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Abstract:  It is argued that the "rightful purpose" of a CDMA modulation system is to create a good

channel for the coding system.  This viewpoint leads to a precise formulation of energy efficiency

and a novel formulation of bandwidth occupancy as normalized Shannon bandwidth.  Various

modulation/coding architectures are formulated and compared.  It is shown that it is possible to

design systems in such a way that the burden of separating and detecting the users' information

sequences is divided between the demodulator and the decoders with resulting reduced complexity

but with no penalty in either energy efficiency or bandwidth occupancy.

1  Introduction

Before one begins to study modulation systems and coding systems in
detail for code-division multiple accessing (or for any other kind of
communications for that matter), it is well to reflect on what the purposes of
these two systems are.  As self-evident as this admonition may seem, we must
remark that our experience shows that it is heeded more in the breech than in
the practice.  The reader is thus asked to bear with a recitation of these purposes
that is not at all new but that is prone to be forgotten.

For our purposes, the model of an "L-chip synchronous CDMA channel"
shown in Fig. 1 will be adequate.  As shown, the model describes one use of a
memoryless channel.  Each of the M-users, say user i, sends a symbol Bi to his
corresponding modulator.  We assume that Bi is a random variable with second
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Fig. 1:  Model of an L-chip synchronous CDMA channel.
             ( E[Bi2] ≤ Ec,  siT si = L, and ZL is white Gaussian noise of variance No/2.)

moment E[Bi2] ≤ Ec.  We further assume that the random variables B1, B2, ..., BM

are independent, which is the essential difference between a multiple-access
channel and a single-user channel. Using the usual signal-space representation
with respect to any convenient basis of orthonormal waveforms, we can view the
modulator as converting Bi into the signal vector Bisi, where si  = (si1, si2, ..., siL)
is an L-component vector with energy L.  For convenience, we will consider the
components of si to be real numbers, i.e., si ∈  ℜ L, which is equivalent to
considering a baseband channel (but all our conclusions carry directly over to the
passband case when these components are complex numbers).  The energy of si is
thus

siTsi   =   ∑
n=1

L
  sin2  =  L (1)

(where the superscript T denotes transposition) and our normalization of this
energy to L is motivated by the usual case in CDMA systems where sin ∈  {-1, +1}
for all n.  The demodulator input is the received vector

YL  =  ∑
i=1

M
  Bi si + ZL (2)
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where ZL = (Z1, Z2, ..., ZN) is white Gaussian noise (WGN), i.e., its components
are independent zero-mean Gaussian random variables all with the same
variance, which as usual we take to be No/2.  We will be less explicit about the
nature of the demodulator outputs, since these are at the choice of the designer of
the modulation system.

We can now address the question of what the modulation system of Fig. 1
should be designed to do.  But this requires us to think more carefully about how
the users will actually send information over this channel.  In fact, we know that,
for reliable and efficient transmission, each user will encode his information bits
into a sequence of symbols to be sent over the channel, and the receiver will
decode the corresponding received sequence provided by the demodulator to
recover these information bits.  The conclusion is inescapable:

(i) The rightful purpose of the modulation system in Fig. 1

(i.e., of the K modulators and the demodulator) is to

create a good channel for coding.

To make this general purpose more directly applicable, we must separately
consider the modulators and demodulator.  The choice of the modulators, i.e.,
the choice of the sequences s1, s2, ..., sL, determines a multiple-access channel
with input B = (B1, B2, ..., BM) and output YL = (Y1, Y2, ..., YL). The fundamental
measure of goodness of a channel for coding is, of course, its capacity

(appropriately defined as we will later do) so we must conclude:

(ii) The rightful purpose of the K modulators in Fig. 1 is to

create a channel from B to YL with maximum capacity.

The question of what the demodulator should do is more subtle.  If we
continue to take capacity as our only criterion of goodness, the answer is simple:
do nothing!  Any processing of YL can only reduce capacity since, by the Data
Processing Theorem [1, p. 158] of information theory, I(B; YL) ≥ I(B; R) where R =
(R1, R2, ..., RM) and where I(. ; .) denotes mutual information.  Thus, taking Ri =
YL  for all i (so that we really have only one demodulator output) is optimum in
the sense of maximizing capacity.  But a channel "good for coding" should mean
not only a channel with large capacity but also one that is convenient for coding
and decoding.  Because (at least roughly) the complexity of decoding grows with
the number of quantization levels at the demodulator output, we can conclude
the following:
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(iii) The rightful purpose of the demodulator in Fig. 1 is to

quantize the received vector YL as coarsely as possible

consistent with a tolerably slight decrease of capacity.

