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   Abstract–A novel definition of a spread-spectrum system as
a communications system in which the Fourier bandwidth is
much greater than the Shannon bandwith (the number of
dimensions of signal space used per second) is proposed. Six
different communication systems are analyzed in terms of this
definition. It is shown that there is a fundamental difference
between the bandwidth expansion due to coding and due to
"spectrum spreading". It is further shown that spectrum
spreading plays no role in increasing the capacity of the
system, but can perform other useful roles such as providing
low probability of interception of the signal, good
electromagnetic compatibility, and a multiple-access
capability.

I. INTRODUCTION

The main purpose of this paper is to consider spread-
spectrum systems from the fundamental viewpoint of
Shannon's information theory [1]. To do this requires that we
carefully define what we mean by a spread-spectrum system.
This is done in Section II in which we give a rather
unconventional definition of a spread-spectrum system, but the
only one that we were able to formulate that we ourselves
found to be satisfactory. To illustrate the implications of this
definition, we consider six different communication systems in
Secion III to see which qualify (under our definition) to be
called spread-spectrum systems. In Section IV, we consider
various reasons why one might wish to use a spread-spectrum
system. In Section V, we make a more strictly information-
theoretic investigation of spread spectrum systems with one
sender  where we show that spreading spectrum can never
increase capacity but also that it need not decrease capacity
significantly. In Section VI, we make some concluding
remarks as to what more needs to be done before we have a
true information theory of spread-spectrum systems that will
allow one to make sound practical judgements and choices on
the basis of the theory.

Throughout this paper, we have limited ourselves for
simplicity to baseband signals, but the reader should have no
difficulty in adapting our approach to passband signals.

II. WHAT IS A SPREAD-SPECTRUM SYSTEM?

In his brilliant treatise [1] that established the field,
Shannon called information theory the "mathematical theory
of communication". We have often maintained that, in a very
real sense, mathematics is definitions. Once the definitions are
in place, all the lemmas, theorems and corollaries are
determined; one has only to find them and prove them. If we
wish to say something about the information theory of spread-

spectrum systems, it follows that our unavoidable first task
must be to define such systems. This task may well strike the
reader as either superfluous or quixotic. Like the U.S. supreme
court justice who admitted the difficulty of defining
pornography but claimed that he knew it when he saw it, many
communication engineers might maintain that a definition is
not needed; they know a spread-spectrum system when they
see it. One such friend described a spread-spectrum communi-
cation system to us as "one that uses much more bandwidth
than it needs". There seems to be a certain coarse truth in this
description, but it will hardly do for mathematical purposes.
After some futile attempts to make this description more
precise, our friend concluded that a clear definition of a
spread-spectrum system is not possible, which whetted our
appetite to make a stab at one.

Every communication engineer is familiar with the
ordinary notion of bandwidth, which we will call Fourier
bandwidth both to honor the French pioneer in this field and to
distinguish it from a less familiar but no less important type of
bandwidth. The "sinc pulse" m(t) = sinc (2Wt), where sinc (x)
= sin(π x)/(π x) , has a Fourier Bandwidth of W Hz, as one
sees immediately from its Fourier transform M(f) shown in
Fig. 1. For less dichotomous spectra, there are many options
for calculating the precise Fourier bandwidth (rms bandwidth,
3 dB bandwidth, 99% energy bandwidth, etc.), but they are all
roughly equivalent and any is good enough for our purposes.
The notion of Fourier bandwidth extends easily from deter-
ministic signals to stochastic processes (such as modulated
signals) in a way familiar to all communication engineers.
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Fig. 1: The Sinc pulse m(t) = sinc(2Wt) 
            and its Fourier Transform M(f)
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The second type of bandwidth, which we will call
Shannon bandwidth because Shannon [2] was the first to
appreciate its importance, cannot even be defined for a
deterministic signal, i.e., for a single time function. One must
consider a "variable" signal (or a stochastic process) such as a



modulated signal s(t) that can take on any of a multiplicity of
time functions as its value. Then one must consider a signal-
space representation of s(t) over some long time interval, say
the interval 0 ≤ t < T. By this we mean that one must find
orthonormal functions φi(t), i = 1, 2, .., N, so that one can
represent (or very well approximate) s(t) as

s(t) = ∑
i =1

N
   si φi (t)   (1)

for 0 ≤ t < T. One says then that one has a signal-space
representation of s(t) as a vector s = (s1, s2,..., sN) in N-
dimensional Euclidean space. When one does this in such a
way as to minimize the dimensionality N of the representation,
then he has arrived at the Shannon bandwidth B, which we
now define as

