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Abstract
We consider a peak-power limited single-antenna flat complex-

Gaussian fading channel where the receiver and transmitter, while
fully congnizant of the distribution of the fading process, have no
knowledge of its realization. Upper and lower bounds on channel ca-
pacity are derived, with special emphasis on tightness in the high SNR
regime. Necessary and sufficient conditions (in terms of the auto-
correlation of the fading process) are derived for capacity to grow
double-logarithmically in the Signal-to-Noise Ratio (SNR). For cases
in which capacity increases logarithmically in the SNR, we provide
an expression for the “pre-log”, i.e., for the asymptotic ratio between
channel capacity and the logarithm of the SNR. This ratio is given
by the Lebesgue measure of the set of harmonics where the spectral
density of the fading process is zero. We finally demonstrate that the
asymptotic dependence of channel capacity on the SNR need not be
limited to logarithmic or double-logarithmic behaviors. We exhibit
power spectra for which capacity grows as a fractional power of the
logarithm of the SNR.

Keywords: Fading Channels, Channel Capacity, Asymptotic Expansion,
high SNR, multiplexing gain, Rayleigh, Rice, time-selective, non-coherent.

1 Introduction

In this paper we study the capacity of a single-antenna discrete-time flat
fading channel. We assume that the fading process is a stationary circularly-
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symmetric complex-Gaussian process whose law (i.e, mean and auto-correlation
function) — but not realization — is known to the transmitter and receiver.
Some authors refer to models, such as ours, where the realization of the
fading is unknown to the receiver and transmitter as “non-coherent” mod-
els. Our channel model includes as special cases the Rayleigh and Ricean
channel models that correspond to zero-mean (Rayleigh) and non zero-mean
(Rice) IID fading. Our emphasis here will, however, be on the case where
the fading process has memory (is not IID) and thus introduces memory into
the channel model. The fading is thus “time-selective”. This memory can be
exploited by the system designer to allow for the receiver to track the fad-
ing level and to thus achieve higher communication rates. While we do not
preclude the possibility of the use of training sequences to learn the channel,
we view this possibility as a special case of coding. Thus, the capacity of
this channel is the ultimate limit on the rate of reliable communication on
this channel irrespective of the type of coding employed, be it via training
sequences or not.

Even in the absence of memory, this channel model does not lead to
explicit expressions for channel capacity, and it is thus not surprising that
previous analyses of this model were mostly based on a further simplifica-
tion of the model. A commonly used simplification is the block-constant
fading model [1]. In this model the fading is no longer assumed stationary.
Instead, it is assumed that it is drawn independently every T symbols and
then remains constant for the duration of T symbols. The capacity of this
simplified model was studied in [2] in the high signal-to-noise ratio (SNR)
regime, where capacity was shown to increase logarithmically with the SNR,
with the “pre-log”1 being given (for T ≥ 2) by (T −1)/T . A different simpli-
fied model — one that generalizes the block-constant model — was recently
proposed in [3]. Here the fading is still non-stationary but it has a more
intricate structure. The fading is IID in blocks of size T , but within the
block the fading need not be constant; an arbitrary covariance structure is
allowed. The high SNR analysis shows that unless the covariance matrix
is of full rank, capacity grows logarithmically in the SNR with the pre-log
determined by the rank Q of the covariance matrix. For Q < T the pre-log
is (T −Q)/T .

1By the “pre-log” we refer to the limiting ratio of channel capacity to the logarithm of
the signal-to-noise ratio. Some authors refer to this as “multiplexing gain”, but this latter
expression seems more appropriate for multi-antenna systems where it can be greater than
one.
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To the best of our knowledge, the only study that addresses our model
without any simplifications is by Lapidoth and Moser [4]. There, it was
shown that if the fading process is regular in the sense that its “present”
cannot be predicted precisely from its “past”, then capacity grows double-
logarithmically in the SNR. This was perhaps the first indication that the
high SNR behavior of channel capacity can depend critically on the model,
and that simplifications of the model may lead to completely different asymp-
totic behaviors.

In order to better understand channel capacity at high SNR and in an
attempt to bridge the gap between the double-logarithmic and the logarith-
mic behaviors discussed above, we extend here the study of [4] to the case
where the fading is not regular, i.e., when the present fading can be deter-
mined precisely from the past values of the fading. We shall derive upper
(22) and lower (36) bounds on the capacity of this channel with a view to an
understanding of channel capacity at high SNR (37), (42). With the aid of
these bound we shall obtain:

• A characterization (in terms of the power spectral density of the fad-
ing process) of the fading processes that lead to a double-logarithmic
dependence of channel capacity on the SNR. See Section 7 (44).

• An expression for the pre-log when capacity grows logarithmically in
the SNR (50).

• Examples of fading processes that lead to other asymptotic behaviors,
e.g., processes for which capacity grows like a fractional power of the
logarithm of the SNR. See Section 9 (72).