The three conclusions stated above are, as we have already said, not new.
They appear quite explicitly in [2, p. 211], [3], [4], [5] and [6], sometimes with cut-off

rate (which is also an excellent measure of channel quality for coding in single-
user channels) used in place of capacity, but this makes no essential difference.  In
the following sections, we will study modulation and coding for the CDMA
channel in light of these rightful purposes of the modulation system.  The
novelty of much of what follows suggests that although these "rightful purposes"
are virtually self-evident, they are usually ignored in the design and analysis of
CDMA systems.

The two aspects of the modulation system of Fig. 1 that are the most
frequent source of controversy are its energy efficiency and its "bandwidth

efficiency".  We now wish to define these terms in such a way that we can validly
compare systems with different values of L and Ec, but of course we would fix K
(the number of users) and No (the one-sided noise power spectral density) in any
such comparison.  Energy efficiency is the more easily understood of these two
"efficiencies" so we begin with it.

The components sin of the "spreading sequence" si are traditionally called
chips.  Since user i sends L chips with total energy E [Bi siT si Bi] = L E [Bi2] ≤ L Ec ,
where we have made use of (1), we see that Ec is the (maximum allowed) average

chip energy for user i.  We may draw the immediate conclusion:

(iv) When comparing modulation systems of the type in Fig. 1

with the same values of  K and  Ec, the appropriate measure of

energy utilization is the ratio of the per-user capacity per chip of the 

channel from  B  to  YL to the chip energy  Ec.

By the chip time Tc of a CDMA system, we mean the time interval
allocated to the transmission of one chip over the underlying waveform channel.
More precisely, the chip rate  1/Tc is the (average) number of chips per second
produced by a modulator.  The chip rate 1/Tc is precisely the Shannon bandwidth

of the modulated signals, i.e., the number of dimensions of signal space used per
second, cf. [6].  This Shannon bandwidth is exactly twice the ordinary Fourier
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bandwidth when the corresponding chip waveforms are chosen to minimize the
Fourier bandwidth.  If two modulation systems (possibly with different values of
Ec and L) are such that the first has three times the capacity per chip of the second,
then (upon the assumption that the two corresponding coding systems operate at
the same fraction of capacity) to accomodate the same information transfer rate
one will have to send three times as many chips per second for the second system
as for the first, i.e., the second system requires three times as much bandwidth.  In
fact, the reciprocal of the total capacity per chip, i.e., the numbers of chips required
per bit of total capacity, can and will be defined here as the normalized Shannon

bandwidth.  We need merely to multiply this normalized bandwidth by the
desired total information bit rate to obtain the Shannon bandwidth; a further
multiplication by one-half yields the Fourier bandwidth (or a close
approximation thereto).  We are forced to the following conclusion.

(v) When comparing modulation systems of the type in Fig. 1 with the 

same values of   K  and  Ec, the appropriate measure of bandwidth 

occupancy is normalized Shannon bandwidth defined as the

reciprocal of the total capacity per chip of the channel from B  to YL.

It should now be apparent that the demands for energy efficiency and
bandwidth "efficiency" are to some extent conflicting.  Because the capacity per
chip generally (but not always as we will see in Section 4 below) increases without
limit as the chip energy Ec increases, one can usually be as bandwidth "efficient"
as one pleases -- if one doesn't care about energy efficiency.  "Bandwidth
efficiency" is misleading terminology that should be expunged from the
vocabulary of communications engineers; instead, one should speak of
bandwidth occupancy.  There is, however, an upper limit on energy utilization
(as we will see below) so that it does make good sense to talk about energy
efficiency.

