at most N. Our bound (14)
shows that fewer than the first By digits would never
suffice in this latter case no matter what was the
nature of y. It seems inerscapable to conclude that the
identity 21 9x 1s revealed most easily and rapidly

(or at least nearly so) from observation of the digits
of z when the known sequence y is a maximal-length se-
quence of period 2%-1, in case the a priori knowledge
of gx is limited to the fact that gx has order at most
N and qy(0,0,..,0) = 0,

Consider now a known plaintext attack by an enemy
cryptographer on the SSDS of Fig. 3.2. Suppose that the
cryptoanalyst knows the first n digits of the plaintext
x (or, equivalently, any n consecutive digits of x).
§uppose also that the cryptographer observes the Eipher~
text y with no channel errors. Because Zy = X4 *+ ¥4,
the cryptographer equivalently knows the first n digits
of z as well as observes Y. His task is to predict the
future of z or, equivalently, to determine the function
fx (since this determines gx according to (10).) But
this {s precisely the problem considered above, and
the arqument above suggests how to choose fx as a
function of the key K so as to ensure that the crypto-
grapher's task will be of at least a certain diffi-
culty. For each choice of K, the function fx should
have some specified order N so that the cryptographer
will grnerally be forced to know at least some large
number By of plaintext digits for his attack to succeed,
and the difficulty of his task will then generally be
at least as great as that of predicting a sequence of
linear complexity 2By. This conclusion presupposes
that the number of keys X is large enough that the
cryptographer cannot sidestep the genrial problem of
solving for fy simply by trying all possible keys or
by taking significant advantage of special properties
of that subset of functions of order N that correspond
to valid keys. If the function fK is chosen according
to these principles, the SSDS of Fig. 3.2 should be a
very effective alternative to conventional stream
cipher systems,

4. CASE STUDIES

To gain experience with SSDS's as generalized
stream ciphers, hardware scramblers and descramblers
were built as a semester project in the winter semester
1982/83 by two of the authors (Huber and Suter) and
used to scramble 32 Kbps A-modulated speech signals.

Tt had been decided to use at most a 16 bit key and,
for convenience, memory M = 16. Two different scram-
blers were tested. For the first,

- 1
1.bz,..,bls) ba + ble + bzbybﬁ' (15)

where 1 § a§ 15, 2< BE 15and 3Ky < 8§ & 15, All
16,380 valid choices of a,B8,Y and § were selectable
by the key. For the second system,

fK(b

- + 16
tK(bl'bz""b ) bu + be b.b_ + b b (16)
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where 1 S a < B 15, 2£Y €15 and 3¢ 8§« 15,
Again, all 19,110 valid choices of a,B,Y and & were
selectable by the key. Note that the first function fx
of (15) has order N=3) whereas the second function fx
of (1€) has order N=2, Delta-modulated speech was
chosen as the plaintext because of its ability to re-
tain intelligibility in the face of a heavy error rate
or, equivalently, a poor stream cipher.

For both systems, it was found that the scramhled
signal could not be distinquished from random noise by
a listener who heard the signal through a delta de-
modulator. In particular, pauses in the speech roylAd
not be detected. The same conclusion was found to nh-
tain when the scrambled signal was played through a
descrambler with the wrong key {n whose corrssprmndirag
function the linear terms were not all correct, How-
ever, when the only higher order terms of the oy
function were incorrect, it was possible to distin-
quish pauses from active speech although the speech
itself was totally intelligible. This means tha* the
effective size of the key is really only ae gresy* ae
that needed to specify the linear terms in fy | abou*

4 bits for the function in (15) and about R bits for
that in (16)], since one would need only to search t%e
linear terms exhaustively until the "descrambled® siqral
allowed pauses and active speech to be distinguiehed,
One could then proceed to determine the remainder of

the key.

The importance of the linear terms can be explajred
as follows. Suppose that one used the test finction ‘v,
in the descrambler of Fig. 3.3 when the scrarhler of
Fig. 3.2 had the function fx. The descrambler outpu*
x'n would then be

x' = fk,(yn_l,...y )4y

+ (1™
n n-M+1 b 1

+
n-M “n

- + .. vees
*n fK(yn-l' i )‘fK'(Yn-l Y

)
n-M+1 n-ms)

where we have made use of (10) and (2) to rewrite Yn-m
and then have used (2). It follows from (17) that, when
fx and fK' have matching llnea; terms, then the outpue
x' will differ from the plaintext x only by an additive
Eequence of higher order product terms of Y. A produce
of order m will have probability only 2°® of beinq 1
when Y is quite random as it generally will be. Thue x'
will be a not-too-noisy version of x unless there are
many non-matching higher-order ptodact terms. For eox-
ample, when fK'(bl""'bIS)gbq and fy is aiven by (1%,
we have from (17)

¢ -
*n xn * yn-lyn—e * yn-2yn—yyn-*

8o that x' differs from x by an error rate of only abou®
1/4 + 1/8 = (1/4)(1/8) = 11/32. At this error rate,
A-modulated speech signals x are completely unintelli-
gible, but it is rather eas§ to distinquish pauses from
active speech. When there are any mismatches hetweaan

the linear terms in fx+ and fx, however, we ses from
(17) that the error sequence will have the desired error
rate of 1/2.

A real-time attack on the SSDS systems of (15) an?
(16) was developed by two of the authors (Fischer and
Hochstrasser) as a semester project in summer semecter
1983. Using a small computer (PDP 11/24), their a**tack-

ing system would typically succeed in finding the correce

key in about one minute. The attack could be descrihed
as a "probabilistic known plaintext attack™ that ex-
ploited special features of the functions fx in (1)
and (16). The attack will be explained only for *he
function fx in (15), as the two attacks were quite
similar.

From (15) and Fig. 3.2, we see that
- + + +

*» " ¥n* Ynoq Yn-1"n-8 * ¥n-2¥n-v'n-38 * Yn-16

Suppose now that X, i{s kxnown, Since Y is observed, we

see that, for each n such that Yn-1 " Yn-2 = "

we can obtain from (18) the linear equation

- +
xn yn y"‘ﬂ * yn—16

(18)



and only a small number of such n (about 4 tries on the
average since about half of the incorrect values of a
w11l be eliminated on each try) need to be tried before
@ can be found. Once @ {s known, we see that, for each
n such that y,_; = 1 and Yn-2 = 0, we obtain from (18)
the linear equation

*n T Yn * Yn-a * Yn-g " yn-16

and only about 4 such further values of n will be needed
before B is determined. Finally, one determinesy and §
from choices of n where Yn-2 = 1. Note that the possi-
bility of such an attack depends on the fact that some
factors in higher-order products are known in advance.
The conclusion {s that all factors in all product terms
should dngfnd on the key in a well-designed system.

In A-modulated speech, the sequence x will consist
of repetitions of the pattern (0,1) durina pauses of
the cprech. The attack used by Fischer and Hochstrasser
assumrd that this was alwnxs the nature of X, solved for
(a,8,Y,8 by the above described attack, and took the
majority value of the solution for many such attacks.
The correct key was produced in most cases from only a
one second sample of y, i.e. from 32K bits of ciphertext.
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