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Book Reviews 

Error-Correcting Codes  (2nd ed.&-W. Wesley Peterson and  E. J. 
Weldon,  Jr. (Cambridge, Mass., and  London:  M.I.T. Press, 1972,  
xi +  560  pp., $18.50).  

JAMES L. MASSEY 

Meeting a  t reasured and  much-admired friend after a  long separa-  
tion can be  a  bittersweet experience. W ith the joy of rediscovering his 
old virtues is mingled the sadness of finding that they are not of the 
heroic proport ions one  had  remembered.  Such has  been  my encounter  
with the second edition of W. W. Peterson’s coding classic. Like most 
coding theorists’, my own educat ion in the field came largely from the 
1961  first edition, which I consider one  of the most extraordinary 
technical books  ever written. That book  gave  a  lucid and  masterful 
account  that went to the very frontiers of, and  distilled to its essence,  
an  exciting new field. My hopes  for the new edition rose through two 
years of premature birth notices, and  were further raised by  the fact 
that Peterson now enjoyed the collaboration of E. J. Weldon,  Jr., 
another dist inguished coding theorist (and Hawaiian col league). Thus 
was I disappointed to find that this new edition was just another good  
book.  

The  book  has  doubled in size and  contains a  wealth of new results 
from the past decade.  To  name but a  few of the more welcome addi- 
tions: graph-theoret ic codes,  quadrat ic-residue codes,  Burton burst- 
correcting cyclic codes,  Ber lekamp-Preparata-Massey and  Iwadare 
burst-correcting convolutional codes,  negacycl ic codes,  comma-free 
codes,  Mandelbaum-Barrows arithmetic codes,  the Elias bound  on  
distance, the MacWill iams weight identities, threshold decoding, and  
Berlekamp’s decoding algorithm for the BCH codes.  The  treatment of 
convolutional codes has  been  much expanded  (and the label “recurrent 
codes” has  been  abandoned  altogether). The  authors general ly deal 
with this new material deftly and  with clarity even  in the most difficult 
parts of the theory. The  hand  of the old master is still evident. 

The  novice in coding (but not the merely curious) will find this book  
his single best educational resource, and  the old hand  will surely also 
find much that is new and  interesting. I was particularly impressed by  
the excellent account  of threshold decoding (including the clever use  
of De Morgan’s theorem on  page  314). And after reading Chapter 8  
I now understand the fuss that algebraists have  made  over the doubly 
transitive affine group of permutations. 

Having said all this and  attested to the general  excel lence of the book,  
I hope  that I may be  excused if I devote the remainder of this review to 
pointing out its defects. 

The  increased bulk of the book  is not fully justified. Much fat could 
have  been  trimmed. The  coverage tends to be  encyclopedic rather than 
selective. Too  much of the original has  been  lifted intact into the re- 
vision. Avenues which since 1961  have  come to a  dead  end,  such as  
the modular representat ion of codes,  should have  been  excised but are 
found in the same place of prominence as  before. In places one  finds 
long and  tedious arguments where a  short and  crisp one  is available. 
As one  instance, the authors present Ber lekamp’s BCH decoding 
algorithm via this reviewer’s shift-register synthesis approach.  Unfor- 
tunately, they rely on  an  early manuscript whose approach was several 
t imes longer and  more awkward than that in the final paper  [l]. As 
another instance, the “Mattson-Solomon polynomials” of Section 8.3 
can be  obtained simply and  directly by  the ordinary technique for 
solving difference equat ions appl ied to the recursion satisfied by  code-  
words of a  cyclic code.  

Certain weaknesses of the original edition have  been  perpetuated. 
On  page  216,  one  finds the same misleading statement on  repeated 
roots of polynomials as  in the original edition, which ignores the fact 
that formal derivatives of order p  (the field characteristic) and  greater 
all vanish. The  Varshamov-Gilbert bound  is again imprecisely for- 
mulated. Theorem 4.7 seems to be  saying “given n  and  k, there is a  

d . . . ” to which n  = 4  and  k = 2  provides a  counterexample. The  
theo&m should have  been  stated as  “given n  - k and  d there is an  
n... ,” which would have  had  the additional desirable effect of making 
it clear that the Varshamov bound  is not the same sort of animal as  
the Gilbert bound.  Chapter 4  on  distance bounds  has  the same defect 
as  its 1961  predecessor,  namely that upper  bounds  applying to all 
codes are proved only for linear codes,  To  say, as  the authors do, that 
a  given upper  bound  “can also be  proved for nonl inear codes” does  
not justify the omission and  suggests misleadingly that the proof of 
the general  bound  is more difficult. In fact the authors’ very succinct 
proof of the Elias upper  bound  makes no  use  whatsoever of linearity, 
and  the other general  upper  bounds  are equally accessible. 