2  Trivial Demodulation with Joint Decoding

As noted above, the optimum demodulator, in the sense of maximizing
the capacity of the channel from B to R in Fig. 1, is that which does nothing
(expect of course to project the received waveform into its representation YL in
signal space.  Thus, it is natural to begin our detailed modulation/coding studies
with the architecture of Fig. 2 in which the demodulator merely passes YL along
to the joint decoder that has full responsibility for separating and detecting the
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sequences of information bits from the K information sources.  We now consider
the appropriate notion of capacity for the channel from B to YL, which will serve
as a useful upper bound on the capacity from B to R for less trivial demodulators.
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Fig. 2:  Trivial demodulation combined with joint decoding--the joint decoders
             emits decision on the information bits of the K users.

It would seem at first glance that the appropriate notion of capacity for the
multiple-access channel would be the per-user sum capacity per chip, Csum, from

B to YL, i.e., the maximum of  
1

KL I (B; YL), where the maximum is taken over all

choices of probability distributions for the independent random variables B1, B2,
..., BK subject to the constraint that E [Bi2] ≤ Ec for all i.  It is easy to obtain a simple
upper bound on this capacity.  The total average modulated signal energy per
chip is at most KEc with equality if and only if E [Bi2] ≤ Ec for all i.  The additive

Gaussian noise on each chip has variance No/2.  Thus,  
1

KL I (B; YL) is upper

bounded by 
1
K times the capacity of a single-user discrete-time Gaussian channel

with signal energy KEc and noise variance No/2.  By one of the oldest results in

information theory (cf. [2, p. 147[) this capacity is  
1
2 log2(1 + 

KEc
No/2 ) with equality if

and only if  YL is WGN with variance  KEc + No/2.
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Proposition 1:  The per-user sum capacity per chip of the channel from B  to YL

satisfies

Csum  ≤  
1

2K  log2(1 + 
KEc

No/2 )  [bits/chip] (3)

with equality if and only if YL is WGN with variance KEc + No/2.

But in fact the sum capacity is not the capacity of most interest for
multiple-accessing since it places no demands on fairness.  What is of much
greater interest is the per-user symmetric capacity per chip, Csym, which is defined
as the maximum number C such that the K-tuple (C, C, .., C) lies in the capacity
region of the channel, i.e., such that all of the K users can simultaneously send
information reliably at any per-user rate less than C bits/chip.  The following
somewhat surprising result is proved in [7].

Proposition 2:  The per-user symmetric capacity per chip of the channel from B  to

YL satisfies

Csym  ≤  
1

2K  log2(1 + 
KEc

No/2 )     [bits/chip] (4)

with equality in the (usual) case where K ≥ L if and only if the L × K matrix S with

columns s1, s2, ... , sK has mutually orthogonal and equal-energy rows.

We will call sequences s1, s2, ... , sK satisfying the conditions for equality in
Proposition 2 a Welch-Bound-Equality (WBE) sequence set (more precise
terminology would be "sequence multiset" as the sequences s1, s2, ... , sK need not
be distinct), since these are precisely the conditions that were proved in [8] for
equality to hold in a lower bound due to Welch [9] on the sum of the "squared
correlations" (siT sj)2 over all i and j.  Because Csym ≤ Csum, we see from (4) and (6)
that fairness can be achieved with no loss of capacity by choosing the spreading

sequences s1, s2, ... , sK to form a WBE sequence set.

Because log2(1 + 
KEc

No/2 )  ≤  1.44 
KEc

No/2  with equality when and only when

 
KEc

No/2  is sufficiently small (say, 
KEc

No/2  ≤  1), we obtain the following from (4).
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Proposition 3:  The per-user symmetric capacity per chip of the channel from B  to

YL satisfies

Csym  ≤  1.44 
Ec
No

  (5)

with near equality in the case K ≥ L when and only when 
Ec
No

  is sufficiently small

(say, 
Ec
No

  ≤  
1

2K ) and the spreading sequences form a WBE sequence set.

It is now natural [and in keeping with conclusion (iv) of Section 1] to
define the energy efficiency γ of a CDMA modulation system by

γ  =  Csym/(1.44 
Ec
No

)   (6)

since this percentage cannot exceed 1 but approaches 1 when  
Ec
No

  ≤  
1

2K  and a

WBE sequence set is used.

