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Abstract:  The necessary and sufficient condition for an (n,k) convolutional code over
a finite commutative ring to have a systematic encoder is derived. A sufficient
condition for a systematic (n,1) convolutional code over the ring of integers modulo
M to be rotationally invariant is derived together with a similar, but not identical,
necessary condition.

I.  INTRODUCTION

The purpose of this paper is to consider two basic structural properties of
convolutional codes over rings. Such codes were introduced in [1] together with their
motivation from phase-modulated signals, cf. also [2].

In the sequel, R will always denote a finite commutative ring with
multiplicative identity 1, and R[D] will denote the ring of polynomials in the
indeterminate D with coefficients in R. By "polynomial", we will always mean an
element of R[D]. The leading coefficient (trailing coefficient) of a non-zero
polynomial is the coefficient of the largest (smallest) power of D whose coefficient is
non-zero.  If a(D) and b(D) are polynomials and if the leading coefficient of b(D) is a
unit of R, then there exist unique polynomials q(D) and r(D) such that a(D) = q(D)b(D)
+ r(D) and degree [r(D)] < degree  [b(D)].

By a rational function over R we mean a ratio of polynomials a(D)/b(D) in
which the trailing coefficient of the denominator polynomial b(D) is a unit of R. As
usual, two rational functions a1(D)/b1(D) and a2(D)/b2(D) are defined to be equal just
when a1(D)b2(D) = a2(D)b1(D).  The set of all rational functions over R forms a ring
that is denoted by R(D).  By formal long division of the denominator polynomial
into the numerator polynomial, every rational function can be expressed uniquely as
a Laurent series with at most finitely many negative powers of D. For instance, 1/(1-
D) = 1 + D + D2 + ...  and 1/(D-D2) = D-1 + 1 + D + ... .

We will speak interchangeably of the rational function α(D) and the sequence
(..., α−1, α0, α1, ...) where α i is the coefficient of Di in the Laurent series for α(D). The



start of a non-zero α (D) is the smallest i such that α i  = 0. By way of convention, the
sequence  α (D) = 0 has start + ∞. We will say that α (D) is causal (or realizable) if its
start is nonnegative.

II.  SYSTEMATIC CODES

Let R(D)n denote the set of all n-tuples with entries in R(D) and note that R(D)n

is a rank-n free module over R(D). We define an (n,k) R-ary convolutional code M
to be a rank-k free submodule of R(D)n. By the causal subcode Mc of M, we mean the
submodule of M consisting of all codewords having only causal components.  By the
start module M0 of M, we mean the R-module consisting of all R-ary n-tuples [α1(0),
α2(0), ..., αn(0)] for which  [α1(D), α2(D), ..., αn(D)] is a codeword in the causal subcode
Mc.  We shall say that a convolutional code M  is quasi-proper if M0 is a rank-k free
submodule of Rn, and that it is proper if one can select k components so that the n-
tuples in M0 when restricted to these components form the free module Rk.

A generator matrix for M is any k × n matrix whose rows are a basis for M. An
encoding matrix is a generator matrix all of whose entries are realizable. An encoding
matrix G(D) is systematic if each column of the identity matrix Ik is also a column of
G(D). The convolutional code M is systematic if it has a systematic encoding matrix.

Propositon 1:  A convolutional code is systematic if and only if it is proper.

Example 1:  The (2,1) convoutional code over R =  Z4, the ring of integers modulo 4,
having   G(D) = [2+D   2]  as an encoding matrix is not even quasi-proper because M0 =
{ [0,0], [0,2], [2,0], [2,2]} is not a free module.

Example 2:   The (2,1) convolutional code over R = Z6 having  G(D) = [2  3]  is quasi-
proper because M0 is the free submodule of R2 with basis [2, 3], but it is not proper
because M0 when restricted to the first component is the R-module {0, 2, 4} and when
restricted to the second component is the R-module {0, 3} but neither of these is the
free module R.

Example 3:  The (2,1) convolutional code over R = Z6 having  G(D) = [5   2+3D]  as an
encoding matrix is proper because M0 is the free submodule of R2 generated by [5, 2]
and M0 restricted to the first component is the free module R generated by 5. Note
that scaling the first and only row of the given encoding matrix by 5 gives the
systematic encoding matrix [1   4+3D].

