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Abstract:  An idealized code-division multiple-access (CDMA) system is used as a vehicle to
illustrate a new approach to coding for multiple-access channels that aims to achieve
reasonable efficiency while avoiding the prohibitive complexity of optimum coding schemes.
The new approach combines "partial demodulation" to separate users into roughly
independent groups with the creation of "virtual channels" that allow the decoder for each
user to act as if that user were the only user of the system.  The virtual channels are created by
means of simple uniquely decodable codes for the noisy binary adder channel.  The approach
is motivated and explained by means of examples.

1  Introduction

Coding techniques for single-sender single-receiver channels have reached a state of maturity.
By contrast, coding techniques for many-sender single-receiver channels, i. e., for multiple-
access channels, are still in their infancy.  The rapid growth of radio communications has
created a strong practical need for good coding techniques for multiple-access channels in
which the received signal is the sum of the transmitted signals.  An especially interesting
channel of this type is that characterizing code-division multiple-access (CDMA) systems.
Coding for the CDMA channel is about as difficult as for any multiple-access channel.  Most
approaches to efficient coding for the CDMA channel die on the altar of practicality; the
schemes are simply too complex to implement.  This complexity stems in large part from the
necessity to do joint decoding of all users–in general, the complexity of such a joint decoder
grows exponentially with the number of users.  The purpose of this paper is to suggest an
approach to coding for multiple-access channels that offers the hope of yielding practical
systems whose efficiency is not too much less than an optimum impractical system.

In the next section, we introduce the simple model of an idealized CDMA system that we
will use.  We then describe a technique that we call "partial demodulation" for this channel.
The partial demodulator separates the received signal into one signal for each of many small
groups of users, who subsequently ignore the signals for all other groups.  This is the first of
two steps toward a practical but reasonably efficient coding system.  In Section 3, we show
that coding for one user group reduces to coding for the noisy binary adder channel of  multi-
user information theory, which motivates our investigation in Section 4 of coding for that
channel.  Here we argue that the standard approach to coding for the  noisy binary adder
channel, viz., the design of powerful uniquely decodable codes, is misguided.  Instead, as the
second and final step of our approach, we propose using very simple codes of the uniquely
decodable type in a manner that essentially decouples the users in each group, creating a
"virtual channel" for each user on which conventional single-sender coding techniques can be
used.  Examples are used freely to explain the approach.  Our intention here is to sketch the
broad outlines of the new approach, not to paint a fully detailed canvas.
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2  Code-Division-Multiple-Access Systems

For our purposes, the signal-space model of an idealized "L-chip synchronous CDMA
channel" as shown in Fig. 1 will an adequate channel model.  The model describes one use of
a memoryless channel.  Each of the K users, say user i, sends a symbol Bi to his corresponding
modulator.  We assume that Bi is a real-valued random variable with second moment E[Bi2] =
Ec, where Ec is the average chip energy.  We further assume that the random variables B1, B2,
..., BM are statistically independent, which is the essential difference between a multiple-
access channel and a single-user channel. Using the usual signal-space representation with
respect to any convenient basis of orthonormal waveforms, we can view the modulator as
converting Bi into the signal vector Bisi where si  = (si 1, si2, ..., siL) is an L-component
spreading sequence with energy L and real components.  Our requiring that the symbols Bi
and the components of si be real numbers is equivalent to considering a baseband channel, but
all our conclusions carry easily over to the passband case when these components are
complex numbers.  The energy of si is

siTsi   =   ∑
n=1

L
  sin2  =  L (1)

(where the superscript T denotes transposition) and our normalization of this energy to L is
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Fig. 1:  Model of an L-chip synchronous CDMA channel.
             ( E[Bi2] ≤ Ec,  siT si = L, and ZL is white Gaussian noise of variance No/2.)

motivated by the usual convention for CDMA spreading sequences that  sin ∈  {-1, +1} for all
n, by which we will also abide.  The demodulator input is the received vector

YL  =  ∑
i=1

K
  Bi si + ZL (2)
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where Z L  = (Z1, Z2, ..., ZN) is white Gaussian noise (WGN), i.e., its components are
independent zero-mean Gaussian random variables all with the same variance, No/2.  We will
be less explicit at present about the nature of the demodulator outputs, since these are at the
choice of the designer of the modulation system.