The rest of this paper is organized as follows. In the next section we de-
scribe the channel model and define its capacity. In the subsequent section
we discuss the classical prediction problem and the noisy prediction problem
for stationary circularly symmetric Gaussian processes. Section 4 then ad-
dresses upper bounds on capacity, while Section 5 addresses lower bounds.
An asymptotic analysis of these bounds is performed in Section 6. This
analysis is used in Section 7 to derive necessary and sufficient conditions for
capacity to grow double-logarithmically in the SNR. The study of the pre-log
is the subject of Section 8 and asymptotic behaviors other than logarithmic
or double-logarithmic are addressed in Section 9. The paper concludes with
a brief summary and some conclusions in Section 10.

3



2 Channel Model

We consider a discrete-time channel whose time-k complex-valued output
Yk ∈ C is given by

Yk = (d + Hk)xk + Zk, (1)

where xk ∈ C is the complex-valued channel input at time k; the constant
d ∈ C is a deterministic complex number; the complex process {Hk} models
multiplicative noise; and the complex process {Zk} models additive noise.
The processes {Hk} and {Zk} are assumed to be independent and of a joint
law that does not depend on the input sequence {xk}.

We shall assume that the sequence {Zk} is a sequence of independent and
identically distributed (IID) circularly-symmetric complex Gaussian random
variables of zero mean and variance σ2. Thus Zk ∼ NC(0, σ2) where we use
the notation W ∼ NC(µ, σ2) to indicate that W−µ has a zero-mean variance-
σ2 circularly-symmetric complex-Gaussian distribution, i.e., to indicate that
the density fW (w) of W is given by

fW (w) =
1

πσ2
e−

|w−µ|2

σ2 , w ∈ C. (2)

As to the “fading process” {Hk} we shall assume that it is a zero-mean,
unit-variance, stationary, circularly-symmetric, Gaussian process of arbitrary
spectral distribution function F (λ),−1/2 ≤ λ ≤ 1/2. Thus, F (·) is a mono-
tonically non-decreasing function on [−1/2, 1/2] [5, Theorem 3.2, p. 474],

E [Hk+mH∗
k ] =

∫ 1/2

−1/2

ei2πmλ dF (λ), k,m ∈ Z, (3)

and
E
[
|Hk|2

]
= 1. (4)

Notice that we do not assume that F (·) is absolutely continuous with re-
spect to the Lebesgue measure on [−1/2, 1/2], i.e., we do not assume that
the process {Hk} has a spectral density. Since F (λ) is monotonic, it is almost
everywhere differentiable, and we denote its derivate by F ′(λ). (At the dis-
continuity points of F the derivative F ′ is undefined. We do not use Dirac’s
delta functions in this paper.)

Unless we restrict the channel inputs, the capacity of this channel is
typically infinite. Typically one considers channel capacity under an energy

4



constraint on the input, but, to simplify the analysis, we have chosen in this
paper to consider the peak-power constraint:

|xk| ≤ A. (5)

We define the signal-to-noise ratio SNR by

SNR =
A2

σ2
. (6)

The subject of our investigation is the capacity C(SNR), which is defined
by:

C(SNR) = lim
n→∞

1

n
sup I(X1, . . . , Xn; Y1, . . . Yn) (7)

where the supremum is over all joint distributions on X1, . . . , Xn satisfying
the peak constraint (5), and where the limit exists because {Hk} was assumed
stationary.

It should be noted that C(SNR) need not have a coding theorem asso-
ciated with it. A coding theorem will, however, hold if {Hk} is ergodic, as
is, for example, the case if F (·) is absolutely continuous, i.e., if {Hk} has a
spectral density.

3 Noiseless and Noisy Prediction

As we shall see, the asymptotic behavior of C(SNR) depends critically on
the mean squared-error ε2

pred in predicting H0 from past values H−1, H−2, . . .

ε2
pred = exp

{∫ 1/2

−1/2

log F ′(λ) dλ

}
. (8)

If ε2
pred > 0 then [4]:

C(SNR) = log log SNR + log |d|2 − Ei(−|d|2)− 1 + log
1

ε2
pred

+ o(1), (9)

where Ei(·) denotes the exponential integral function

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0, (10)
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and where the o(1) term tends to zero as SNR →∞.
Doob [5, XII.2, p. 564] refers to processes for which ε2

pred > 0 as regular
and to those for which ε2

pred = 0 as non-regular or deterministic. Note,
however, that Ibragimov and Rozanov [6] require that regular processes also
have an absolutely continuous spectral distribution, i.e., possess a spectral
density.

