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Abstract

Orthogonal matrices over arbitrary �elds are de�ned together with
their non-square analogs, which are termed row-orthogonal matrices. An-
tiorthogonal and self-orthogonal square matrices are introduced together
with their non-square analogs. The relationships of these matrices to such
codes as self-dual codes and linear codes with complementary duals are
given.

1 Introduction

The aim of this paper is to de�ne a number of di�erent types of matrices
over an arbitrary �eld that are similar to the familiar orthogonal matrices
over the real �eld or to natural extensions of orthogonal matrices, then
to show the relationships between these matrices and some familiar linear
codes.

2 Orthogonal Matrices

Let Fn denote the vector space of n-tuples (or row vectors) with com-
ponents in an arbitrary �eld F . The scalar product of the vectors u and
v is the �eld element uvT , where here and hereafter the superscripted
T denotes transposition. The vectors u and v are said to be orthogonal
when uvT = 0.

A square matrix A over F is said to be orthogonal if

AA
T = I;

where here and hereafter I denotes an identity matrix of appropriate di-
mension. Equivalently, A is orthogonal just when each row of A is or-
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thogonal to every other row of A but has a scalar product of 1 with itself.
Note that A is orthogonal just when AT = A�1, and hence ATA = I

so that AT is also orthogonal. An orthogonal matrix is not only non-
singular but always has a determinant that is either +1 or �1 because
1 = det(I) = det(AAT ) = det(A) det(AT ) = (det(A))2. An example of
an orthogonal matrix over the �nite �eld GF(2) is

A =

2
64

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3
75 :

Orthogonal matrices over the �eld R of real numbers are of great
importance in the theory of isometries of Rn, cf. [?].

It seems natural, for an in general non-square, matrix A, to say that
A is row-orthogonal if

AA
T = I;

as this is equivalent to the condition that each row of A is orthogonal to
every other row of A but has a scalar product of 1 with itself. A row-
orthogonal matrix always has full row rank and thus must have at least
as many columns as rows. If A is row-orthogonal but nonsquare, then
AT cannot have full row rank and thus cannot also be row-orthogonal.
Deleting rows of an orthogonal matrix gives a row-orthogonal matrix, but
not every row-orthogonal matrix can be so constructed. For instance,
over the �eld GF(2), the matrix A = [1 1 1] is trivially row-orthogonal
but there is no orthogonal matrix having [1 1 1] as a row.

3 Antiorthogonal Matrices

The notion of an \anticode" was introduced by P. G. Farrell [?]. A \code"
is usually designed to have a large minimum distance between its code-
words. Because the opposite of \large minimum distance" is surely \small
maximum distance," it was natural for Farrell to use the term anticode to
describe a set n-tuples designed to have small maximum distance between
its \codewords". [We note that sometimes anticodes are de�ned in such
a manner that their \codewords" are all the n-tuples formed by linear
combinations of the rows of some matrix, which need not have full row
rank so that the \codewords" need not all be di�erent.] The concept of
an anticode has found numerous applications both in coding theory and
in combinatorics, cf. pp. 548-556 in [?].

Inspired by Farrell's creative terminology, we seek to de�ne an \an-
tiorthogonal matrix" in an appropriate way. Because the opposite of I
is surely �I [at least if we overlook �elds of characteristic 2 for which
I = �I], it seems natural to call a square matrix B antiorthogonal if

BB
T = �I;

i.e., if the rows of B are pairwise orthogonal but each row has a scalar
product of �1 with itself. It follows that B is antiorthogonal if and only
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if B�1 = �BT , and thus BTB = �I so that BT is also antiorthogonal.
An example of an antiorthognal matrix over GF(3) is

B =

�
1 1
1 2

�
:

In a �eld of characteristic 2, and only in such a �eld, �1 = 1 so that an
antiorthogonal matrix is also an orthogonal matrix. Over the real �eld,
the scalar product of a vector with itself is nonnegative, which implies
that no antiorthogonal real matrices exist. However, if A is an orthogonal
matrix and i is the imaginary number, then the complex matrix B = iA
is antiorthogonal.