B = 
1
2
 
N
T

 (dim/sec). (2)

Equivalently, the Shannon bandwidth is one-half the minimum
number of dimensions per second required to represent the
modulated signal in a signal space. [In earlier papers [3], [4],
where we used the notion of Shannon bandwidth, we omitted
the division by 2 in (2). Emboldened by Emerson's dictum that
"a foolish consistency is the hobgoblin of small minds", we
now opt to insert the 2 in (2) in order to avoid many factors of
2 elsewhere.]

We now state what might be called the fundamental
theorem of bandwidth.

The Shannon bandwidth B of a
modulated signal is at most equal to its
Fourier bandwidth W; (rough) equality
holds when the orthonormal functions are

φi(t) = √2W sinc (2Wt - i) (or any
functions whose spectra are nearly flat
for -W < f < W and nearly zero
elsewhere).

There are many proofs of this theorem, starting with that of
Shannon [2]; essentially one shows that one can construct
2WT orthonormal functions of Fourier bandwidth W or less
that are confined within the time interval 0 ≤ t < T when WT
>> 1, and that one can construct no more than this. See the
insightful book of Wozencraft and Jacobs [6] and the
penetrating paper of Slepian [7] for further discussion of this
theorem.

We are now ready to offer our definition of a spread-
spectrum system as a communication system in which the
modulated signal has a Fourier bandwidth substantially
greater than its Shannon bandwidth. If one considers the
Shannon bandwidth to be the amount of bandwidth that the
system needs (and we will offer arguments to this effect later)
and the Fourier bandwidth to be the amount of bandwidth that
the system uses, then we are back at our friend's pithy
characterization of a spread-spectrum communication system
as "one that uses much more bandwidth than it needs".

It is an obvious next step to define the spreading factor, γ,
of a communication system as the ratio of the Fourier
bandwidth of the modulated signal to its Shannon bandwidth,
i.e.,

γ = W/B. (3)

For every communication system, γ ≥ 1. A spread-spectrum
system is a communication system with "large" γ, say γ ≥ 5,
but of course the precise dividing line between a spread-
spectrum system and an unspread system is quite arbitrary.

We now have our definitions. It remains to show that they
make sense, i.e., that they lead to interesting and useful
conclusions.

III. SOME EXAMPLES AND THEIR LESSONS

In digital communication systems (to which we will
mostly confine our discussion), the modulated signal in an
interval 0 ≤ t < T can assume only finitely many values. In this
case, one can in principle always apply the familiar Gram-
Schmidt orthogonalization technique [8, p. 277] to these
signals to obtain an orthonormal basis φ1(t), φ2(t), ..., φN(t) for
the signal space of smallest dimension N containing these
signals and can thus determine the Shannon bandwidth
according to (2). In most cases of practical interest (as the
following examples will illustrate), however, one can find
such a basis (and hence find N) by inspection. For an analog
system, the modulated signal must generally be treated as a
stochastic process. In this case, one can use the Karhunen-
Loéve expansion [9, pp. 96-99] to determine N, which will be
the number of orthonormal functions in the expansion that
have coefficients of non-negligible energy.

We now give several examples of modulated signals,
whose analysis will give insight into our definition of a
spread-spectrum system.