With (9) established, we shall focus in this paper on the case where
ε2
pred = 0. For the asymptotic analysis of this case we shall find it important

to analyze the noisy prediction problem for {Hk}. This problem can be
stated as follows. Let {Wk} be a sequence of IID NC(0, δ2) random variables.
The noisy prediction problem is to predict H0 based on the observations
H−1 + W−1, H−2 + W−2, . . .. We denote the mean squared-error associated
with the optimal predictor by ε2

pred(δ
2) and note that it is given by

ε2
pred(δ

2) = exp

{∫ 1/2

−1/2

log
(
F ′(λ) + δ2

)
dλ

}
− δ2. (11)

Indeed, the conditional expectation of H0 given the observations H−1 +
W−1, H−2 + W−2, . . . is the same as the conditional expectation of H0 +
W0 given those observations. Since W0 is independent of the observations,
ε2
pred(δ

2) can be thus written as the prediction error for the process {Hk+Wk}
but with the variance of W0 subtracted.

Note that in view of our normalization (4), the fact that H0 is Gaussian,
and the fact that H0 is also conditionally Gaussian given the noisy past
H−1 + W−1, H−2 + W−2, . . . it follows that

I
(
{Hν + Wν}−1

ν=−∞ ; H0

)
= log

1

ε2
pred(δ

2)
. (12)

We next recall some facts related to the prediction problem for circularly
symmetric stationary Gaussian processes. To simplify the exposition we
shall somewhat abuse convention and refer to NC(µ, σ2) complex random
variables as circularly symmetric Gaussian even for µ 6= 0. Also, we shall use
the notation An

m to refer to the random variables Am, . . . , An.
We first note that if a process {Ak} is a circularly symmetric Gaussian

process, then the conditional distribution of A0 conditional on A−1, A−2, . . . , A−n

is a Gaussian with a deterministic variance. That is, if

Â
(n)
0 = E

[
A0 |A−1

−n

]
6



then

E
[
|A0 − Â

(n)
0 |2

∣∣A−1
−n

]
= E

[
|A0 − Â

(n)
0 |2

]
, almost surely.

Moreover, Â
(n)
0 has a Gaussian (unconditioned) distribution.

Finally, if {Ak} is additionally stationary, then the prediction error is
monotonically non-increasing in n and

lim
n→∞

E
[
|A0 − Â

(n)
0 |2

]
= E

[
|A0 − E

[
A0|A−1

−∞
]
|2
]
. (13)

(For the latter claim, see [5, p. 562], [5, IV, Theorem 7.4], [5, VII, Theorem
4.3].)

4 An Upper Bound

To upper bound I(Xn; Y n) we begin by using the chain rule

I(Xn; Y n) =
n∑

k=1

I(Xn; Yk|Y k−1), (14)

and upper bounding each of the individual terms in the sum by

I(Xn; Yk|Y k−1) = I(Xn, Y k−1; Yk)− I(Yk; Y
k−1)

≤ I(Xn, Y k−1; Yk)

= I(Xk, Y k−1; Yk)

= h(Yk)− h(Yk|Xk, X
k−1, Y k−1), (15)

where the first equality follows from the chain rule; the subsequent inequality
from the non-negativity of mutual information; the following equality from
the absence of feedback, which results in future inputs being independent of
the present input given the past inputs and outputs; and the last equality
from the expansion of mutual information in terms of differential entropies.

We now consider the maximization of the RHS of (15) over all joint dis-
tributions on Xk satisfying the peak constraint

|Xν | ≤ A, ν = 1, . . . , k, almost surely. (16)
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This maximization can be written as a double maximization over the distri-
bution pXk

of Xk and the conditional law pXk−1|Xk
of its past:

sup
p

Xk

{
h(Yk)− h(Yk|Xk, X

k−1, Y k−1)
}

= sup
pXk

sup
p

Xk−1|Xk

{
h(Yk)− h(Yk|Xk, X

k−1, Y k−1)
}

= sup
pXk

{
h(Yk)− inf

p
Xk−1|Xk

h(Yk|Xk, X
k−1, Y k−1)

}
, (17)

where the second equality follows from the observation that fixing the law of
Xk also fixes the law of Yk = HkXk + Zk (because the laws of Hk and Zk are
fixed) and hence also fixes its differential entropy h(Yk).

We next note that

inf
p

Xk−1|Xk

h(Yk|Xk, X
k−1, Y k−1) = h(Yk|Xk, Hk−1 + Wk−1, . . . , H1 + W1) (18)

where W1, . . . Wk−1 are IID NC(0, σ2/A2), and where the infimum is achieved
by any conditional law pXk−1|Xk

under which X1, . . . , Xk−1 are almost surely
of magnitude A. This follows because once the value of Xk has been fixed, the
variables X1, Y1, . . . , Xk−1, Yk−1 influence the conditional differential entropy
of Yk only through the information they convey on H1, . . . , Hk−1 and hence
on Hk. These variables convey information about H1, . . . , Hk−1 through the
ratios Y1/X1, . . . , Yk−1/Xk−1, and this information is maximized when the
inputs are of maximum magnitude A, in which case