We now relate antiorthogonal matrices to codes. We �rst recall that
a q-ary code [i.e., a code in which the components of codewords lie in
GF(q)] with qk codewords is systematic if it possess an information set,
i.e., if there is a set of k coordinates such that no two distinct codewords
have components that agree in all k of these coordinates. By a permuta-
tion of coordinates, which does not a�ect the Hamming distance between
codewords, one obtains an equivalent code for which the �rst k coordinates
are an information set, which we shall call a leading-systematic code. Ev-
ery linear code is systematic and hence equivalent to a leading-systematic
linear code. Moreover, a linear code is leading-systematic if and only if it
has a generator matrix of the form G = [I : P], which generator matrix
is easily seen to be unique and is called the systematic generator matrix
of the code. We recall further that a linear code V is said to be self-dual
if V = V ? where V ? is the dual code of V . If the code length is n,
then the dimension of a self-dual code must be k = n=2 so that n must
be even. We can now give a very simple, but apparently not previously
stated, characterization of self-dual codes.

Proposition 1 A leading-systematic linear code V is self-dual if and only
if, in its systematic generator matrix

G = [I : P];

the matrix P is antiorthogonal.

Proof: Because the code length of a self-dual code satis�es n = 2k where
k is the code dimension, the matrix P must be square. Moreover, V will
be self-dual just when G is also a parity-check matrix of the code, i.e.,
when GGT = 0. But GGT = I + PPT so that V is self-dual just when
PPT = �I, as was to be shown.

It seems entirely natural, for an in general nonsquare matrix B, to say
that B is row-antiorthogonal if

BB
T = �I;

as this is equivalent to the condition that each row of B is orthogonal
to every other row of B but has a scalar product of -1 with itself. A
row-antiorthogonal matrix always has full row rank and thus must have
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at least as many columns as rows. If B is row-antiorthogonal but non-
square, BT cannot also be row-antiorthogonal. In a �eld of characteristic
2 and only in such a �eld, a row-antiorthogonal matrix is also a row-
orthogonal matrix. Deleting rows of an antiorthogonal matrix gives a
row-antiorthogonal matrix, but not every row-orthogonal matrix can be
so constructed, as our previous example of the binary matrix B = [1 1 1]
demonstrates.

Recalling that a linear code V is said to be weakly self-dual if V � V ?,
we obtain a simple generalization of Proposition ??.

Proposition 2 A leading-systematic linear code V is weakly self-dual if
and only if, in its systematic generator matrix

G = [I : P];

the matrix P is row-antiorthogonal.

Proof: The code V will be self-dual just when the row space of G is a
subset of V ?, i.e., when GGT = 0. But GGT = I + PPT so that V is
self-dual just when PPT = �I, i.e., when P is row-antiorthogonal.

4 Self-Orthogonal Matrices

It seems a natural extension of terminology to say that a square matrix
C over an arbitrary �eld F is self-orthogonal if

CC
T = O;

where here and hereafter O denotes a zero matrix of appropriate dimen-
sion. Equivalently, C is self-orthogonal just when each row of C is orthog-
onal to every row of C including itself. It follows from CCT = O that
det(C) = 0 and hence that a self-orthogonal matrix is always singular.
An example of a self-orthogonal matrix over the �eld GF(2) is

C =

2
64

1 1 1 1
1 1 1 1
1 1 0 0
0 0 1 1

3
75 :

Note that

C
T
C =

2
64

1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1

3
75

so that CT is not self-orthogonal in this example.
We are now virtually forced to say, for an in general non-square matrix

C, that C is row-self-orthogonal if

CC
T = O;
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as this is equivalent to the condition that each row of C is orthogonal to
every row of C including itself. A row-self-orthogonal matrix, which is
not square (and hence not also a self-orthogonal matrix) can have full row
rank. Indeed any matrix obtained by deleting rows from a self-orthogonal
matrix is row-self-orthogonal so that deleting the second row from the
above-displayed self-orthogonal matrix C gives a 3 � 4 matrix that is
row-self-orthogonal and has full row rank.

