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ABSTRACT

It is shown that the "usual definition" of a discrete memoryless channel
(DMC) in fact prohibits the use of feedback. The difficulty stems from the
confusion of causality and statistical dependence. An adequate definition of a
DMC is given, as well as a definition of using a channel without feedback. A
definition, closely based on an old idea of Marko, is given for the directed
information flowing from one sequence to another. This directed information
is used to give a simple proof of the well-known fact that the use of feedback
cannot increase the capacity of a DMC. It is shown that, when feedback is
present, directed information is a more useful quantity than the traditional
mutual information.

INTRODUCTION

Information theory has enjoyed little success in dealing with systems that
incorporate feedback. Perhaps it was for this reason that C.E. Shannon chose
feedback as the subject of the first Shannon Lecture, which he delivered at the
1973 IEEE International Symposium on Information Theory in Ashkelon,
Israel. Unfortunately, few researchers in information theory have followed
Shannon's lead. As we shall see, information-theoretic definitions more often
than not tacitly assume that no feedback is present (usually without the
awareness of the definer). To deal with feedback requires system definitions
much more careful than those that we are accustomed to use in information
theory. In the sequel, we try to provide some such careful definitions and to
investigate their consequences. We shall make important use of an idea
introduced almost two decades ago by Marko (Ref. 1), who is one of those
rarities among workers in information theory who has understood the impor-
tance of bringing feedback explicitly into the theory.

For definitions of the standard information-theoretic quantities used in this
paper, we refer the reader to the book of Gallager (Ref. 2), whose notation we
will also follow as closely as possible. In particular, Xn will denote the n-tuple
[X1, X2, ..., Xn], whose components are discrete random variables, and xn = [x1,
x2, ..., xn] will denote a possible value of Xn. The probability distribution for Xn

evaluated at xn will be written simply as P(xn).



DISCRETE CHANNELS

A discrete channel with finite input alphabet A and finite output alphabet B
is the specification of the conditional probability P(yn|xnyn-1) for all n ≥ 1, all xn

ε An and all yn ε Bn. The discrete channel is memoryless if this conditional
probability satisfies

P(yn|xnyn-1) = P(yn|xn).                   (1)

The reader will note that (1) is not the conventional definition of a discrete
memoryless channel (DMC), but we will argue that the usual definition is
indefensible.

We will say that a discrete channel is used without feedback if

P(xn|xn-1yn-1) = P(xn|xn-1)   (2)

holds for all n ≥ 1, all xn  ε An and all yn-1 ε Bn-1, i.e., when the choice of the
next channel input digit, given all previous input digits, is not further related
to the previous channel output digits.

The multiplication rule for probabilities gives for the joint probability of a
channel input sequence and output sequence

P(xNyN) = ∏
n=1

N
  P(xnyn|xn-1yn-1)

    = ∏
n=1

N
  P(xn|xn-1yn-1) P(yn|xnyn-1)         (3)

for all N ≥ 1. If the channel is used without feedback, (2) can be used in (3) to
give

P(xNyN) = P(xN)  ∏
n=1

N
  P(yn|xnyn-1)

or, equivalently,

P(yN|xN) =  ∏
n=1

N
  P(yn|xnyn-1)           (4)

for any channel input sequence xN with P(xN) =| 0. If the channel is also
memoryless, then (1) can be used in (4) to give



P(yN|xN) =  ∏
n=1

N
  P(yn|xn),              (5)

which the reader will recognize as the "usual definition" of the DMC. In fact,
we now see that (5) can be taken as at most the "definition of a DMC used
without feedback". If one uses a DMC with noiseless feedback in the manner
that the next input digit is chosen as the previous output digit, i.e., so that xn =
yn-1 for all n > 1, then P(yN|xN) = 0 when xn  =|  yn-1 holds for some n satisfying
1 < n ≤ N so that (5) will not be satisfied.

It is hardly a wonder that information theory has had problems dealing with
feedback when our usual definition of our most basic channel, the DMC,
explicitly precludes the use of feedback. It is interesting to note that Ash (Ref.
3) in his generally excellent book "correctly" defines a DMC according to (1) but
contrives to convert his definition to the "incorrect" definition (5) of a DMC
by invoking the relation

P(yn|xNyn-1) = P(yn|xnyn-1)         (6)

for all 1 ≤ n ≤ N that he attributes to "causality", i.e., to the fact that the value
of the channel output at time n should not depend on the future inputs xn+1,
..., xN. What Ash actually has done, however, is to rule out feedback since, via
feedback, the value of yn could indeed influence xn+1, ..., xN. The lesson to be
learned here is that probabilistic dependence is quite distinct from causal
dependence. Whether X causes Y or Y causes X, the random variables X and Y
will be statistically dependent. Indeed, this phenomenon lies at the heart of
the "mutuality" of mutual information: I(X;Y) = I(Y;X). Statistical dependence,
unlike causality, has no inherent directivity.