Yν

Xν

− d =
HνXν + Zν

Xν

(19)

∼ Hν + Wν . (20)

Combining (18) with (17) and (15) we obtain

sup
pXn

I(Xn; Yk|Y k−1)

≤ sup
pXk

I(Xk, Hk−1 + Wk−1, . . . , H1 + W1; Yk)

≤ sup
pX0

I
(
X0, {Hν + Wν}−1

ν=−∞; Y0

)
≤ sup

pX0

I(X0; Y0) + sup
pX0

I
(
{Hν + Wν}−1

ν=−∞ ; Y0

∣∣∣X0

)
8



≤ sup
pX0

I(X0; Y0) + I
(
{Hν + Wν}−1

ν=−∞ ; H0

)
= sup

pX0

I(X0; Y0) + log
1

ε2
pred(σ

2/A2)

≤ log log
A2

σ2
+ log |d|2 − Ei(−|d|2)− 1 + log

1

ε2
pred(σ

2/A2)
+ o(1)

= log log SNR + log |d|2 − Ei(−|d|2)− 1 + log
1

ε2
pred(1/SNR)

+ o(1),

where the o(1) term follows from the analysis of the capacity of the Ricean
channel at high SNR [4]. It depends on d and A2/σ2 and tends, for any fixed
d, to zero as A2/σ2 →∞.
Note: A better bound for the non-asymptotic regime results when the term

sup
pX0

I(X0; Y0) (21)

is upper bounded by the tighter firm bound on the capacity of the memoryless
Ricean fading channel proposed in [4].

Combining the above inequality with (14) and (7) we obtain the upper
bound

C(SNR) ≤ log
1

ε2
pred(1/SNR)

+ log log SNR + log |d|2 − Ei(−|d|2)− 1 + o(1),

(22)
where the o(1) is as above. Note that this o(1) term can be upper bounded
firmly as in the analysis of Ricean fading [4].

5 A Lower Bound

To derive a lower bound on channel capacity we shall consider inputs {Xk}
that are IID and uniformly distributed over the set {z ∈ C : A/2 ≤ |z| ≤ A}.
Using the chain rule [7, Thm. 2.5.2]

1

n
I
(
Xn; Y n

)
=

1

n

n∑
k=1

I
(
Xk; Y

n
∣∣Xk−1

)
(23)

and a Cesáro-type theorem [7, Thm. 4.2.3] we obtain that the capacity C
can be lower bounded by:

C ≥ lim inf
k→∞

I
(
Xk; Y

n
∣∣Xk−1

)
. (24)
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We now proceed to lower bound the term on the RHS of (24) using the fact
that we have chosen {Xk} to be IID and satisfying |Xk| ≥ A/2, almost surely:

I
(
Xk; Y

n
∣∣Xk−1

)
≥ I
(
Xk; Y

k
∣∣Xk−1

)
= I
(
Xk; X

k−1, Y k−1, Yk

)
= I

(
Xk ; Yk,

{
Yν

Xν

− d

}k−1

ν=1

, Xk−1

)

= I

(
Xk ; Yk,

{
Yν

Xν

− d

}k−1

ν=1

∣∣∣∣∣ Xk−1

)

= I

(
Xk ; Yk,

{
Hν +

Zν

Xν

}k−1

ν=1

∣∣∣∣∣ Xk−1

)
≥ I

(
Xk ; Yk,

{
Hν + W ′

ν

}k−1

ν=1

)
= I

(
Xk ; Yk

∣∣∣ {Hν + W ′
ν

}k−1

ν=1

)
(25)

where

{W ′
ν} ∼ IID NC

(
0,

σ2

(A/2)2

)
. (26)

Notice that it was only in the last inequality that we used the fact that under
the input distribution we have chosen all inputs are of magnitude no smaller
than A/2.

Expressing the present fading Hk as

Hk = D̂ + D̃, (27)

where
D̂ = E

[
Hk|{Hν + W ′

ν}k−1
ν=1

]
(28)

we obtain from (25) that

I
(
Xk; Y

n
∣∣Xk−1

)
≥ I
(
X; (d + D̂ + D̃)X + Z

∣∣ D̂), (29)

where X, Z, D̃, D̂, are independent random variables of the following laws:
X is uniformly distributed over the set {z ∈ C : A/2 ≤ |z| ≤ A}; the additive
noise Z is NC(0, σ2) distributed; the prediction error D̃ in predicting Hk from
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{Hν +W ′
ν}k−1

ν=1 is NC(0, ε̃2
k) where ε̃2

k is the mean squared prediction error; and
D̂ ∼ NC(0, 1− ε̃2

k). Notice that by (13)

lim
k→∞

ε̃2
k = ε2

pred(δ
2)
∣∣
δ2= σ2

(A/2)2
. (30)

To lower bound the RHS of (29) we derive in Appendix A the lower bound

I
(
X; (d̂ + D̃)X + Z

)
≥ log

(
1 +

Es|d̂|2

Esε̃2
k + σ2

)
−
(
log(πeEs)− h(X)

)
(31)

> log |d̂|2 + log
1

ε̃2
k + σ2/Es

−∆h, (32)

for X, D̃, Z as above and for d̂ ∈ C deterministic. Here

Es = E
[
|X|2

]
and ∆h = log(πeEs)− h(X). (33)

This lower bound actually holds for any law on X and has the following
interpretation: It is the relative entropy distance between the law on X
and a Gaussian law of equal power, subtracted from the Gaussian capacity
corresponding to output power |d̂|2Es and noise Esε̃

2
k + σ2.