Proof of Proposition 1:  Suppose M is systematic and let G(D) be a systematic encoding
matrix for M. Then M0 is the free submodule of Rn having the rows of G(0) as a basis.
Moreover, M0 restricted to some k components where the columns of G(0) contain
all columns of Ik is trivially the free module Rk and thus M is proper.



Suppose conversely that M is a proper (n,k) convolutional code. We can then
find k codewords [α1(D), α2(D), ..., αn(D)] in the causal subcode Mc such that the
corresponding R-ary n-tuples [α1(0), α2(0), ..., αn(0)] are linearly independent over R
and remain linearly independent when restricted to some choice of k components.
These k codewords form the rows of an encoding matrix G(D) whose columns in the
chosen k components form a k × k matrix A(D) such that the determinant of A(0) is a
unit of R. Hence A(D)-1G(D) is a systematic encoder for M, as was to be shown.

If the ring R is in fact a finite field, then every (n,k) convolutional code over R
is proper.  In particular, every (n,k) convolutional code over R = Zp, where p is a
prime, is proper.

If M is the product of two or more distinct primes, then, by the Chinese
Remainder Theorem, ZM  is isomorphic to the direct product of the fields Zp for
which p is a prime factor of M.  An (n,k) convolutional code over ZM  is thus
isomorphic to a direct product of (n,k) convolutional codes over the corresponding
fields Zp.  Similarly, the start module M0 is isomorphic to the direct product of the
start modules of the field codes, which modules are vector spaces of dimension k
over Zp.  It follows that M0 has a basis of cardinality k, i. e., it is a free module of rank
k.  Thus, when M is the product of two or more distinct primes, every (n,k)
convolutional code over Zm is quasi-proper.  Example 2 shows, however, that such
codes need not be proper.

When M = pe where p is a prime and e > 1,  then a quasi-proper (n,k)
convolutional code over R = ZM is also proper.  To see this, suppose that M is quasi-
proper and let G0 be a k by n matrix over R whose rows are a basis for the free start
module M0.  Multiplying each row of G0 by pe-1 gives a k by n matrix G0 over R, no
nontrivial linear combination of whose rows can vanish when the coefficients of the
linear combination are restricted to lie in the subset {0, 1, ..., p-1} of R.  Equivalently,
reducing the entries in G0 modulo p gives a k by n matrix G0 over the field Zp with
linearly independent rows.  It follows that G 0 must also contain k linearly
independent columns over Zp, and hence that G0 must also contain k linearly
independent columns over R so that  the code M  is indeed proper.  Example 1
shows, however, that a convolutional code over such R need not be quasi-proper.

III.  ROTATIONAL INVARIANCE

We have shown elsewhere that convolutional codes over R = ZM are the
"natural" linear codes for use with M-ary phase modulation [1], [2]. We assume
hereafter that the element i of ZM is mapped by the modulator to the signal ej2πi/M in
the phase modulation signal set. Then the transformation i → i+1 in ZM corresponds
to the minimum phase shift of the signals that leaves the signal set unchanged. Any
"trellis code" for phase modulation is said to be rotationally invariant if this
minimum shift, when applied to all components starting at time 0 or later in each
codeword, yields a word that differs in at most finitely many positions from another
codeword. Because 1/(1-D) = 1 + D + D2 + ..., it follows by definition that an (n,k)



convolutional code M over R = ZM  is rotationally invariant if adding [1/(1-D), 1/(1-
D), ..., 1/(1-D)] to each codeword in the causal subcode Mc yields an n-tuple that differs
from another codeword by a polynomial in each component. The following
propositon is then an immediate consequence of the linearity of M.

Propositon 2: A convolutional code over R = ZM is rotationally invariant if and only
if it contains a codeword each of whose components differs from 1/(1-D) by a
polynomial.

The following simple lemma will be useful in the sequel.

Lemma:  A rational function in R(D) differs from 1/(1-D) by a polynomial if and only
if it can be written as p(D)/(1-D) where p(D) is a polynomial  with p(1) = 1.

Proof:  A rational function differing from 1/(1-D) by a polynomial can by definition
be written as q(D) + 1/(1-D) where q(D) is a polynomial. But then q(D) + 1/(1-D) =
p(D)/(1-D) where p(D) = (1-D)q(D)+1 and hence p(1) = 1. Conversely, because the
leading coefficient of 1-D is a unit of R, any polynomial p(D) with p(1) = 1 can be
written uniquely as p(D) =(1-D)q(D)+r for some poynomial q(D) and some r in R. But
then r = p(1) and hence p(D)/(1-D) =  q(D) + l/(1-D) as was to be shown.

