
ITW 1998, San Diego, CA, February 8 { 11

The Discrete Fourier Transform in Coding and Cryptography

James L. Massey

Signal & Info. Proc. Lab., Swiss Federal Inst. Tech., ETH-Zentrum, CH-8092, Z�urich, Switzerland

Abstract | Some applications of the Discrete
Fourier Transform (DFT) in coding and in cryptog-
raphy are described. The DFT over general commu-
tative rings is introduced and the condition for its
existence given. Blahut's Theorem, which relates the
DFT to linear complexity, is shown to hold unchanged
in general commutative rings.

I. The (Usual) Discrete Fourier Transform
Let � be a primitive N th root of unity in a �eld F , i.e.,

�N = 1 but �i 6= 1 for 1 � i < N . The (usual) Discrete
Fourier Transform (DFT) of length N generated by � is the
mapping DFT�(�) from FN to FN de�ned by B =DFT�(b)
in the manner

B[i] =

N�1X
n=0

b[n]�in (1)

where b = (b[0]; b[1]; . . . b[N � 1]) is the \time-domain" se-
quence and B = (B[0]; B[1]; . . .B[N � 1]) is the \frequency-
domain" sequence. As is very well known, the inverse trans-
form is given by

b[n] =
1

N

N�1X
i=0

B[i]��in (2)

where N denotes the sum of N 1's in the �eld F .

II. The DFT in Coding
Coding applications of the DFT rely on the polynomial

formulation of the DFT. One identi�es the N -tuple b =
(b[0]; b[1]; . . . b[N � 1]) with the polynomial b(X) = b[0] +
b[1]X+. . . b[N �1]XN�1 and notes that (1) can then be writ-
ten as

B[i] = b(�i): (3)

A cyclic code of length N over a �nite �eld F , or a sub�eld
of F , with generator polynomial g(X) where g(X) must divide
XN � 1, is the set of all b such that g(X) divides b(X). But
the zeroes of XN �1 are all the �i for 0 � i < N so that g(X)
is uniquely characterized by those i for which �i is a zero, say
i 2 J . It follows that b is a codeword if and only if B[i] = 0
for i 2 J . Particularly Blahut [1], [2] has shown the power of
this approach for the study of cyclic codes.

What makes the DFT useful in coding is its relation to the
linear complexity of sequences. The linear complexity of a se-
quence s0; s1; :::sn�1 [where n = 1 is allowed] is the length
L of the shortest linear feedback shift register (LFSR) that,
when loaded initially with s0; s1; :::sL�1, produces the entire
sequence as its output [3]. The connection to the DFT, which
was used implicitly in [1] and is proved in [4], is the following.

Theorem 1 (\Blahut's Theorem") If B =DFT�(b) for the
DFT in any �eld F , then the linear complexity of the peri-
odically repeated sequence B;B;B; . . . is equal to wH(b), the
Hamming weight of b.

Because a sequence containing a run of d�1 consecutive zeroes
followed by a non-zero digit has linear complexity at least d, it
follows that if g(X) has d�1 consecutive powers of � as zeroes,
then every non-zero codeword in the corresponding cyclic code
has Hamming weight at least d so that the minimum distance
of the code satis�es dmin � d. This is the well known BCH
bound. All of the known lower bounds on the minimum dis-
tance of cyclic codes can be derived in an analogous fashion,
cf. [4] for examples.

III. The DFT in Cryptography

Linear complexity plays a very important role in the theory
of stream ciphers so it is not surprising that the DFT has
been applied to such problems, cf. [5], [6]. More surprisingly
perhaps has been the application of the multidimensional DFT
over the real numbers with � = �1 and thus length N = 2 in
each dimension [i.e., the Walsh-Hadamard transform] to the
analysis of a sequences produced by a nonlinear combination
of sequences.

Siegenthaler [7] de�ned a boolean function of n binary vari-
ables to be mth-order correlation immune if, when the inputs
are independent balanced binary random variables, the out-
put is independent of every set of m or fewer of the inputs. It
was shown in [8] that this is equivalent to the vanishing at all
n-dimensional \frequencies" with Hamming weight between 1
and m, inclusive, of the Walsh-Hadamard transform of the
function table of the boolean function when the arguments of
the function are taken as the \time" indices and the function
values treated as the real numbers 0 and 1. A particularly
elegant proof of this result was given by Brynielsson [9].

IV. The Discrete Fourier Transform over
Commutative Rings

We now enquire into the conditions under which the Dis-
crete Fourier Transform (1) and its inverse (2) can be applied
to sequences with components in a commutative ring R rather
than in a �eld. Hereafter, � denotes a primitive N th root of
unity in such a ring.

We �rst note that (1) can be written in matrix form as

B = M� b (4)

where M� is the N �N matrix

M� =

2
66664

1 1 1 . . . 1
1 � �2 . . . �N�1

1 �2 �2�2 . . . �2(N�1)

...
...

...
...

...

