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1 Introduction

I was asked to make the transparencies that I used for my \IACR Distinguished
Lecture" at EUROCRYPT '96 available on the IACR web pages. To be useful,
I concluded that I would have to provide some explanatory text in which I give
some of the explanation that I gave during the oral presentation{thus this paper.

Transparency 2 indicates the kind of provable security that I would like to
see eventually reached in cryptography. By way of contrast, transparency 3
indicates the kind of provable security that most people talk about today. From
a complexity viewpoint, transparency 2 deals with a non-uniform complexity
measure while transparency 3 deals with a uniform complexity measure (i.e.,
the same algorithm must compute all instances of the function). In the former
case, it makes sense to talk about a function (i.e., one and only one instance
of a \function") being di�cult, whereas in the latter case one must always talk
about the di�culty of an in�nite sequence of functions. My lecture was aimed
at the former kind of di�culty.

Transparency 3 gives the de�nition of a one-way function (a la Di�e and
Hellman). Here I suppose function to mean one and only one \function" so
that the underlying notion of di�culty relates to some non-uniform complex-
ity measure. The concept of a one-way function is so fundamental in modern
cryptography that it seems to me essential that we face head-on the question of
whether such a thing exists.
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2 Transposition Complexity

I decided to begin my lecture with a very simple type of complexity, which I
called \transposition complexity," for which a complete theory is easily given.
The cryptographic puzzle on transparency 5 illustrates this complexity measure.

On transparencies 6 and 7, I review the essentials of Cauchy's theory of
permutations on n objects. Cauchy noted that a permutation is fully described
by the cycles that it induces. Every permutation can be written as the compo-
sition of disjoint cycles in which, because of the disjointness, the order of the
cycles is arbitrary. A transposition is a permutation that swaps two objects but
leaves the other n � 2 objects unchanged. Every permutation can be written
as a composition of transpositions. Thus, it seems natural to de�ne the trans-

position complexity of a permutation as the smallest number of transpositions
whose composition realizes that permutation.

As shown on transparency 7, anm-cycle can be realized withm�1 transposi-
tions. Hence, as shown on transparency 8, a permutation that is the composition
of c disjoint cycles has transposition complexity at most n� c. It seems almost
obvious that n� c is exactly the transposition complexity, but I indicate at the
bottom of transparency 8 the questions that must be answered before one can
conclude that this is the case. I digressed on transparency 9 to give the simple
proof that a permuation on n objects and its inverse have the same transposi-

tion complexity. Hence, for the transposition complexity measure, there

are no one- way functions among the permutations on n objects. On
transparency 10, I give the proof that a permutation that is the composition of c
disjoint cycles has transposition complexity exactly n� c. What interests me in
this simple proof is its indirectness. One shows that composing a transposition
with any permutation either increases or decreases the number of disjoint cycles
of the latter by exactly 1. Because the identity permutation has n disjoint cy-
cles, it follows that the inverse of a c-cycle permuation cannot be realized with
fewer than n � c transpositions. Combining this with the equality of transpo-
sition complexity for a permutation and its inverse shows that a permutation
that is the composition of c disjoint cycles has transposition complexity at least
n � c, which completes the proof that its transposition complexity is exactly
n� c.

3 Gate Complexity

Transparency 11 begins the treatment of the speci�c complexity measure on
which I wished to concentrate in my lecture. I begin there by de�ning a gate

to be any of the 16 boolean functions of two variables. The gate complexity

of a boolean function of n variables is then de�ned on transparency 12 as the
smallest number of gates in an acyclic gate network that computes this function.

On transparencies 13 and 14, I use Shannon's famous counting argument [1]
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for underbounding the gate complexity of the most di�cult boolean function of
n variables. One simply counts (more precisely, one overbounds) the number of
di�erent acyclic gate networks ofK gates. If this number is less that the number
22

n

of di�erent boolean functions of n variables, then some such function has
gate complexity greater than K. Using apparently very crude bounds, I show
on these transparencies that for every n � 8 there are boolean functions of n
variables whose gate complexity is at least 1

2

2
n

n
(and indeed virtually all such

functions have at least this gate complexity). Standard synthesis arguments
can be used to show that a number of gates greater than this lower bound by
only a small factor su�ces to realize any such function. On transparency 15,
I summarize the upper and lower bounds of this type on gate complexity that
were obtained by my former doctoral student, Alain Hiltgen [2]. It seems to
me quite remarkable that, for all n � 28, the most di�cult boolean function
of n variables has gate complexity that we are sure lies between 2

n

n
and 2� 2

n

n

and that virtually all such functions have gate complexity in this same narrow
range. It may seem quite surprising then, as mentioned on transparency 16,
that no one has exhibited a constructive function of n variables whose gate
complexity exceeds 3n � 3, cf. [3] for this construction. This becomes less
surprising when one notes that the strongest general tool available today for
proving lower bounds on the gate complexity of a speci�c boolean function is
the quite trivial argument that this complexity must be at least the number of
non-idle variables less one.