3  Full Demodulation with Single-User Decoding

The main drawback of the modulation/coding architecture of Fig. 2 is that
it places enormous demands on the "joint decoder."  Decoding on a single-user
channel is generally complex enough; joint decoding for a K-user channel with,
say, K ≈ 104 can be mind-boggling in complexity.  For this reason, most past
CDMA systems use the architecture of Fig. 3, in which by a single-user decoder for

user i is meant a decoder that treats the contributions of all other users to its

input as constituting additional white Gaussian noise.  The demodulator in Fig. 2
has been given full responsibility for separating the signals of the K users!
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Fig. 3:  Full demodulation with single-user decoding wherein the decoder for
             user i treats the effects of all other users on Ri as white Gaussian noise.

Consider without loss of essential generality the situation for user 1, and
assume here and hereafter that E[Bi] = 0 and that  E[Bi2] =Ec for all i, which
conditions entail no loss of optimality and are generally desirable in practice.  The
optimum demodulator will, of course, supply to the single-user decoder for user
1 the number R1 determined by correlating YL with user 1's spreading sequence
s1, i.e.,

R1  =  
1

√ L
 s1T YL  =  √ L B1 + W1 + N1   (7)

where

N1  =  
1

√ L
 s1T ZT

is a zero-mean Gaussian random variable with variance No/2 and where

W1  =   
1

√ L
  ∑
j=2

K
 Bj s1T sj   (8)

is a zero-mean random variable with variance
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Ec
L  ∑

j=2

K
  (s1T sj)2.

By the central-limit theorem (cf. [10, p. 256]), one sees from (8) that W1 will be
well approximated by a Gaussian random variable for a WBE sequence set and,
indeed, most other sequence sets of practical interest.  But Welch's bound [9]
effectively provides a lower bound on the sum of the variances of the random
variables W1, W2, ... , WK that was shown in [8] to hold with equality if and only
if the sequence set is WBE.  It was further proved in [8] that, for a WBE sequence
set, these variances all have the same value, namely Ec(K - L).  Thus, we see that
(7) describes a single-user Gaussian channel from Bi to Ri with signal energy  L Ec
and noise variance at least Ec(K - L) + No/2 where the minimum holds if and
only if the sequence set is WBE.  Noting that user i uses this equivalent channel
only once every L chips, we may summarize our observations as follows.

Proposition 4:  The per-user single-user-decoding capacity per chip of the channel

from B  to R for the (usual) case K ≥ L satisfies

Csud  ≤   
1
2L log2[1 + 

L Ec
No/2 + Ec(K - L) ]   [bits/chip] (9)

with equality if and only if s1, s2, ... , sK form a WBE sequence set.  Moreover, if

K ≥ 2L or if No/2 ≥ Ec(K - L), then Csud is well approximated for a WBE sequence
set by

Csud  ≈  0.72 
Ec

No/2 + Ec(K - L)     [bits/chip]. (10)

The first of the two conditions for the validity of the approximation (10)
follows from the fact that if K ≥ 2L, then the second term in square brackets in (9)
is less than 1 so that the logarithm is well approximated by log2(e) = 1.44 times
that term.

We see from (9) that the approximation

Csud  ≈  1.44 
Ec
No

     [bits/chip] (11)

holds when and only when the sequence set is WBE and, moreover, Ec(K - L) is
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sufficiently small compared to No/2, say  
Ec
No

  ≤ 
1

4(K - L) .  But (11) is precisely the

condition for near 100% energy efficiency, i.e., for γ = 1 in (6).  Note also that the

condition  
Ec
No

  ≤  
1

4(K - L)  is only about twice as restrictive (since K ≥ 2L is

assumed and usually K >> L) as the condition 
Ec
No

  ≤ 
1

2K  required for near 100%

energy efficiency with joint decoding.  We can conclude the following.

Both a well-designed single-user-decoding system and a joint-decoding

system can operate as close to 100% energy efficiency as desired by choosing

a suitably small "signal-to-noise ratio"  
Ec
No

 .  Moreover, the upper limit of

"signal-to-noise ratios"  
Ec
No

  for which near 100% energy efficiency is

possible is only about twice as large for joint decoding as for single-user

decoding.

4  Bandwidth Comparisons

As we have just seen, suboptimum (but simple) single-user decoding
implies no unavoidable penalty in energy efficiency compared to optimum (but
complex) joint decoding.  We now show, however, that single-user decoding
does entail a substantial bandwidth penalty compared to joint decoding.