DIRECTED INFORMATION

We now attempt to give a meaningful notion of directivity to the
information flow through a channel. Our basic definition is a slight
modification of that introduced by Marko (Ref. 1) seventeen years ago. The
directed information I(XN→YN) from a sequence XN to a sequence YN will be
defined by

I(XN→YN) = ∑
n=1

N
  I(Xn;Yn|Yn-1).        (7)

The reader can easily satisfy himself that I(XN→YN) =| I(YN→XN) in general.
The usefulness of directed information is indicated in the following theorems.

Theorem 1: If XN and YN are the input and output sequence, respectively, of a
discrete channel, then  I(XN→YN) ≤  I(XN;YN) with equality if the channel is
used without feedback.



Proof: Replacing Xn by XN on the right in (7) can only increase the sum, which
is then I(XN;YN) so the claimed inequality is established. If the discrete chan-
nel is used without feedback, (4) gives

H(YN|XN) =   ∑
n=1

N
  H(Yn|XnYn-1)

and hence

I(XN;YN) =     H(YN) - H(YN|XN)

=     ∑
n=1

N
  [H(Yn|Yn-1) - H(Yn|XnYn-1)]

=     ∑
n=1

N
  I(Xn;Yn|Yn-1)

=     I(XN→YN)

as was to be shown.

Theorem 2: If XN and YN are the input and output sequences, respectively, of a
DMC, then

I(XN→YN) ≤   ∑
n=1

N
   I(Xn;Yn)

with equality if and only if Y1, Y2, ..., Yn are statistically independent.

Proof:  I(Xn;Yn|Yn-1) =  H(Yn|Yn-1) - H(Yn|XnYn-1)

           =  H(Yn|Yn-1) - H(Yn|Xn)

where we have made use of the definition (1) of a DMC. Using this relation in
(7) gives

I(XN→YN) = H(YN) - ∑
n=1

N
   H(Yn|Xn)

from which the theorem now follows trivially.



CAUSAL SYSTEMS

We next venture a definition of causality for a discrete-time system
composed of sources, discrete channels, and various encoding and decoding
devices. We will say such a system is causal if, for every source output
sequence uk and every input sequence xn and corresponding output sequence
yn for some channel,

P(yn|xnyn-1uk) = P(yn|xnyn-1).        (8)

The idea of this definition is that source output sequences should be thought
of as specified prior to the process of sending sequences over channels and the
channel should be aware of such sequences only via its past inputs and
outputs and its current input.

Theorem 3:  If XN and YN are the input and output sequences, respectively, of
a discrete channel in a causal system and UK is a source output sequence, then
I(UK;YN) ≤ I(XN→YN).

Proof: H(YN|UK) =   ∑
n=1

N
   H(Yn|Yn-1UK)

             ≥   ∑
n=1

N
  H(Yn|XnYn-1UK) =

             =    ∑
n=1

N
  H(Yn|XnYn-1)

from which the theorem follows directly.

Note that Theorems 2 and 3 directly imply the well-known fact that (in a
causal system) the capacity of a DMC is not increased by the use of feedback. It
is more interesting to note that this "well-known result" is logically
meaningless if one adopts the "usual definition" (5) of a DMC, since this
"definition" does not permit feedback to be used!

From Theorems 1 and 3, one sees in general that when feedback is present
the directed information I(XN → Y N ) gives a better upper bound on the
information that the channel output sequence YN gives about the source
sequence UK than does the conventional mutual information I(XN;YN). This
means that, when feedback is present, we will obtain stronger results if we
work with directed mutual information rather than with mutual
information. Whether directed information suffices as a basis for a genuine
information theory of feedback systems remains, however, to be seen.



REMARKS

We first pointed out the inadequacy of the "usual definition" of a DMC to
deal with feedback in our keynote lecture given at the International
Conference on Information Theory and Systems, Berlin, September 18-20,
1978. The other results in this paper were presented orally at the Information
Theory Meeting held at the Mathematical Research Center, Oberwolfach,
Germany, May 14-19, 1989.
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