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Abstract | It is shown that the average number of

successive guesses, E[G], required with an optimum

strategy until one correctly guesses the value of a

discrete random X, is underbounded by the entropy

H(X) in the manner E[G] � (1=4)2H(X)+1 provided that

H(X) � 2 bits. This bound is tight within a factor of

(4=e) when X is geometrically distributed. It is fur-

ther shown that E[G] may be arbitrarily large when

H(X) is an arbitrarily small positive number so that

there is no interesting upper bound on E[G] in terms

of H(X).

I. Introduction

Consider the problem of guessing the value taken on by a dis-
crete random variable X in one trial of a random experiment
by asking questions of the form "Did X take on its i-th possi-
ble value?" until the answer is "Yes!". This problem arises for
instance when a cryptanalyst must try out possible secret keys
one at a time after narrowing the possibilities by some crypt-
analysis. Let G be the number of guesses used in the guessing
strategy that minimizes E[G], which is obviously to guess the
possible values of X in order of decreasing probability. With
no loss of essential generality, we may suppose that these are
the �rst, second, third, etc., possible values of X so that the
probability distribution for X, say p = (p1; p2; p3; :::) satis�es
p1 � p2 � p3 � ::: and we will call such a p a monotone

distribution. With this convention, E[G] =
P

i � pi, where
in this and in all later sums the summation is on i from 1 to
in�nity. The purpose of this paper is to answer the question
of whether the entropy H(X) determines interesting upper or
lower bounds on E[G].

II. A Lower Bound on E[G]
For any A > 1, the set of (not necessarily montone) probability
distributions p such that

P
i � pi = A is a convex set and the

entropy h(p) = �
P

pi � log(pi) is a concave function on this
set. (Here and hereafter, all logarithms are to the base 2.) A
standard calculus of variations argument [which is precisely
the argument used by Jaynes [1] to show that the Boltzmann
(or geometric) distribution maximizes entropy for an average
quantum-level energy] shows that the entropy is maximized
uniquely by the geometric distribution

pi = (1=(A� 1))(1� 1=A)i

. Because the geometric distribution is monotone, it is a for-

tiori the unique monotone distribution maximizing H(X) and
its entropy is readily calculated to be

h(pgeom) = log(A� 1) + log(1� 1=A)�A:

Because the second term on the right decreases monotonically
to log(e) with increasing A and equals 2 when h(pgeom) = 2
bits, it follows that

h(pgeom) � log(A� 1) + 2

when
h(pgeom) � 2:

It follows, for an arbitrary monotone distribution with mean
A and entropy h(p) � 2 bits, that h(p) � log(A � 1) + 2 or,
equivalently, that

A � (1=4)2H(X) + 1:

Because the second term on the right in our expression for
h(pgeom) is at least log(e), it follows that

h(pgeom) � log(A� 1) + log(e)

or, equivalently, that

A � (1=e)2h(pgeom) + 1;

which shows that our lower bound on A in terms of H(X) is
conservative by at most a factor of 4=e when X is geometri-
cally distributed.

III. Lack of an Entropic Upper Bound on E[G]

For every A > 1 and every integer L > 2A�1, the distribution
p with p1 = (L � 2(A � 1))=L, pi = 2(A � 1)=(L2

� L), and
pi = 0 for i > L is monotone with mean A. The entropy of
this distribution is

h(p) = hbin(2(A� 1)=L) + (2(A� 1)=L)log(L� 1)

where hbin(:) is the binary entropy function. Because h(p)
tends to zero as L tends to in�nity, it follows that A cannot
be overbounded in a nontrivial way in terms of h(p) alone.

IV. Remark

A concise statement of what has been proved is contained in
the abstract above.
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