March 11, 1973

An Error Bound for Random Tree Codes

James L. Massey
Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana

Abstract

An \((n, k, L, M)\) binary tree code is defined as the assignment of \(n\) binary digits to each of the branches in a rooted tree for which the number of branches diverging from each node at depth \(i\) from the root is \(2^i\) for \(i < L\) and is \(1\) for \(L \leq i < L + M\). The constraint length of such a code is defined as \(N = (M+1)n\) which is the length of the "long branches" diverging from the nodes at depth \(L-1\) from the root, and the rate is defined to be \(R = k/n\).

(This corresponds to the usual definitions of constraint length and rate for convolutional codes which are a special subclass of linear \((n, k, L, M)\) tree codes.) It is shown that the average probability of decoding error with maximum likelihood decoding on a discrete memoryless channel for the ensemble of \((n, k, L, M)\) tree codes satisfies

\[
\overline{P(\mathcal{E})} \leq \exp \left[NE_v(R) \right] \text{ independent of } L
\]

where \(E_v(R)\) is the error exponent found by Viterbi for the ensemble of time-varying convolutional codes. The new feature of this bound is the lack of dependence on the tree length; some practical consequences of this independence are pointed out.

1 This research was supported by the National Aeronautics and Space Administration under NASA Grant NGL 15-004-026 at the University of Notre Dame in liaison with the Communication and Navigation Division of the Goddard Space Flight Center.