The proofs of Propositions ?? and ?? imply the following alternative
characterization of self-dual and weakly self-dual codes.

Proposition 3 A linear code V with generator matrix G is self-dual or
weakly self-dual if and only if G is self-orthogonal or row-self-orthogonal,
respectively.

5 Applications to LCD Codes

We now show some connections between the above-de�ned matrices and
linear codes with complementary duals (or LCD codes for short). An LCD
code is a linear code V such that V \ V ? = f0g. The reader is referred
to [?] for proofs of the basic properties of LCD codes including the fact
that if G is a generator matrix for a linear code V , then V is self-dual if
and only if GGT is a nonsingular matrix.

We now show a �rst connection between LCD codes and the above-
de�ned matrices.

Proposition 4 A leading-systematic linear code V is an LCD code if (but
not only if), in its systematic generator matrix

G = [I : P];

the matrix P is row-self-orthogonal or, equivalently, ifG is row-orthogonal.

Proof: Because GGT = I+PPT , it follows that G is row-orthogonal just
when P is row-self-orthogonal. Moreover, if P is row-self-orthogonal, then
GGT = I so that V is indeed an LCD code.

As an application of Proposition ??, we �rst note that, for any k�m
matrix Q over a �eld of characteristic 2, the k� 2m matrix P = [Q : Q]
is row-self-orthogonal. Thus G = [I : Q : Q] generates a leading-
systematic LCD code of length n = k + 2m and dimension k. In fact,
these are the codes used in Proposition 2 of [?] to establish the asymptotic
goodness of LCD codes over a �nite �eld of characteristic 2.

More generally, if Q is any k �m matrix over a �eld of characteristic
p such that -1 is a quadratic residule modulo p, i.e., such that there exists
� in GF(p) for which �2 = �1, then P = [Q : �Q] is row-self-orthogonal
and hence G = [I : Q : �Q] generates a leading-systematic LCD code
of length n = k + 2m and dimension k. A theorem of Lagrange (cf. p.
302 in [?]), implies that, for any prime p, one can �nd elements �, �, 

and � in GF(p) such that �2 + �2 + 
2 + �2 = �1. The corresponding
matrix P = [�Q : �Q : 
Q : �Q] is thus row-self-orthogonal. Hence
G = [I : �Q : �Q : 
Q : �Q] generates a leading-systematic LCD code
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of length n = k+4m and dimension k. These are the codes used in [?] to
establish the asymptotic goodness of LCD codes over an arbitrary �nite
�eld.

A stronger consequence of Proposition ?? in the same vein as the
previous examples is the following.

Proposition 5 If B is any m �m antiorthogonal matrix and Q is any
k �m matrix, then

G = [I : Q : QB];

is the generator matrix of a leading-systematic LCD code of length n =
k + 2m and dimension k.

Proof: The proposition follows immediately from Proposition ?? upon
noting that P = [Q : QB] satis�es PPT = QQT +QBBTQT = QQT �
QQT = O so that P is indeed a row-self-orthogonal matrix.

The class of codes de�ned in Proposition ?? is rich enough to meet
the asymptotic Varshamov-Gilbert bound as even a crude lower bound on
the the number of orthogonal matrices su�ces to establish, but we omit
details of this argument here.

The following is another consequence of Proposition ??.

Proposition 6 If Q is any k � k matrix, C is any k � m row-self-
orthogonal matrix, and A is any m�m orthogonal matrix, then

G = [I : QCA];

is the generator matrix of a leading-systematic LCD code of length n = k+
m and dimension k. The same holds true if A is any m�m antiorthogonal
matrix

Proof: LettingP = QCA, we havePPT = QCAATCTQT = QCCTQT =
O so that P is indeed row-self-orthogonal.
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