Transparency 17 shifts the discussion to the gate complexity of invertible
functions from n bits to n bits, i.e., to functions in the set Pn of permutations
on the set f0; 1gn, which is where cryptographers are especially interested in
�nding one-way functions (should they exist). On transparency 18, I give the
results of an exhaustive search made about six years ago by two of my doctoral
students, Alain Hiltgen and J�urg Ganz, for such functions that are more di�cult
to invert than to compute [4]. There are obviously no such functions in P1 or
in P2, but we were very surprised to �nd that there were also none in P3 even
though there are functions in P3 whose gate complexity is 7. The �rst such
computationally asymmetric function showed up in P4, requiring 5 gates to
compute while its inverse requires 6. This function is given on transparency 18
and is probably the �rst computationally asymmetric function ever found.

On transparency 19, I brie
y consider the more general set Bnm of func-
tions from n bits to m bits and mention the almost trivial Lamagne-Savage
lower bound [5] on their gate complexity, which is the strongest tool available
today for proving lower bounds on the gate complexity of a speci�c function
in Bnm. On transparency 20, I show the form of certain binary [i.e., over the
�eld GF(2) of two elements] matrices introduced by Boppana and Lagarios [6].
Alain Hiltgen [7] showed that the linear functions in Pn described by these ma-
trices are feebly one-way for all n � 5 in the sense that the function has gate
complexity n+1 while its inverse has gate complexity equal to the integer part
of 3

2
(n � 1). His simple proof is given on transparency 21. What interests me
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here is that the lower bound on complexity obtained in the proof results from
the two rather trivial arguments mentioned above, viz. the idle variable bound
and the Lamagna-Savage bound.

Hiltgen [7], with considerably more e�ort, modi�ed the Boppana-Lagarios
matrices to obtain, for every n � 4, a feebly-one-way function with gate com-
plexity n + 2 whose inverse has gate complexity 2(n � 1). These functions in
Pn, whose inverse is about twice as complex as the function itself, still hold the
world record for computational asymmetry.

On transparency 22, I begin the demonstration that constitutes the climax
of this lecture. Again I make use of Shannon's counting argument to show that,
for all n � 6, virtually all functions in Pn have gate complexity greater than
1

5
2n. Then I overbounded the gate complexity of all functions in Pn simply

by applying Hiltgen's upper bound of 2 � 2
n

n
on the gate complexity of every

boolean function of n variables (see transparency 15) to each of the n one-bit
output functions of a function in Pn. This gives an upper boundof 2 � 2n on
the gate complexity of all functions in Pn. But the inverse of a function in Pn is
again a function in Pn so this establishes the proposition given on transparency
24, viz.
Proposition: For all n � 28, virtually all functions in Pn have gate com-

plexity di�erent by a factor of less than 10 from the gate complexity

of their inverse function.

The inescapable conclusion is that if there exist functions in Pn that are

more than \feebly one-way," then these functions are very rare.

The �nal transparency 24 gives the solution of the cryptographic puzzle on
transparency 5.

4 Postscript

I am indebted to Prof. Eli Biham of the Technion for his careful reading of my
transparencies, which resulted in his suggestion for improving the bound in the
above proposition in the following manner. Consider any gate network with n
inputs. The operation of each gate can be described by a 2n-tuple that gives
the gate output for the ordered list of 2n di�erent values assumed by the inputs.
There are only 2n di�erent 2n-tuples so that, if there are more than 2n gates,
there must be two gates that give the same output for all 2n di�erent values
of the inputs. Hence one of these two gates can be removed and its output re-
placed by the output of the other without changing anything computed, so that
a minimal realization cannot have more than 2n gates. This argument gives 2n

as an upper bound on the gate complexity of every function in Bnm and hence
also of every function in the subset Pn of Bnm. One can carry this argument
still further by noting that if the 2n-tuples for two gates are complements of one
another, then one can also remove one of the two gates by replacing its output
with that of the other gate, provided that one also modi�es the successor gates
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of the removed gate to implement the appropriate function of this complemented
input{except that the output of the removed gate cannot be an output of the
network. But for a function in Pn, invertibility implies that there can never be
two outputs taken from gates with complementary 2n-tuples. Thus, 1

2
2n is an

upper bound on the gate complexity of all functions in Pn. This improves the
bound I used above by a factor of 4 and eliminates the need to require n � 28.
Making use of this stronger bound in my argument above gives the following
improved proposition.
Proposition: For all n � 6, virtually all functions in Pn have gate com-

plexity di�erent by a factor of less than 2.5 from the gate complexity

of their inverse function.

Perhaps Hiltgen's functions for which the factor is 2 are about as one-way as is
possible!
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