It is well-known that an optimum demodulator (by any reasonable criterion) would be a
bank of K  matched filters whose outputs are the correlations of the received vector with the
spreading sequences of the users, i. e.,  it would produce the outputs

Ri  =   
1

√ L
 ∑
j=1

L
  sij  Yj  =   

1

√ L
  siT YL (3)

for i = 1, 2, ... K, where YL = (Y1, Y2, ..., YL), cf. [2], and where the factor multiplying the
sum is included as a convenient normalization.  The optimum decoder to be used with such a
demodulator would be a joint decoder that has full responsibility for detecting the sequences
of information bits from the K information sources.  The problem with such a joint decoder is
that in general its complexity grows exponentially with the number K of users so that it is
impractical for interesting CDMA systems.  In [1], we proposed instead to use a partial
demodulator as shown in Fig. 2 that performs part of the user separation by partititioning the
users into many "independent groups" and thus greatly simplifies the task of the decoder for
each of these user groups.
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Fig. 2:  Partial demodulation into signals for L groups of m users (K = mL)

For simplicity of notation, we assume that K = mL for some positive integer m and that
the users are partitioned into L groups of m users each.  We further assume that s1, s2, ... , sL
are now mutually orthogonal sequences (i.e., siTsj  =  0 for i ≠ j), each of energy L, and that
all users in the ith user group Gi use the same spreading sequence si.  Now, suppose that the
"partial demodulator" of Fig. 4 correlates each of the L sequences assigned to the user groups



4

with the received sequence YL (which requires only L = K /m correlations compared to K

correlations for the full demodulator considered in Section 2).  This partial demodulator then
delivers to the decoder for the ith user group the output

Ri  =  
1

√ L
 siT YL  =  √ L ∑

j ∈  Gj
  Bj  + Ni (4)

where we have used (2) and the mutual orthogonality of s1, s2, ... , sL and where

Ni  =  
1

√ L
 siT ZL

is a zero-mean Gaussian random variable of variance No/2.
Let S be the L × L matrix whose ith column is si.  The mutual orthogonality of the energy

L sequences s1, s2, ... , sL implies that STS = L IL, where IL is the L × L identity matrix, and
hence that ST = LS-1.  Thus SST= L IL holds as well and hence we can recover YL from

R  =  (R1, R2, ... , RL)  =   
1

√ L
 ST YL

in the manner

 
1

√ L
 S R  =   

1
L
 S ST YL =  YL. (5)

The reversibility of this partial demodulator shows that it has discarded no information that
was in the received vector YL, cf. [3, p. 222].  But it follows also from (4) that the inputs Bj
for j ∈  Gi are independent of all demodulator outputs except Ri.  Hence, the decoder for the
ith user group can now operate on the sequence of symbols from the single demodulator
output labelled Ri to detect the users in this group only, without having to worry at all about
the users in other groups and with no loss of optimality.

3  Coding for CDMA Systems with Partial Demodulation

We now consider coding for a CDMA system in which partial demodulation has been
performed so that the demodulator output in any symbol period is given by (4) for the ith user
group.  For specificity and simplicity, we assume that there are m = 2 users in each group.
Without loss of essential generality, we consider coding for the first user group only, whose
users we take to be users 1 and 2.  We rewrite (4) to apply only to this user group in the
manner

R  =  √ L (B(1) + B(2)) + Z (6)

where B(1) and B(2) are the modulation symbols of users 1 and 2, respectively, and where Z is
a zero-mean Gaussian random variable with variance No/2.  We further assume that the users
employ binary antipodal modulation so that their modulation symbols takes values in the set
{+ √Ec, - √Ec }where Ec is the average chip energy.  It is then natural to rewrite (6) for the ith

symbol at the demodulator output as
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Ri  = D(1)
i  + D(2)

i  + Zi        (7)

where D(1)
i  = √ L B(1)

i   and D(2)
i  = √ L B(2)

i   take values in {+√Es, - √Es } and Es = LEc is the
average signal energy in one modulation symbol interval, and where Zi is one in a sequence
of independent zero-mean Gaussian random variables with variance No/2.  Hereafter, we will

forget chip level quantities entirely and consider D(1)
i  and D(2)

i  themselves to be the modulator
output symbols for users 1 and 2, respectively.