No book  of this size could be  entirely free of errors, and  I catalog 
here those small errors that caught  my attention. The  (23,18) code 
used on  page  110  as  “an  elementary example of a  cyclic code” is in 
fact not cyclic. The  usual delay operator and  z transform operator are 
related as  D = z-r, not D = z as  al leged on  page  189.  Further on  in 
the same paragraph it is said that “multiplication by  X-i delays them 
(the coefficients) one  position. Thus in a  sense D = X-l” which is 
difficult to reconcile with the statement on  page  174  that with pre- 
multiplication by  X’ “in a  sense,  the output is delayed r units of,time.” 
In Theorem 8.14 “divisible evenly” means  only “divisible.” In the 
formal definition of a  BCH code at the bottom of page  271,  one  requires 
the further proviso “but am0 %  +? is not a  root of s(X)” to exclude for 
instance a  primitive binary BCH code of length n  =  31  with do = 9. 
There seems no  reason to justify the restriction ‘%I = rn,, =  1” for 
Reed-Solomon codes that is made  on  page  277.  The  GF(q) subfield 
subcode of a  GF(qs) code with s >  1  is not a  subspace of the latter 
and  is always a  proper subcode of the latter, two facts contrary to 
assert ions appear ing on  page  350.  The  subfield subcode is of course a  
vector space in its own right over a  different field, namely GF(q). 

Although I was personal ly del ighted to see the much expanded  
coverage of convolutional codes in this revision, I must aim my sharpest 
criticism at what I consider to be  a  shaky and  misleading treatment in 
many  places. The  statement on  page  51  that “every convolutional code  
is equivalent to a  systematic convolutional code” should have  been  
accompanied by  loud shouts that the “equivalence” is for the first 
constraint length only. Of the several distance measures for convolu- 
tional codes,  only the “feedback decoding minimum distance” (which 
is the only distance measure for convolutional codes used in this book),  
is not impaired by  the restriction to systematic codes.  Most convolu- 
tional coding theorists would I think agree that the single most 
important parameter of a  convolutional code  is the minimum distance 
between two distinct semi-infinite encoded  sequences,  a  distance 
measure for which this reviewer coined the term “free distance” some 
five years ago.  The  superiority of nonsystematic convolutional codes 
over systematic codes in terms of the criterion of free distance is well- 
known. This surprising contrast between convolutional codes and  
linear block codes,  where systematicity entails no  loss of optimality, 
should have  been  stressed. The  authors fail to distinguish between the 
two distinct forms of “error propagat ion” in convolutional coding, 
namely “catastrophic” (which is an  easily-avoidable encoder property 
equally inimical to feedback decoders,  definite decoders,  Viterbi de-  
coders, and  sequential decoders)  and  “ordinary” (which is a  hard-to- 
avoid decoder property to which definite decoders  are not susceptible). 
When  they say “error propagat ion,” the authors ordinarily mean  
“ordinary error propagat ion.” Adding to this confusion is the er roneous 
claim on  page  418  that the Viterbi decoder  is not subject to error 
propagat ion since it is a  definite decoder-which it most assuredly is 
not. In fact the Viterbi decoder  for the simple (4,2) single-error- 
correcting code coincides with the usual feedback decoder  for that 
code,  not the definite decoder.  Perhaps most misleading of all is the 
statement found on  page  6  that “Block codes and  convolutional codes 
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have similar error-correcting capabilities and the same fundamental It is an introductory graduate level textbook for a course in modern 
limitations,” which ignores the fact that convolutional codes have been estimation theory for engineering students. Despite the existence of 
proved to be better than block codes in important ways [2]. The one numerous books in this area, this book represents a contribution in 
area in which it can be shown that convolutional codes offer no the teaching and popularization of this subject to an audience of the 
fundamental advantage (or disadvantage) vis-a-vis block codes is in widest scope with minimal mathematical prerequisites. 
burst-correction. Curiously, this is the one place where the authors Chapter 1 consists of a brief introduction and summary of each of 
claim superiority for convolutional codes (page 115), at least when n the following eight chapters. In Chapters 2 and 3, the most basic 
is large. They failed to notice that the convolutional codes required formulas of probability theory and stochastic processes, as needed for 
much longer guard spaces than the block codes to which they were later chapters, are stated without proofs or motivations. The material 
being compared. in these two chapters, with possibly the exception of 3.5, is usually 

The heart of this book is the theory of cyclic linear codes. Thus it covered in a standard senior-level introductory probability-stochastic 
was surprising to find that Chapter 15, Arithmetic Codes, the last process course. Thus, besides providing common notations and 
chapter in the book, did not pursue its subject from the cyclic code definitions, the true usefulness of these two chapters is not clear. 
viewpoint. All the arithmetic codes with AB = 2” - 1 are true cyclic Certainly, if one is not already familiar with these basic concepts, by 
codes, including the Brown single-error-correcting codes and the seeing a summary of the basic equations, one will not be in a position 
Mandelbaum-Barrows large distance codes. The authors missed a to understand the rest of the book. 
splendid opportunity to tie the material of this chapter into the Chapter 4 first deals with elementary properties of Markov pro- 
remainder of the book. cesses, including the Fokker-Planck equation. Then a heuristic treat- 