Consider first single-user decoding.  To operate at energy efficiency γ
requires, by the definition (6), that

Csud  =  1.44 γ 
Ec
No

      [bit/chip]. (12)

Equating the right sides of (10) and (12), then solving for the "signal-to-noise

ratio" 
Ec
No

  yields

Ec
No

   =  
1 - γ

 γ (1 - L/K) 2 K
  .

Substituting this into (12) gives the following expression for the normalized
Shannon bandwidth that, like (10), is a close approximation whenever K ≥ 2L.
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(K Csud)-1  ≈  (1 - L/K)  
1.39
1 - γ

     [chips/bit]. (13)

The situation for joint decoding is somewhat more complicated.  Again,
we begin with

Csym  =  1.44 γ  
Ec
No

     [bits/chip] (14)

and then equate the right sides of (4) and (10) to obtain the following
transcendental equation for the corresponding "signal to-noise" ratio:

2 γ K 
Ec
No

   =  ln(1 + 2K
Ec
No

). (15)

When Ec is sufficiently small (which implies γ ≈ 1), one finds from (15) that

Ec
No

   ≈  
1 - γ
 K  ,

which when used with (14) yields the following approximation  for the
normalized Shannon bandwidth:

(K Csym)-1  ≈  
0.69
1 - γ

 , (16)

which holds when K ≥ 2L and γ ≈ 1.  Comparing (13) and (16) shows that, in the
usual case when K >> L,

the bandwidth required to operate at a given high energy efficiency γ is

about twice as great for a single-user-decoding system as for a joint-

decoding system.

But high energy efficiency is in fact the most favorable case for the
bandwidth required with single-user decoding compared to that for joint
decoding, as one sees from Table I where we have listed the required normalized
Shannon bandwidths for single-user decoding [obtained from (13)] and for joint
decoding [obtained by solving the transcendental equation (15)].  At an energy
efficiency of 20%, which is in the region where one could expect a practical
CDMA system to operate, one sees that a single-user-decoding system will require
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well more than three times the bandwidth of a joint-decoding system in the
usual case where K >> L.  One is tempted to speculate that the poor "spectral
efficiencies" that have sometimes been reported for CDMA systems are rather the
result of their designers' predilection for single-user processing rather than of any
inherent spectral disadvantage of CDMA systems compared to other multiple-
access systems (there is no such disadvantage!).

γ (K Csud)-1 (K Csym)-1

[chips/bit] [chips/bit]
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 ∞ ∞
.9 13.9 (1 - L/K) 6.71
.8 6.95 (1 - L/K) 3.23
.7 4.63 (1 - L/K) 2.06
.6 3.48 (1 - L/K) 1.47
.5 2.78 (1 - L/K) 1.11
.4 2.32 (1 - L/K) 0.86
.3 1.99 (1 - L/K) 0.67
.2 1.74 (1 - L/K) 0.52
.1 1.54 (1 - L/K) 0.38
.01 1.40 (1 - L/K) 0.21
.001 1.39 (1 - L/K) 0.15
≈ 0 1.39 (1 - L/K) ≈ 0

Table I:  Normalized Shannon bandwidths (K Csud)-1 and (K Csym)-1 for
    single-user decoding (with K ≥ 2L assumed) and joint-decoding
    CDMA systems, respectively, as a function of energy efficiency γ.

One sees also from Table I that one cannot reduce the normalized
Shannon bandwidth of the single-user-decoding system below 1.39 (1 - L/K), no
matter how inefficiently one is willing to use energy.  This is a result of the fact
that, as follows from (9),

KCsud  →  
K
2L  log2 

1
1 - L/K     [bits/chip]    as  Ec  →  ∞ ,

which implies when K >> L that 
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KCsud  ≤  0.72     [bits/chip]

with near equality for large Ec.  In other words, when K >> L, no amount of chip
energy can give a total capacity of more than 0.72 [bits/chip] if single-user
decoding is used.  Hence, the normalized Shannon bandwidth cannot be reduced
below 1/0.72 = 1.39 [chips/bit].  For joint decoding, however, one sees from (4)
that

KCsym  →  ∞     as    Ec  →  ∞ ,

which is why the normalized Shannon bandwidth can be made as small as
desired if one is will to live with small energy efficiencies.