1 �N�1 �(N�1)2 . . . �(N�1)(N�1)

3
77775
: (5)

The matrix equation (4) is uniquely solvable for b when B is
given, and the inverse is given by (2), just when the deter-
minant of M�, denoted �(M�), is a unit of the ring R, i.e.,
a ring element having a multiplicative inverse. But M� can



be seen from (5) to be a Vandermonde matrix and hence its
determinant is simply

�(M�) =

N�1Y
j=1

j�1Y
i=0

(�j � �
i) =

N�1Y
j=1

j�1Y
i=0

�
i(�j�i � 1): (6)

But a product of ring elements is a unit if and only if each
element is a unit, and � itself is a unit since � � �N�1 = 1. It
follows that �(M�) is a unit if and only if �k � 1 is a unit for
1 � k < N . We summarize:

Theorem 2 If � is a primitive N th root of unity in a com-
mutative ring R, then (1) de�nes an invertible mapping from
RN to RN whose inverse is given by (2) if and only if �k � 1
is a unit in R for k = 1; 2; . . .N � 1.

It follows immediately from Theorem 2 that if � generates a
DFT of length N in a commutative ring R and L (L > 1) is
a divisor of N , then �N=L generates a DFT of length L in R,
exactly as for the �eld case.

For examples, we use the ring of integers modulo m, Zm.
We recall that an element i of Zm is a unit if and only if
gcd(m; i) = 1. If m is a prime, then Zm is the �nite �eld of
m elements so that the DFT in Zm is novel just when m is
composite.
Example 1: � = 2 is a primitive fourth root of unity in Z15

but does not generate a DFT of length N = 4 in this ring
because, although �� 1 = 1 is a unit, �2� 1 = 3 is not a unit.
Example 2: � = 8 is a primitive fourth root of unity in Z65

and generates a DFT of length N = 4 because � � 1 = 7,
�2 � 1 = 63, and �3 � 1 = 57 are all units in Z65.

With the aid of Theorem 2 it is an easy matter to prove
the following standard result for the DFT over Zm, which is
often referred to as the \Number Theory Transform" or NTT,
cf. pp. 211-217 in [10].

Theorem 3 If m = p
e1
1 p

e2
2 . . . p

ek
k where p1; p2; . . . pk are

distinct primes and e1; e2; . . . ek are positive integers, then
there exists a DFT of length N over Zm if and only if N is a
divisor of gcd(p1 � 1; p2 � 1; . . . pk � 1).

V. Blahut's Theorem over Commutative Rings
An immediate question, which we now investigate, is

whether Blahut's Theorem holds for the DFT (when it ex-
ists) over a general commutative ring.

Let � generate a DFT of length N in the commutative ring
R. Then, because 1��iD has a unit of R as its constant term
and hence is a unit in the ring R((D)) of formal power series
in the indeterminate D, we can write

1�DN

1� �iD
= 1 + �

i
D + �

2i
D

2 + . . . + �
(N�1)i

D
N�1

: (7)

Let B = (B[0]; B[1]; . . .B[N � 1]) be arbitrary in RN and
consider the (modi�ed) partial fraction expansion

B[0]+B[1]D+ . . .+B[N � 1]DN�1 =

N�1X
n=0

b[n]
1�DN

1� �nD
: (8)

Using (7) and equating coe�cients of like powers of D on both
sides in (8) yields the matrix equation

B = M� b (9)

where b = (b[0]; b[1]; . . . b[N � 1]) and where M� is the matrix
in (4). It follows that B is the DFT of b and hence that (8) is
uniquely solvable for the coe�cients in the (modi�ed) partial
fraction expansion. Writing the right side of (8) as

P (D)

C(D)
=

N�1X
n=0

b[n]6=0

b[n]
1�DN

1� �nD
; (10)

where

C(D) =

N�1Y
n=0

b[n]6=0

(1� �
n
D) (11)

is a polynomial of degree wH(b) in the ring R[D] of polyno-
mials in the indeterminate D and where the polynomial P (D)
has degree strictly less than that of C(D), and dividing by
1�DN , which is a unit in R((D)), we obtain

P (D)

C(D)
= (B[0]+B[1]D+. . .+B[N �1]DN�1)

1

1�DN
: (12)

The right side of (12) is the power series corresponding to
the periodically repeated sequence B;B;B; . . . and hence (12)
shows that C(D) as given by (11) is the connection polynomial
of the shortest LFSR with feedback coe�cients in R that can
generate this semi-in�nite sequence, cf. [3]. This shortest
LFSR has length maxfdeg[C(D)]; 1 + deg[P (D)]g, which by
de�nition is the linear complexity of the sequence, and thus
we have the following result.
Theorem 4 (\Blahut's Theorem for Commutative Rings") If
� generates a DFT of length N in a commutative ring R and
B =DFT�(b), then the linear complexity of the periodically
repeated sequence B;B;B; . . . is equal to wH(b), the Hamming
weight of b.
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