Sadly, this second edition appeared just too soon to miss the most 
exciting development in coding theory since 1961. “There is no known 
coding system for which it has been proved that d/n remains nonzero 
as n approaches infinity with the rate k/n held fixed” (from page 100) 
is a precise statement of the fundamental impasse that defied the 
breaching efforts of coding theorists for more than 20 years until 
Justesen succeeded with his brilliantly simple construction [3]. This 
Danish discovery has opened the floodgates to a tide of new results 
that may well require a “third edition” of this book in the not distant 
future. Also too recent to be included and of lesser importance but 
equal interest to coding devotees was the recent demonstration that 
no perfect codes exist beyond those already known; the authors cannot 
be entirely excused for omitting the earlier contributions by van Lint 
that proved to be the key to this problem. 

This review would be incomplete without some comparison to the 
two other major books in English 08 coding theory, namely those of 
Berlekamp [4] and Lin [5]. The Peterson-Weldon book is more readable 
but less imaginative than the Berlekamp book. Of the two, Peterson- 
Weldon would be a better textbook and Berlekamp would be a better 
companion for a long, lonely evening. Lin is less thorough and less 
rigorous than Peterson-Weldon, but is the easiest of all three to read 
and the one most suitable for the nonspecialist in coding. 
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ment of stochastic differential equations driven by white noise is 
presented. Various comments on Wiener processes, stochastic integral 
and differential equations, and It6 calculus [as considered in Kailath- 
Frost (1968)] are given. These comments should generally be quite 
helpful to readers who are being exposed to this material for the first 
time. Finally, it concludes with a discussion of mean and variance 
propagation in nonlinear systems. This chapter certainly contains 
material not usually found in an introductory estimation theory book. 

Chapter 5 deals with decision theory. The beginning sections con- 
sider briefly the usual Bayes criterion and related topics already found 
in many detection theory books. The last section deals with the 
detection of Markov signals in Gaussian noise and attempts to form 
a bridge between detection theory and estimation theory. It seems that 
the incorporation of the estimator-correlator receiver concept (e.g., 
Kailath (1969), etc.) could have enhanced the relevance of this section. 
This concept would show the reader that the material considered in 
Chapter 4 (e.g., the It8 calculus, etc.) is useful in detection problems. 

The next three chapters form the heart of this book and can be used 
in a one-term elementary estimation theory course. Chapter 6 deals 
with basic point estimation theory. This chapter starts with standard 
Bayes estimation, and successively relaxes requirements on prior 
statistical knowledge about the parameters under estimation. Then 
the MAP and the ML estimators are considered. A rather detailed 
error analysis for these estimators when errors exist in the prior means 
and variances is given. This material is generally not found in standard 
statistical estimation theory books. This chapter also covers the linear 
minimum-error-variance and least-square estimators, as well as a 
rather brief discussion of properties of estimators and the Cramer-Rao 
bound. Sixteen informative examples, ranging from the obvious to 
some practical system-motivated problems, are in this chapter. 

Chapters 7 and 8 deal with the Kalman-Bucy filter problem, or 
more precisely, the linear minimum-error-variance sequential state- 
estimation problem. Chapter 7 is restricted to basic developments 
with white observation noise, while Chapter 8 deals with colored 
observation noise and other extensions. All the results in these two 
chapters are well known. Most of the basic results in Chapter 7 are 
derived by more than one method. On page 252, the authors state: 
“The justification for presenting several different developments, al- 
though one would be sufficient, since the basic results are identical, is 
that they illustrate the many ways in which a given estimation problem 
may be viewed. By approaching the problem from several avenues, it 
is hoped that a deeper understanding of the physical and statistical 
features of the results is achieved.” From a pedagogic point of view, 
this approach adopted by the authors is reasonable. In Chapter 7, the 
discrete-time filter is derived by using the orthogonal principle and the 

Estimation Theory With Applications to Communication and Control- MAP estimation method. The continuous-time filter is derived by a 
Andrew P. Sage and James L. Melsa (New York: McGraw-Hill, 1971, limiting argument applied to the discrete case, by using the calculus of 
529 pp., $17.50). variations method, and also by using the Wiener-Hopf equation. 

K. YAO Finally, the stationary solution of the continuous-time filter is com- 
pared to the classical Wiener filter, and the asymptotic stability issue 

When one sees a new technical book, it is often not easy to state is also discussed. In Chapter 8 previously derived estimation algorithms 
whether it is a reference, research monograph, or a textbook. The for filtering, prediction, and smoothing are extended to the case of 
book by Sage and Melsa clearly has no such classification problem. colored observation noise. The innovations approach is used for the 