For the distribution on X in which we are interested (uniform over {z ∈
C : A/2 ≤ |z| ≤ A}) we have

E
[
|X|2

]
=

5

8
A2, ∆h = log

5e

6
, (34)

so that (32) implies:

I
(
X; (d̂ + D̃)X + Z

)
> log

1

ε̃2
k + 8/(5SNR)

+ log |d̂|2 − log
5e

6
. (35)

To use this bound in order to lower bound the RHS of (29) we note
that the RHS of (29) is just the expectation of the LHS of (35) over d̂ with
respect to the distribution of d + D̂. Thus, from (35) and the expectation of
the logarithm of a non-central chi-square random of two degrees of freedom
[4]

E
[
log |d + D̂|2

]
= log |d|2 + Ei

− |d|2

E
[
|D̂|2

]
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= log(|d|2)− Ei

(
− |d|2

1− ε̃2
k

)
,

we now obtain using (24), (29), and (30)

C(SNR) ≥ log
1

ε2
pred(δ

2) + 8/(5SNR)

∣∣∣∣∣
δ2= 4

SNR

+

log |d|2 − Ei

(
− |d|2

1− ε2
pred(δ

2)

)∣∣∣∣∣
δ2= 4

SNR

− log
5e

6
. (36)

6 Asymptotic Analysis

To simplify the asymptotic analysis we shall simplify the bounds at some
cost in accuracy. We begin by writing the upper bound (22) as:

C(SNR) ≤ log
1

ε2
pred(1/SNR)

+ log log SNR + O(1), (37)

where the O(1) term depends on d only. We also note that the capacity
is always upper bounded by the capacity CPSI(SNR) corresponding to the
case where the receiver has perfect side information, i.e., has access to the
realization of the fading process. Thus

C(SNR) ≤ CPSI(SNR)

= E

[
log

(
1 +

E [|X|2] · |d + Hk|2

σ2

)]
≤ log

(
1 +

E [|X|2] ·
(
|d|2 + 1

)
σ2

)
≤ log

(
1 + SNR ·

(
|d|2 + 1

))
= log SNR + log

(
|d|2 + 1

)
+ o(1), (38)

where the o(1) term tends to zero and the SNR tends to infinity.
As to the lower bound, we rewrite (36) as:

C(SNR) ≥ log
1

ε2
pred(4/SNR) + 2

5
· (4/SNR)

+ O(1)
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≥ log
1

ε2
pred(4/SNR) + 4/SNR

+ O(1). (39)

To continue with the asymptotic analysis we now distinguish between
two cases depending on whether the noisy prediction error is small or large
compared with the noise variance.

Small Prediction Error: By (38) and (39) we obtain

lim
δ2↓0

ε2
pred(δ

2)

δ2
< ∞ =⇒ lim

SNR→∞

C(SNR)

log SNR
= 1. (40)

Large Prediction Error: In the other extreme we note that if

lim
δ2↓0

ε2
pred(δ

2)

δ2
= ∞ (41)

then the lower bound (39) can be simplified to yield

C(SNR) ≥ log
1

ε2
pred(4/SNR)

+ O(1), if (41) holds. (42)

Compare (42) and (37).
In view of the form of the noisy prediction error (11) it is convenient to

express the bounds in terms of ε2
pred(δ

2)+ δ2 rather than in terms of ε2
pred(δ

2)
only. To this end we note that if (41) holds, then we can simplify (37) to:

C(SNR) ≤ log
1

ε2
pred(1/SNR) + 1/SNR

+ log log SNR + O(1), if (41) holds.

(43)
Compare (43) and (39).