The two-user channel described by (7) is familiar in multi-user information theory, cf. [4],
where it is often called the noisy two-user binary adder channel (BAC).  [It is customary in
information theory to take each user's input alphabet to be {0, +1} rather than {+√Es, -√Es }
as is natural here, but this is a trivial difference that alters none of the theory of this channel.]
This channel, together with its capacity region is shown in Fig. 3 for the noiseless case, i. e.,
for No = 0.  The capacity region determines where reliable operation is possible in the sense
that users 1 and 2 can, by proper choice of a coding technique, transmit information arbitrarily
reliably (i. e., with error probability less than any specified positive number) through this
channel at rates r(1) and r(2) (measured in information bits per channel use), respectively, if the
rate pair (r(1), r(2)) lies inside the capacity region, and cannot do this if (r(1), r(2)) lies outside
the capacity region.  In the noisy case, i. e., when No > 0, the capacity region still has the
pentagonal shape shown in Fig. 3, but is of course smaller.

4  Coding for the Binary Adder Channel

In the previous section, we reduced the coding problem for an idealized CDMA channel to the
coding problem for the conceptually simply binary adder channel.  We will begin our coding
considerations for the BAC with the noiseless case where it is only the inter-user interference
that reduces the capacity region from what it would be if each user enjoyed his own noiseless
binary input channel; this reduction is reflected in the condition r(1) + r(2) ≤ 3/2 bits/use, which
corresponds to the 45o line on the boundary of the capacity region in Fig. 3.
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Fig. 3:  The noiseless two-user binary adder channel and its capacity region.
(D(1) and D(2) take values in {+√Es, -√Es }.)

Because the channel input alphabet {+√Es, -√Es } or signal set for each user has two
elements, the coding alphabet should also be binary.  It is natural to take this latter alphabet to
be the finite field GF(2) and to suppose that each user's modulator implements the mapping
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µ(.) from GF(2) to the signal set given by µ(0) = +√Es and µ(1) = -√Es.  We now assume that
both users employ a block code of blocklength n.  For a codeword b = [b1 b2 ... bn] in such a
code, we write µ(b) to denote the corresponding signal space sequence (µ(b1), µ(b2), ... µ(bn))
that will be transmitted over the BAC when the encoder output is b.  It follows from (7) that
the channel output sequence R = (R1, R2, ... Rn) is given by

R  =   µ(b(1)) + µ(b(2)) + N (8)

where b(1) and b(2) are the outputs of the encoders for users 1 and 2, respectively.

Example 1:  Suppose that users 1 and 2 employ the blocklength n = 2 codes {[0 0], [1 1]} and
{[0 1], [1 0]}, respectively, to encode one information bit each so that r(1) = r(2) = 1/2.  Note
from Fig. 3 that the rate pair (r(1), r(2)) = (1/2, 1/2) is well inside the capacity region of the
noiseless BAC.  The possible transmitted codewords, corresponding transmitted signals,  and
corresponding sum of transmitted signals are given in the following table:

b 
(1)

b 
(2) µ(b   ) +   µ(b   ) 

(1) (2)

[0 0]

[1 1]

[0 0]

[1 1]

[0 1]

[0 1]

[1 0]

[1 0]

Es

Es

Es

Es

(+2, 0)

(0, -2)

(0, +2)

(-2, 0)

µ(b   ) 
(1)

µ(b   ) 
(2)

(+1, +1)

(-1,  -1)

(+1, +1)

(-1,  -1)

E

E

E

E

(+1, -1)

(+1, -1)

(-1, +1)

(-1, +1)

E

E

E

E

s

s

s

s

s

s

s

s

Because all four possible codeword combinations result in a different transmitted sum signal,
the code pair ({[0 0], [1 1]}, {[0 1], [1 0]}) is said to be uniquely decodable, which means that
the decoding error probability will be exactly 0 when the two users employ such a code pair
on the noiseless BAC.

Much of the research on coding for the BAC, beginning with the seminal work of Kasami
and Lin [4], has concentrated on the construction of uniquely decodable code pairs (or
uniquely decodable T-tuples of codes for the T-user BAC).  Because of the enormous amount
of available theory and constructions for linear codes (i.e., codes that form a vector space over
the field GF(2)), one would very much like to choose the component codes as linear codes if
good code pairs of this type can be found.  For this reason, the following result, which is due
essentially to Peterson and Costello [5], has put a damper on the enthusiasm of coding
theorists to work on codes for the BAC.