We now consider testing whether or not an (n,1) systematic convolutional
code over ZM is rotationally invariant.

Proposition 3:  The (n,1) convolutional code over ZM with systematic encoding
matrix

[ 1  
a2(D)
 b2(D)   ....

an(D)
 bn(D)   ],

where ai(D) and bi(D) are not both divisible by 1-D for i = 2, 3,..., n, is rotationally
invariant if ai(1) = bi(1) is a unit of ZM for each i, 2 ≤ i ≤ n. Conversely, the code
cannot be rotationally invariant unless ai(1) = bi(1) for each i, 2 ≤ i ≤ n.

Remark: The condition that ai(1) and bi(D) are not both divisible by 1-D is just the
condition that ai(1) and bi(1) are not both 0.
Proof:  Suppose that ai(1) = bi(1) is a unit of R for each i. Consider the information
sequence  U(D) = cb2(D)...bn(D)/(1-D)  where c = (b2(1)...bn(1))-1.  It follows from the
lemma that U(D) differs from l/(1-D) by a polynomial. The resulting codeword is

[ U(D)    U(D) 
a2(D)
b2(D)  ...  U(D) 

a2(D)
b2(D)  ].

The i-th component of this codeword differs from U(D) only in that bi(D) in the
numerator is replaced by ai(D); hence this i-th component also differs from
1/(1-D) by a polynomial because ai(1) = bi(1). Thus the code is indeed rotationally
invariant.



Conversely, suppose the code is rotationally invariant. Then, by the lemma,
the information sequence that yields some codeword each of whose components
differs from 1/(1-D) by a polynomial must have the form U(D) = p(D)/(1-D) where
p(D) is a polynomial with p(1) = 1. The i-th component of the resulting codeword,
(p(D)ai(D))/((1-D)bi(D)), can then by the lemma be written as q(D)/(1-D) where q(D) is
a polynomial with q(1) = 1. Thus,  p(D)ai(D) = q(D)bi(D)  from which it follows that
ai(1) = bi(1), as was to be shown.

Example 4:  The (2,1) code of Example 3 is rotationally invariant since a2(1) = b2(1) = 1
is a unit of Z6.

Unfortunately, the values of ai(1) and bi(1) do not suffice to determine
whether or not the code is rotationally invariant when ai(1) = bi(1) is a non-zero non-
unit, as the following examples show.

Example 5:  The (2,1) code over Z6 with encoding matrix   G(D) = [ 1    
5+3D
1+D   ],

which has a2(1) = b2(1) = 2, a non-unit, is rotationally invariant since the information

sequence U(D) = (5+2D)/(1-D) produces the codeword [ 
5+2D
1-D   

1
1-D  ] each of whose

components, by the lemma, differs from 1/(1-D) by a polynomial.

Example 6:  The (2,1) code over Z6 with encoding matrix  G(D) =  [ 1   
2

1+D  ],

which also has a2(1) = b2(1) = 2, is not rotationally invariant. To see why, note that the
second entry of this matrix is just 4 times the corresponding entry of the matrix in
Example 5.  Thus,  because 4 is not a unit, it is impossible that there be any 1's
whatsover in the Laurent series of the second component of a codeword for the code
of this example, much less that there be all 1's after some finite number of terms.

Finally, we consider the case of polynomial encoders for (n,1) systematic codes
to show that  our condition for rotational invariance reduces to the well-known (cf.
[3, p. 255]) condition for a "transparent code" for binary phase modulation when M =
2 so that ZM is a field.

Corollary to Propositon 3:  The (n,1) convolutional code over ZM with polynomial
encoding matrix G(D) = [a1(D)  a2(D) ... an(D)], where a1(0) is a unit of ZM and where
ai(1) is not 0 for at least one i, 1 ≤ i ≤ n, is rotationally invariant if a1(1) = a2(1) = ... =
an(1) is a unit of ZM. Conversely, the code cannot be rotationally invariant unless
a1(1) = a2(1) = ... = an(1).

Proof:  Dividing each entry of G(D) by a1(D) gives a systematic encoding matrix as in
Propositon 3 where now bi(D) = a1(D) for i = 2,3,..,n. The corollary follows
immediately.
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