7 The Log-Log

In this section we shall use the asymptotic results of Section 6 to characterize
the fading processes that yield a double-logarithmic dependence of channel
capacity on the SNR. We will show

lim
SNR→∞

C(SNR)

log log SNR
< ∞⇐⇒ lim

δ2↓0

−
∫ 1/2

−1/2
log
(
F ′(λ) + δ2

)
dλ

log log 1
δ2

< ∞, (44)

13



which, in view of (11), can also be stated as:

lim
SNR→∞

C(SNR)

log log SNR
< ∞⇐⇒ lim

δ2↓0

log 1
ε2pred(δ2)+δ2

log log 1
δ2

< ∞. (45)

Notice that the above condition is satisfied whenever ε2
pred(δ

2) is bounded
away from zero, i.e., whenever ε2

pred > 0. It can, however, be satisfied also by
non regular fading processes. An example of a process for which ε2

pred(0) = 0
and yet (44) is satisfied is one of spectral density:

f(λ) =

{
K · exp

{
1−

(
ω
|λ|

)}
if |λ| ≤ ω

K if ω ≤ |λ| ≤ 1/2
, (46)

where 0 < ω < 1/2 is arbitrary, and where K is chosen so that the variance
of the fading be 1.

To prove (45) we first show that the RHS implies the LHS using the upper
bound (37). To this end we begin by noting that the RHS implies that

lim
δ2↓0

ε2
pred(δ

2)

δ2
= ∞, (47)

for otherwise we could find a sequence δ2
n ↓ 0 and some M such that

ε2
pred(δ

2
n)

δ2
n

< M, n = 1, 2, 3, . . .

so that
log 1

ε2pred(δ2
n)+δ2

n

log log 1
δ2
n

>
log 1

(M+1)δ2
n

log log 1
δ2
n

→∞

in contradiction to the RHS of (45).
Having established that the RHS of (45) implies (47), we now note that

the two combine to imply

lim
δ2↓0

log 1
ε2pred(δ2

n)

log log 1
δ2
n

< ∞,

which combines with the upper bound (37) to imply the LHS.
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Having proved that the RHS of (45) implies the LHS, we next turn to
prove the reverse. In fact, we will show that

lim
δ2↓0

log 1
ε2pred(δ2)+δ2

log log 1
δ2

= ∞ =⇒ lim
SNR→∞

C(SNR)

log log SNR
= ∞. (48)

This actually follows quite easily from the lower bound (39). Assume the
LHS of the above, and let δ2

n ↓ 0 be such that

lim
n→∞

log 1
ε2pred(δ2

n)+δ2
n

log log 1
δ2
n

= ∞ (49)

and define the sequence

SNRn =
4

δ2
n

.

Then

lim
n→∞

C(SNRn)

log log SNRn

= lim
n→∞

C(SNRn)

log log(SNRn/4)

≥ lim
n→∞

log 1
ε2pred(δ2

n)+δ2
n

log log 1
δ2
n

= ∞

where the first equality follows from the behavior of the log log(·) function,
the subsequent inequality from the lower bound (39), and the final equality
from (49).

8 The Pre-Log

In this section we shall determine the asymptotic “pre-log” term. In the
multi-antenna literature this is sometimes called the “multiplexing gain”,
but this term does not seem very appropriate in our single-antenna context,
especially since this ratio cannot exceed one, so that, if anything, it is not a
“gain” but rather a “loss”. We will show that the limiting ratio of channel
capacity to log SNR is determined by the nulls of the spectral density. It is

15



the ratio of the total length of the frequency bands where the spectral density
is null to the total frequencies:

lim
SNR→∞

C(SNR)

log SNR
= µ

({
λ : F ′(λ) = 0

})
, (50)

where µ(·) denotes the Lebesgue measure on the interval [−1/2, 1/2].
To prove (50) we begin by noting that if its RHS is 1, i.e., if F ′(λ) is almost

everywhere zero, then by (11) ε2
pred(δ

2) = 0 for any δ2 ≥ 0. Consequently the
claim in this case follows from (40).

As to the case where the RHS of (50) is strictly smaller than 1, we note
that in this case it suffices to show

lim
δ2↓0

log
(
ε2
pred(δ

2) + δ2
)

log δ2
= µ

({
λ : F ′(λ) = 0

})
, (51)

because this would imply that (41) holds, and the result would then follows
from (39) and (43).

We thus proceed to prove (51) or equivalently (in view of (11))

lim
δ2↓0

∫ 1/2

−1/2
log
(
F ′(λ) + δ2

)
dλ

log δ2
= µ

({
λ : F ′(λ) = 0

})
. (52)

To this end we divide up the integration in (52) into three different regions2,
depending on whether F ′(λ) is zero, it is in the interval (0, 1), or it is in the
interval [1,∞):∫ 1/2

−1/2
log
(
F ′(λ) + δ2

)
dλ

log δ2
=∫

F ′(λ)=0

+

∫
0<F ′(λ)<1

+

∫
F ′(λ)≥1

log
(
F ′(λ) + δ2

)
log δ2

dλ. (53)

The easiest term to deal with is the first term because the integrand does
not depend on δ2 > 0:∫

F ′(λ)=0

log
(
F ′(λ) + δ2

)
log δ2

dλ = µ
({

λ : F ′(λ) = 0
})

, δ2 > 0. (54)

2The set of λ’s for which the derivative F ′(λ) is undefined is of Lebesgue measure zero.
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The third term is easily handled using the Monotone Convergence Theorem
by noting that for any a > 0 the function

δ2 7→
log
(
a + δ2

)
log δ2

(55)

approaches zero as δ2 ↓ 0, and that if a ≥ 1, then this function is monotoni-
cally decreasing in δ2 in the interval [0, 1).