Example 1: The modulated signal corresponds to that for one
of K users in a time-division multiple-access system in which
each user sends L data symbols during each TDMA frame of
duration T seconds. Choosing sinc pulses to make the Fourier
bandwidth unambiguous, we can write the selected user's
modulated signal as

 s(t) = ∑
i=1

n
 bi sinc (

KL
T

 t - i),   0 ≤ t < T (4)

where b1, b2, ..., bL are the data symbols. We see that the
Fourier bandwidth W must satisfy 2W = KL/T and hence that

W = 
KL
2T

 . (5)

Example 2: The modulated signal corresponds to that for one
user in a code-division multiple-access (CDMA) system in
which each user modulates a user-specific binary (± 1) code
sequence of length L with one data symbol in each symbol
period of duration T. We can write the selected user's
modulated signal as



s(t) = b1 ∑
i=1

L
 ai sinc (

L
T

 t - i),  0 ≤ t < T (6)

where b1 is the data symbol and where (a1, a2, ..., aL) is the
binary  (± 1) code sequence. The Fourier bandwidth W
satisfies 2W = L/T and hence

W = 
L
2T

 . (7)

Example 3: A user sends an M-ary pulse-position modulation
signal in each T second interval, i.e.,

s(t) = A sinc (
M
T

 t - b1),  0 ≤ t < T (8)

where b1 ∈   {1, 2, ..., M} is the single data symbol and where
A is some fixed amplitude. The Fourier bandwidth satisfies
2W = M/T and hence

W = 
M
2T

 . (9)

Example 4: A user employs binary antipodal signalling to
transmit random binary  (± 1) data symbols in such a manner
as to send n such symbols in each T second interval, i.e.,

 s(t) = ∑
i=1

n
 bi sinc (

n
T

 t - i),  0 ≤ t < T. (10)

The Fourier bandwidth satisfies 2W = n/T and hence

W = 
n

2T
 . (11)

Example 5:  Same as example 4 except that now the "data
symbols" are the output of a powerful rate R = 1/n
(bits/symbol) trellis encoder fed by random "information bits".
Equations (10) and (11) apply unchanged.

Example 6: Same as example 5 except that the code is a trivial
R = 1/n code with two binary  (± 1) codewords, (a1, a2, ..., an)
and its negative. Then

s(t) = b1∑
i=1

n
 ai  sinc (

n
T

  t - i),  0 ≤ t < T (12)

where b1 is the information bit encoded. The Fourier
bandwidth is

W = 
n

2T
 . (13)

We now consider which of the above six systems are in
fact spread-spectrum systems (by our definition). The task
reduces essentially to finding the Shannon bandwidth B of
each system.

Example 1 (concluded):  By inspection of (4), we see that the
signal space is minimally spanned by the orthonormal

functions φi(t) = √2W sinc (2Wt - i), i = 1, 2, ..., L, where W
is given by (5). Thus, its dimension is N = L so that (2) gives
the Shannon bandwidth as B = L/(2T). The spreading factor
according to (3) is then just γ = K. This TDMA system is
indeed a spread-spectrum system when the number K of users
is large.

Example 2 ( concluded):  By inspection of (6) and because a1,
a2, ..., aL  are fixed, we see that the signal special is one-
dimensional, i.e., N = 1. Thus the Shannon bandwidth is only
B = 1/(2T) and the spreading factor is γ = L. This CDMA
system is a spread-spectrum system when L is large (and
indeed our definition of a spread-spectrum system would be
indefensible if it were not).

Example 3 (concluded):  From (8), we see that the signal space

is minimally spanned by the orthonormal signals √2W sinc
(2Wt - i) for i = 1, 2, ..., M, where W is given by (9). Thus N =
M and the Shannon bandwidth is B = M/(2T). The spreading
factor is thus γ = 1, the minimum possible. It follows that such
an M-ary PPM communication system is never a spread-
spectrum system, even though it utilizes a very large Fourier
bandwidth according to (9), when M is large, to send at most
log2 M bits of information every T seconds.

Example 4 (concluded):  From (19), we see that the signal

space is minimally spanned by the orthonormal signals √2W
sinc (2Wt - i) for i = 1, 2, ..., n, where W is given by (11).
Thus, N = n, B = n/(2T) and γ = 1. Such binary antipodal
modulation, not surprisingly, is never a spread-spectrum
system.