Proposition:  If the components codes of a code pair (V1, V2) are binary linear codes of
blocklength n whose rates satisfy r(1) + r(2) > 1, then this code pair is not uniquely decodable.

The proof is very simple.  The dimensions k1 and k2 of V1 and V2 are k1 = nr(1) and k2 =
nr(2), respectively.  By one of the most fundamental results of linear algebra, cf. [6, Theorem
5.8],

dim(V1 ∩ V2)  =  dim(V1) + dim(V2) - dim(V1 + V2)
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where dim(.) denotes dimension and where V1 + V2 is the vector space consisting of all
vectors that can be written as the sum (component by component in GF(2)) of a vector from
V1 and a vector from V2.  But surely  dim(V1 + V2) ≤ n so that r(1) + r(2) > 1 implies that

dim(V1 ∩ V2)  ≥  nr(1) + nr(2) - n  >  0.

It follows that the codes V1 and V2 have at least one non-zero codeword b* in common in
addition to having the zero codeword 0 in common.  But then b(1)  = b* and b(2) = 0 give the
same sum of transmitted signals as does b(1) = 0 and b(2)  = b* so that the code pair is not
uniquely decodable.

The undeniable truth of this proposition should not lead us to draw the wrong conclusion
about the utility of linear coding for the BAC.  It says only that we should not use binary
linear codes to choose the binary antipodal signals, +√Es, and-√Es , that are sent directly over
the BAC.  One has other options as the following example shows.

Example 2:  Let a(1) and a(2) be the informations bits of users 1 and 2, respectively, for the
codes  of Example 1 and let the encoding rules for the two users be b(1) = [a(1)  a(1)] and b(2) =
[a(2)  a(2)+1] where the indicated sum is in GF(2).  Suppose also that the demodulator output is
further processed to deliver Y(1) and Y(2) where

Y(1)  =  
1

√ 2
 ( R1 + R2)

(9)

Y(2)  =  
1

√ 2
 ( R1 - R2).

From the table in Example 1, we now deduce the following table for the noisy BAC:

a 
(1)

a 
(2)

2E
s

Y
(1) (2)

Y

+ N

+ N

+ N

+ N

(1)

(1)

(1)

(1)

+

-

+

-

+ N

+ N

+ N

+ N

(2)

(2)

(2)

(2)

+

+

-

-

2E
s

2Es

2Es

2Es

2Es

2E
s

2E
s

0

1

0

1

0

0

1

1

where

N(1)  =  
1

√ 2
 ( N1 + N2}

(10)

N(2)  =  
1

√ 2
 ( N1 - N2).

It follows that N(1) and N(2) are zero-mean Gaussian random variables with mean 0 and
variance No/2 and, moreover, are independent because E[N(1) N(2)] = 0.  We see from this
table that if one considers a(i) to be the modulator input and Y(i) to be the channel output of a
virtual channel for user i, then we have decomposed two uses of the noisy two-user BAC,
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where each user sends binary antipodal signals of energy Es on each use, into the situation
where each user makes one use of his own virtual channel, which is a white Gaussian noise
channel with the same noise variance No/2 and with binary antipodal input signals  of energy
2Es.   The energy efficiency for each user is just the same as if he were the only user of the
original BAC.  But the rate sum r(1)+ r(2) = 1 bits/use is well less than the 3/2 bits/use rate sum
that the capacity region of Fig. 3 assures us can be approached for arbitrarily realiable
transmission in the noiseless case.

The reader will surely have noticed that the complete and lossless separation of the users
that was possible in Example 2 was the result of the fact that the the codewords µ(b(1)) and
µ(b(2)) are always orthogonal, as can be seen from the table in Example 1.  This "perfect"
mutual orthogonality of the transmitted signals for the two users is possible only if the rate
sum r(1)+ r(2) ≤ 1 bits/use.  Nonetheless, this example teaches what seems to us to be the
major lesson to be learned about "coding" for the noisy BAC:

Simple uniquely decodable block codes for the noiseless BAC should
be considered not as codes but rather as signal sets for use with a
coding alphabet of the same cardinality.  These signal sets should be
chosen to make it possible to map the received word linearly to one
(or at most a few) dimension(s) for each user in such a way that the
resulting virtual channels, one for each user, exhibit substantial
independence.