To demonstrate that the second integral — the one corresponding to
0 < F ′(λ) < 1 — approaches zero, we must exercise a little more care, since
the above function is no longer monotonic in (0, 1). Thus, rather than relying
on the Monotone Convergence Theorem, we shall rely on the Dominated
Convergence Theorem. By setting its derivative to zero, we find that for
0 < a < 1 the function (55) has a maximum in the interval (0, 1) at δ2 = ξ
where ξ satisfies:

ξ log ξ = (a + ξ) log(a + ξ),

whence the function takes on the value

ξ

a + ξ
< 1.

Consequently, for small δ2, e.g., δ2 < 1/2 the maximum value of the mag-
nitude of the function (55) is either achieved at δ2 = 1/2 or else inside the
interval (0, 1/2) whence it is upper bounded by 1. Thus∣∣∣∣∣ log

(
F ′(λ) + δ2

)
log δ2

∣∣∣∣∣ ≤ max

{
1,

∣∣∣∣∣ log
(
F ′(λ) + 1/2

)
log 1/2

∣∣∣∣∣
}

,

0 < F ′(λ) < 1, 0 ≤ δ2 ≤ 1/2. (56)

Since the RHS is integrable over {λ ∈ [−1/2, +1/2] : 0 < F ′(λ) < 1} we
obtain from the Dominated Convergence Theorem that the second term in
(53) converges to zero.

9 Other Asymptotic Behaviors

In this section we consider a family of spectra that will give rise to new
asymptotic behaviors of channel capacity.
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The spectra are parametrized by two parameters: α > 1 and 0 < ω < 1/2.
They are given by

f(λ) =

{
K · exp

{
1−

(
ω
|λ|

)α}
if |λ| ≤ ω

K if ω ≤ |λ| ≤ 1/2
, (57)

where the constant K normalizes the spectrum so that∫ 1/2

−1/2

f(λ) dλ = 1. (58)

Notice that since the RHS of (57) never exceeds K, the normalizing constant
K must satisfy K ≥ 1. However, since the RHS of (57) is equal to K for
ω ≤ |λ| ≤ 1/2 we must also have 2K(1/2− ω) ≤ 1. Thus,

1 ≤ K ≤ 1

1− 2ω
. (59)

Note also that for processes of these spectra, the prediction error ε2
pred in the

absence of noise is zero:∫ 1/2

−1/2

log f(λ) dλ = −∞, α > 1, ω > 0. (60)

To study the prediction error in the presence of noise ε2
pred(δ

2), we need
to study (11). As we shall see, for processes with these spectra ε2

pred(δ
2)/δ2

tends to infinity, and we shall therefore focus on the integral∫ 1/2

−1/2

log
(
f(λ) + δ2

)
dλ (61)

without paying attention the the term δ2, which must be subtracted to obtain
ε2
pred(δ

2).
We shall next proceed to estimate (61) for small δ2. In particular, we

shall assume 0 < δ2 � K. To this end, we define η(δ2) as the solution in
(0, ω) of the equation3:

f(η) = δ2,

3To simplify notation we make the dependence of η on δ2 implicit and write η rather
than η(δ2).
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or explicitly as

η =
ω(

1 + log K
δ2

)1/α
. (62)

Notice that since f(λ) is monotonic on [0, 1/2] it follows that

f(λ) ≤ δ2, 0 ≤ λ ≤ η, (63)

f(λ) ≥ δ2, η ≤ λ ≤ 1/2. (64)

By symmetry,∫ 1/2

−1/2

log
(
f(λ) + δ2

)
dλ = 2

∫ 1/2

0

log
(
f(λ) + δ2

)
dλ, (65)

and we thus proceed to estimate the integral over λ ∈ [0, 1/2]. We break
this integral into three integrals over the intervals [0, η], [η, ω], and [ω, 1/2].
Using (63) we can bound the integrand in the first integral by

log δ2 ≤ log
(
f(λ) + δ2

)
≤ log

(
2δ2
)
, 0 ≤ λ ≤ η,

to conclude that ∫ η

0

log
(
f(λ) + δ2

)
dλ = η log δ2 + o(1), (66)

where the o(1) term is between 0 and η log 2 and thus tends to zero as δ2

approaches zero. Using (64) we obtain

log f(λ) ≤ log
(
f(λ) + δ2

)
≤ log

(
2f(λ)

)
, η ≤ λ ≤ ω,

to conclude that∫ ω

η

log
(
f(λ) + δ2

)
dλ =

∫ ω

η

log f(λ) dλ + O(1)