Example 5 (concluded):  For virtually any nontrivial trellis
coding system, the encoded symbols b1, b2, ..., bn that appear
in (10) will take on such a variety of different possible binary
(± 1) patterns that one cannot imbed the set of possible s(t) in a
smaller dimensional space than is required when all n binary
symbols can be independently chosen (even though the code,
with the mapping 0 → + 1 and 1 → - 1 may be linear over
some finite field). Thus both the Fourier and Shannon
bandwidths are the same as for the uncoded system of example
4 and γ = 1. A non-trivially coded binary antipodal modulation
system is never a spread-spectrum system, even though, when
the code rate R = 1/n is very low, it follows from (11) that it
utilizes a very large Fourier bandwidth to send one bit of
information every T seconds.

Example 6 (concluded):  Because the trivial code consists only
of the two codewords (a1, a2, ..., an) and its negative, we see
from (12) that the signal space has collapsed to a one-
dimensional space, i.e., N = 1. The Shannon bandwidth is thus
B = 1/(2T) and hence γ = n. Trivial coding of low rate R = 1/n
restricts the output of the binary-antipodal modulator in such a
way that the system becomes a spread-spectrum one. In fact,
comparing (6) and (12) we see that such trivial coding gives us
precisely the same modulated signal as in the CDMA system
of Example 2.



If one accepts our definition of a spread-spectrum system,
then the above examples allow us to draw the following
conclusions:

• From examples 3, we see that a large ratio of Fourier
bandwidth to data rate does not imply that a system is
spread-spectrum.

• Example 5 teaches us the, perhaps surprising, lesson
that the fact that a coding system expands Fourier
bandwidth by a large factor n for a fixed information bit
rate does not  imply that the system is spread-spectrum.

• The Fourier bandwidth expansion due to nontrivial
coding is fundamentally different from the kind of Fourier
bandwidth increase that produces a spread-spectrum
system, although example 6 shows that trivial coding can
indeed produce this latter type of expansion.

It is common when considering coded CDMA systems for
communication engineers to speak of doing part of the
spectrum spreading with coding and part with direct-
sequence multiplication–we have not infrequently so spoken
ourselves. But we now see that such statements are
nonsensical. These are not two parts of the overall spectrum
spreading, but rather two very different kinds of Fourier
bandwidth expansion. Much of the remainder of this paper
will be devoted to investigating the reasons that one might
wish to do one or both of these kinds of bandwidth
expansion.

IV. WHY SPREAD-SPECTRUM?

The original motivation for spread-spectrum systems was
a military one, viz., to hide from an enemy the very fact that
one is transmitting a signal. Today one speaks of the low
probability of interception (LPI) of a spread-spectrum signal.
The argument that spectrum spreading should provide the
possibility for achieving LPI goes as follows. If the signal is
confined to a small number N of dimensions within the global
signal space of dimension 2WT = Nγ in which all signals of
bandwidth W and time-limited to 0 ≤ t < T must lie, and if
there are parameters of the signal that can be varied to create
a very large number of possible choices for the N-
dimensional signal space occupied by the signal, then one can
achieve LPI by selecting the value of these parameters at
random. [We ignore here the role of the signal power and the
intensity of the enemy's receiver noise, which determine
essentially how long it takes to search a given number of
dimensions simultaneously for the presence of signal.]

For the CDMA signal of example 2, there are 2L possible
choices of the binary  (± 1) parameters a1, a2, ..., aL, but
changing the sign of all parameters leaves the signal in the
same one-dimensional signal space. Fixing a1 = + 1 leaves us
with 2L-1 choices of a2, a3, ... , aL, each of which gives a
different one-dimensional signal space. For large L, the
enemy's task of finding the signal space actually used by the
sender is thus akin to "looking for a needle in a haystack". A

CDMA signal with a large number L of "chips" per symbol
period does indeed afford low probability of interception.