Only in this way does it seem possible to avoid the prohibitive complexity associated with
joint decoding of several users.  A final example should make this lesson clearer.

Example 3:  We now add a third codeword [0 0] to the code of user 2 in Example 1.  The
code pair is now ({[0 0], [1 1]}, {[0 0], [0 1], [1 0]}).  The possible transmitted codewords
and their sum are given in the following table:

b 
(1)

b 
(2) µ(b   ) +   µ(b   ) 

(1) (2)

[0 0]

[1 1]

[0 0]

[1 1]

[0 1]

[0 1]

[1 0]

[1 0]

Es

Es

Es

Es

(+2, 0)

(0, -2)

(0, +2)

(-2, 0)

µ(b   ) 
(1)

µ(b   ) 
(2)

(+1, +1)

(-1,  -1)

(+1, +1)

(-1,  -1)

E

E

E

E

(+1, -1)

(+1, -1)

(-1, +1)

(-1, +1)

E

E

E

E

[0 0]

[1 1]

[0 0]

[0 0]

(+1, +1)

(-1,  -1)

(+1, +1)

(+1, +1)

(+2, +2)

 ( 0,   0)

E

E

E

E

E

E
s

s

s

s

s

s

s

s

s

s

s

s

s

s

Again we see that this code pair is uniquely decodable (and in fact this is the simple uniquely
decodable code pair given by Kasami and Lin [4] as their "Example 1".  Letting a(2), the
information digit for user 2, be an element of the finite field GF(3) (as is required now since
there are three codewords in user 2's code), choosing the encoding rule so that the codeword
b(2) is [0 0], [0 1] or [1 0] according as a(2) is 0, 1, or 2, respectively,  and again defining Y(1)

and Y(2) by (9), we obtain the following table:
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a 
(1)

a 
(2) Y

(1) (2)
Y

2E
s

+ N

+ N

+ N

+ N

(1)

(1)

(1)

(1)

+

-

+

-

+ N

+ N

+ N

+ N

(2)

(2)

(2)

(2)

+

+

-

-

2E
s

2Es

2Es

2Es

2Es

2E
s

2Es

0

1

0

1

0

1

0

0

1

1

2

2

2Es
(1)

(1)

(2)

(2)

+ N

+ N

+ N

+ N

2 0

00

We now see that user 2's virtual channel is a ternary Gaussian channel with the signal set
{+ √2Es, 0, -√2Es } and that this channel is not influenced by the actions of user 1.  User 1's
virtual channel is indeed influenced by the actions of user 2, but there are two options open to
overcome this.  Either user 1's decoder can make use of the decoded ouput for user 2 to
subtract the effect of that user from his signal or else it can decode as if both  √2Es  and 2√2Es
are signal points representing "0" for user 1 and as if both 0 and -√2Es are signal points
representing "1" for user 1.  The former option converts user 1's virtual channel to the same
binary Gaussian channel that he enjoyed in Example 2 provided that user 2's decoder makes
no error (and one would design the system so that this error probability was acceptably small);
the latter option causes a loss of somewhat less than 6 dB for user 1 compared to what he
enjoyed in Example 2 because the minimum Euclidean distance between signal points
representing different values of a(1) has been reduced by a factor of 2 (but some signal points
are still at the same Euclidean distance from the nearest signal point representing the opposite
value of a(1) so that the net loss is somewhat less than 6 dB).  This second option, while
substantially less efficient than the first, has the advantage that the decoder for user 1 need
pay no attention to the decoder for user 1.

5  Concluding Remarks

We have attempted above to give the outlines of a new approach to coding for multiple-
access channels in general and CDMA channels in particular.  The key ideas are, first, to
perform partial demodulation that segregates the users into small groups that can be processed
independently with little or no loss and, second, to devise "small codes" or "signal sets" for
each user group that allow independent decoding for each user (possibly with cancellation to
remove the effect of  signals of the various users as they are decoded) with little or no
additional loss.  This "signal-set" design is much more a task for the modulation engineer than
for the coding theorist, as one cannot expect to obtain elegant algebraic solutions of the
signal-set design problem.  Moreover, this task will have to take into account many of the
real-world complications of the problem, which we ignored, such as lack of symbol and/or
chip synchronization, different user energies, time variations of the channel, multipath effects,
and the like.  The task is not an easy one, but it seems to us worth doing.
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