5  Partial Demodulation with User-Group Decoding

As we will now show, it is possible to make a compromise between single-
user decoding and joint decoding that combines the best features of both, namely,
the reduced complexity of the former and the reduced bandwidth of the latter.
[The ideas in this section represent joint work of the author and his colleague, Dr.
Thomas Mittelholzer.]  The "hybrid" architecture is shown in Fig. 4.
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Fig. 4:  Partial demodulation into signals for L groups of m users (K = mL)
             followed by decoding for each group of users.

We assume that K = mL for some positive integer m and that the users are
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partitioned into L groups of m users each.  We further assume that s1, s2, ... , sL

are mutually orthogonal sequences (i.e., siT sj  =  0 for i ≠ j), each of energy L, and
that all users in the i-th user group Gi use the same spreading sequence si.  The
L × K  =  L × mL sequence matrix S described in Proposition 2 can then be taken as

S  =  [M : M : ... : M] (17)

where M is the matrix whose columns are s1, s2, ... , sL.  By hypothesis,

MT M  =  L IL

where IL is the L × L identity matrix.  But MT is then (within a constant factor) the
inverse of M so that

M MT  =  L IL (18)

also holds, i.e., the rows of M are also mutually orthogonal and each of energy L.
It follows now from (17) that the rows of S are also mutually orthogonal and each
of energy mL = K.  Thus, the sequence set for the K = mL users is in fact a WBE
sequence set and hence, by Proposition 2, delivers a per-user symmetric capacity
for the channel from B to YL satisfying

Csym  =  
1

2K  log2(1 + 
KEc

No/2 )     [bits/chip], (19)

which is the best possible.

Now, suppose that the "partial demodulator" of Fig. 4 correlates each of
the L sequences assigned to the user groups with the received sequence YL (which
requires only L = K/m correlations compared to K correlations for the full
demodulator considered in Section 2.)  This partial demodulator then delivers to
the decoder for the i-th user group the output

Ri  =  
1

√ L
 siT YL  =  √ L ∑

j ∈  Gj

 Bj  + Ni (20)

where we have used (2) and the mutual orthogonality of s1, s2, ... , sL and where
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Ni  =  
1

√ L
 siT ZL

is a zero-mean Gaussian random variable of variance No/2.  We can recover YL

from R  =  (R1, R2, ... , RL) in the manner

∑
j=1

L
   ∑

i=1

L
   

1

√ L
 sj Ri  =  ∑

j=1

L
   ∑

i=1

L
   

1
L sj siT YL (21)

=  
1
L  M MT YL   =  YL

where we have made use of (18).  This means that the capacity of the channel
from B to YL is exactly the same as that from B to R.  Moreover, we note that the
Gaussian random variables N1, N2, ... , NL are independent.  It follows then from
(20) that the inputs Bj for j ∈  Gi are independent of all demodulator outputs
except Ri.  Hence, the per-user symmetric capacity Ci of the channel from these
inputs to Ri must be precisely the same as the per-user symmetric capacity from B
to R, i.e.,

Ci  =  
1

2K  log2(1 + 
KEc

No/2 )     [bits/chip] (22)

so that no capacity loss has resulted from our partial demodulation.  The decoder
for the i-th user group can now operate on the sequence of symbols from the
single demodulator output labelled Ri to separate and detect the users only in
this group and without having to worry at all about the other users. Absolutely
no penalty in either energy efficiency or bandwidth occupancy compared to
optimum joint decoding is incurred!

Many variations on the above hybrid scheme are possible, but the practical
advantage of dividing the task of separating and detecting all M users between
the modulation system and the coding system should be sufficiently clear to the
reader from the simple scheme that we have described above

6  Concluding Remarks
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The reader will certainly have noticed that in our analyses above we have
suppressed many important practical aspects of CDMA systems such as lack of
synchronization, different user energies, time variations, multipath effects, and
the like.  This was not because including these details would have altered our
conclusions (they would not!) but rather because their inclusion would obscure
the conceptual lessons that we were determined to set forth as nakedly as
possible.  We do not mean to suggest that treating these details is easy.  However,
unless we keep our eyes clearly fixed on the "rightful purposes" of a CDMA
system and on the basic information theory of such systems, we are only too apt
to lose sight of the forest because of the many trees of detail.
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