= (ω − η) log(Ke) +
ω

α− 1
− ωα

α− 1
· 1

ηα−1
+ O(1),

(67)

where the O(1) terms are between 0 and ω log 2. Finally, the integral over
[ω, 1/2] can be precisely computed as∫ 1/2

ω

log
(
f(λ) + δ2

)
dλ = (1/2− ω) log(K + δ2). (68)
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It thus follows from (65), (66), (67) and (68) that∫ 1/2

−1/2

log
(
f(λ) + δ2

)
dλ = 2η log δ2 − 2

ωα

α− 1

1

ηα−1
+ O(1), (69)

where the O(1) is bounded in δ2.
We now note that by (62)

η log
1

δ2
= ω

(
log

1

δ2

)1−1/α

+ o(1),

and
ωα

α− 1

1

ηα−1
=

ω

α− 1

(
log

1

δ2

)1−1/α

+ o(1),

so that by (69)∫ 1/2

−1/2

log
(
f(λ) + δ2

)
dλ = − 2ωα

α− 1

(
log

1

δ2

)1−1/α

+ O(1).

Since log δ2 is much more negative than the RHS of the above, we conclude
that in (11) the integral is, indeed, the dominant term; that (41) holds; and
that

log
1

ε2
pred(δ

2)
=

2ωα

α− 1

(
log

1

δ2

)1−1/α

+ O(1). (70)

The asymptotic behavior of the capacity can be deduced from (70), (42),
and (37). For example,

lim
SNR→∞

C(SNR)(
log SNR

)1−1/α
=

2ωα

α− 1
, (71)

or, upon substituting β = (α− 1)/α

lim
SNR→∞

C(SNR)(
log SNR

)β =
2ω

β
, 0 < β < 1, 0 < ω < 1/2. (72)
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10 Summary and Conclusions

In this paper we studied the capacity of a discrete-time Gaussian fading
channel with memory, where both transmitter and receiver are cognizant of
the fading law (mean and auto-correlation), but neither has access to the
realizations of the fading process. While previous studies [4] focused on the
case where the fading process is regular (i.e., one where the present fading
cannot be predicted precisely from past fading values), here we extended the
analysis to non-regular processes too.

It was demonstrated that while regular fading processes result in capac-
ity growing only double-logarithmically in the SNR, non-regular fading can
result in very diverse asymptotic behaviors. Capacity may grow logarithmi-
cally in the SNR, double-logarithmically, or in between, e.g., as a fractional
power of the logarithm of the SNR.

When capacity grows logarithmically, it was demonstrated that the “pre-
log” can be very easily determined from the spectrum of the fading process.
For fading processes having a power spectral density, it is merely the Lebesgue
measure of the set of harmonics in [−1/2, 1/2] where the power spectral
density is zero. It is interesting to compare this result to the one obtained
via the block-constant fading model ((T−1)/T where T is the block duration
[2]) or the more general model proposed in [3] ((T − Q)/Q where Q is the
rank of the covariance matrix of the fading inside the block).

It should be pointed out that in this paper we considered, for mathe-
matical convenience, a peak-power constraint rather than the more common
average power constraint. We suspect, however, that this makes little differ-
ence in the asymptotic high SNR regime. Indeed, for regular process, a peak
power constraint and an average power constraint lead to identical fading
numbers [4].

More critical, however, is the assumption that time is discrete. We sus-
pect that the results may change once a continuous-time model is addressed.
Nevertheless, the discrete time model is of interest not only because it is
tractable, but because it is relevant in practice in all systems that base their
receiver on samples at the output of the matched filter, even if those do not
form a sufficient condition.

Finally we should comment on our assumption of a single-antenna. We
first note that most of the analysis can be extended to channel where the
receiver (but not transmitter) uses more than one antenna. Moreover, while
multi-antenna systems are of great practical value, it is felt that there is still
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much that needs to be understood about single-antenna fading channels. The
asymptotics addressed in this paper are but a step in that direction.

A A Lower Bound on the Ricean Mutual In-

formation

In this appendix we prove the lower bound (31) on the mutual information
across the terminals of a Ricean channel. We define Y = (d̂ + D̃)X + Z and
lower bound the mutual information I(X; Y ) by:

I(X; Y ) = h(X)− h(X|Y )

= h(X)− h(X − αY |Y )

≥ h(X)− h(X − αY )

≥ h(X)− log
(
πeE

[
|X − αY |2

])
,

where α ∈ C is arbitrary. Here the first inequality follows because condi-
tioning cannot increase differential entropy, and the subsequent inequality
follows because the Gaussian distribution maximizes differential entropy for
a given second moment. Inequality (31) now follows by optimizing over α,
i.e., by choosing α to minimize E [|X − αY |2] namely

α =
E [XY ∗]

E [|Y |2]

=
E [|X|2] d̂∗

E [|X|2] (|d̂|2 + ε̃2
k) + σ2

.
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