For the TDMA signal of example 1, the only parameter
that can be varied is the choice of the L consecutive symbol
periods (out of the total of KL such periods) in which data
symbols will be transmitted. There are only KL possible
choices so that a low probability of interception can be
achieved only if the product KL = γL is very large. [Spies in
World War II frequently used this method to hide their
transmission; they transmitted Morse code for only a few
seconds and then went silent for long periods.] The point is
that a large spreading factor γ alone is not enough to provide
LPI capability. To put it another way, a TDMA signal is
much easier to intercept than a CDMA signal.

The twin brother of low probability of interception is
electromagnetic compatibility (EMC). If it is hard to
determine whether a signal is present, then that signal cannot
be interfering substantially with other commonly present
signals. The excellent EMC capability of a CDMA signal is
perhaps the strongest argument that we have today for
preferring it to a TDMA signal. [We leave to the reader the
task of showing the EMC superiority of a CDMA signal over
a frequency-division multiple-access (FDMA) signal.]

The first cousin of low probability of interception is small
inter-user interference (IUI), which is the prerequisite for a
good multiple-accessing capability. If it is difficult to detect
the presence of a signal, then shouldn't two such signals
hardly interfere with one another? The answer is "yes, at least
in a statistical sense!". If the two such signals are selected
independently at random, then the probability of substantial
IUI will be small. But care must be taken when the total
number of signals is large, or when users persist for a long
time in using the signal determined by one random choice of
parameters. Of course, the K users of a TDMA system with
signals as in example 1 will experience zero IUI when they
are well synchronized. But K users (say, K on the order of L)
of a CDMA system with signals as in example 2 and with the
signal parameters frequently varied will experience IUI with
roughly the same statistics no matter whether they are well
synchronized or not. This robustness of a CDMA system with
regard to inter-user interference is, of course, an important
practical consideration.

V. CODING, SPREADING AND NOISE

It is time now to take a more strictly information-theoretic
look at the advantages, if any, provided by spectrum
spreading. To keep matters simple, we consider the single
user system shown in Fig. 2. Of fundamental interest are (1)
the information rate, R , measured in information bits (i.e.,
random binary digits) per second at the modulator input; (2)
the capacity, C, also measured in information bits per second,
of the channel created by the modulator and the band-limited
additive white Gaussian noise (AWGN) waveform channel,
which is the upper limit of rates R  for which reliable (in the
sense of arbitrarily small positive probability of error)
recovery of the information bits is possible at the receiver
when an appropriate coding system is used; (3) the average
power, S, of the modulated signal; (4) the one-sided noise



power spectral density, No, of the AWGN; (5) the Fourier
bandwidth, W, of the bandlimited AWGN waveform channel
(which we take without loss of essential generality as equal to
the Fourier bandwidth of the modulated signal, as there is no
point in transmitting anything outside this band and, if one
transmits in a smaller bandwidth, then one might as well
reduce the channel bandwidth accordingly); and finally (6)
the Shannon bandwidth, B, of the modulated signal.

Binary
Information
Source

Encoder Modulator

Ideal Lowpass
Filter of Bandwidth
             W

+

+

n(t)
AWGN

s(t)
r(t)

Rec'd
Signal

Fig. 2: The single-user communication system under study.

Shannon [1], with his penchant for getting to the heart of
the matter, has given us the key relationship among these
quantities, namely,

C = B log2 (1 + 
S

NoB
)   (bits/sec). (14)

The reader may be surprised to see the Shannon bandwidth B
rather than the Fourier bandwidth W in this expression for C .
but he or she will find that (14) is precisely the equation that
Shannon derives in [1]. It is easy to check that the right side
of (14) increases monotonically with increasing B; because B
≤ W, it follows that

C ≤  W log2 (1 + 
S

NoW
 )     (bits/sec) (15)

with equality if and only if B = W, i.e., if and only if there is
no spectrum spreading! The reason that Shannon wrote (15)
with an equality sign, rather than (14), in his final expression
for the capacity of the AWGN channel is that he assumed that
the choice of the modulator was up to the sender and that thus
the sender would choose a modulator with B = W to obtain
(maximum) capacity.

Here we must in honesty point out that we have been
somewhat cavalier in writing (14) without stating the precise
condition for which this expression gives the true capacity.
This condition is that all the coefficients s1, s2, ... sN in the
expansion (1) must be independently controllable by the
choice of the modulator input symbols. This is indeed the
case for all of the signals in the above six examples with the
exception of example 3, PPM modulation. We see from (8)
that in fact only one of the N = M coefficients can be non-
zero so they are certainly not independently controllable. For
such modulation systems, the expression in (14) gives only an
upper bound on capacity–which is why PPM modulation is
not "energy efficient" except for high "signal-to-noise ratios".

It is important not to draw the wrong conclusion from (14)
and (15). The real question is not whether spectrum spreading
can increase capacity (it never can!) but whether spectrum
spreading, which may be desirable for other reasons such as
those considered in the previous section, necessarily entails a
substantial loss of capacity for the used Fourier  bandwidth
W. This time the answer is more subtle and more interesting.
As B increases without limit, the right side of (14) tends to
1.44 S/No. Thus,

C ≤  1.44 
S

No
    (bits/sec) (16)

with near equality when the Shannon bandwidth B is large,
say, when

B ≥  4 
S

No
       (17)

since B = 4 S/No in the right side of (14) gives about 90% of
the capacity for B = ∞. As long as the Shannon bandwidth is
large enough to satisfy (17), then no matter how large a
spreading factor is used, the capacity will be at least 90% of
the maximum capacity achievable with the used Fourier
bandwidth W. Spectrum spreading cannot increase capacity,
but it need not reduce it.

The Shannon bandwidth B is always proportional to what
we will call the data rate, Rm, at the input to the modulator,
which we define as the number of modulation symbols per
second that are input to the demodulator. But the information
bit rate, R, cannot exceed the capacity, C, of the channel if
the system is to operate reliably, and C, in turn must satisfy
(16). How then with this fixed upper bound on R  can we
always achieve the necessary large Shannon bandwidth B?
The answer is to use a code with sufficiently low code rate R,
measured in modulation symbols per information bit, because
R = Rm · R and hence

Rm = 
R
R

     (symbols/sec). (18)

Because the Shannon bandwidth is proportional to Rm, we
see that coding increases the Shannon bandwidth by a factor
proportional to the reciprocal of the code rate R. This is the
true nature of the "bandwidth expansion" due to coding.
Spectrum spreading, on the other hand, causes the Fourier
bandwidth to be much greater than the Shannon bandwidth,
which is the true nature of its "bandwidth expansion".

VI. CONCLUDING REMARKS

It should be apparent that we have in this paper barely
scratched the surface of the information theory of spread-
spectrum systems. At best, we have pointed out the starting
direction for a long journey. The important next step would
be to consider spread-spectrum multiple-access systems, i.e.,
multiple-access systems in which each of several users sends
a spread-spectrum signal in the same band and the sum of



these signals is received. It is hardly a guess that a very
interesting quantity will be the Shannon bandwidth of this
sum signal, which incidentally will not in general itself be a
spread-spectrum signal. (For instance, for a K-user TDMA
system with signals as in example 1 and perfect
synchronization, this sum signal will have a spreading factor
of precisely 1.) Consideration of the Shannon bandwidth B
and the Fourier bandwidth W of this sum signal has already
permitted us to resolve certain CDMA "paradoxes" such as
the apparent increase in system capacity for a two-user
system with rectangular modulation pulses when the two
users are not in synch. We can also use information-theoretic
arguments to explain the apparent increase in system capacity
when the two users are in synch but, because of imperfect
power control, have slightly different received powers.
However, we are far from being able to offer a coherent
information-theoretic treatment for spread-spectrum multiple-
access systems, even when we restrict the channel to be the
bandlimited additive white Gaussian channel for the sum
signal. And we have not even begun to scratch the surface for
considerations of paramount practical interest such as
multipath propagation of each signal in the sum, time
variation of the multipath channels, unequal user signal
powers, and imperfect synchronization. Nonetheless, it is our
conviction that until the information theory of spread-
spectrum systems is worked out in enough generality to deal
with such issues, the many arguments over which type of
multiple-access system is better (say, offers greater "spectral
efficiency") than another will continue to generate more heat
than light.
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