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An Improved Achievable Region for the Discrete
Memoryless Two-User Multiple-Access Channel

With Noiseless Feedback
Shraga I. Bross, Member, IEEE, and Amos Lapidoth, Fellow, IEEE

Abstract—An achievable region for the two-user discrete memo-
ryless multiple-access channel (DMMAC) with noiseless feedback
is proposed. The proposed region includes the Cover–Leung re-
gion, with the inclusion being, for some channels, strict. This inner
bound is demonstrated for the ideal two-user Poisson multiple-ac-
cess channel with noiseless feedback, in which case it is shown to
improve on the Cover–Leung rate-sum.

Index Terms—Feedback capacity, ideal Poisson multiple-access
channel (MAC), optical code-division multiple access (CDMA),
two-user discrete memoryless multiple-access channel (DMMAC)
with noiseless feedback.

I. INTRODUCTION

NO single-letter expression for the capacity region of a gen-
eral discrete memoryless (DM) multiple-access channel

(MAC) with feedback is known. The observation that this re-
gion can be strictly larger than the capacity region of the MAC
without feedback is due to Gaarder and Wolf [1]. Cover and
Leung established an inner bound to the capacity region for
the MAC with feedback in [2]. However, as demonstrated by
Ozarow [7], this inner bound is not always tight. Nevertheless,
Willems has shown [4] that the Cover–Leung inner bound is
tight if the channel satisfies the condition that at least one of the
encoders can determine the symbol produced by the other en-
coder based on the channel output and the symbol it produced
itself. Willems’s condition was subsequently somewhat weak-
ened by Hekstra and Willems [5].

Recently, Kramer [8], [9] used the notion of directed infor-
mation to derive an expression for the capacity region of the
MAC with feedback. This expression, however, is an incom-
putable non-single-letter expression.

In this paper, we shall propose a new achievable region with a
single-letter characterization. The proposed region contains the
Cover–Leung region with the inclusion being, for some chan-
nels, strict.

An example of a MAC for which the proposed region is
strictly larger than the Cover–Leung region is the binary MAC
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where the probability of receiving the symbol “ ” is propor-
tional to the sum of the channel inputs

(1)

where . Notice that for this channel Willems’s
condition is not met: no encoder can determine the symbol pro-
duced by the other encoder based on the channel output and
the symbol it produced itself. Indeed, if an encoder transmits
“ ” then it cannot—even with the aid of the output—infer what
was transmitted by the other encoder. Thus, the fact that for this
channel the Cover–Leung region is not tight does not contradict
Willems’s result [4]. Observe, however, that Willems’s condi-
tion is “partially fulfilled” in the sense that if the encoder pro-
duces a “ ” and if it observes that the channel output is “ ,”
it can infer that the other encoder produced a “ .” This ob-
servation makes this channel particularly suitable for demon-
strating that our proposed region may be strictly larger than the
Cover–Leung region.

The rest of this paper is organized as follows. In Section II, we
introduce the two-user channel with feedback and recall some
basic results that will be needed to establish an achievable rate
region. In Section III, we present our main results and in Sec-
tions IV and V we prove the achievability of these results. Fi-
nally, Section VI demonstrates how our code construction can
be applied to the ideal two-user Poisson MAC to improve on the
Cover–Leung inner bound.

II. PRELIMINARIES

A. Notation

Henceforth, we adopt the following notation conventions.
Random variables will be denoted by capital letters, while their
realizations will be denoted by the respective lower case letters.
Whenever the dimension of a random vector is clear from the
context the random vector will be denoted by a bold face letter,
that is, denotes the random vector , and

will designate a specific sample value
of . However, in those cases where we find it important to
emphasize explicitly the dimension of a random vector—
shall denote the random vector . The
alphabet of a scalar random variable will be designated by a
calligraphic letter . The -fold Cartesian power of a generic
alphabet , that is, the set of all -vectors over , will be
denoted .
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The transmitters in a two-user MAC will be usually indexed
by . We shall denote by the element in that
is not equal to .

B. Achievable Rates

Definition 1: A two-user DMMAC is a quadruple
where and are finite sets

corresponding to the input alphabets, the finite set is the
output alphabet, and is a collection of probability
mass functions on indexed by the input symbols and

. These probability mass functions extend to -tuples
according to the memoryless law

where , , and denote the inputs and output of the
channel at time .

Feedback is incorporated into the DMMAC
via the definition of a code.

An code for the MAC with feedback is defined
as follows.

1) A collection of encoding functions

where is the symbol transmitted at time
by Encoder when attempting to convey Message

to the receiver after obtaining the previous output
symbols . Here denotes the
number of different messages that Encoder can transmit.

2) A decoding function

We shall use the average probability of error criterion as-
suming that the messages are drawn according to a
uniform distribution over . Conse-
quently, the error probability for the code is defined as

A rate pair nats per channel use is achievable for
the memoryless MAC with feedback if there exists a sequence
of codes with

such that as . (Throughout, we use natural
logarithms). The feedback capacity region is the closure of
the set of all achievable rates.

C. Weak Typicality

Let denote a finite collection of
discrete random variables with some joint distribution

with
Let denote an ordered nonempty subset of these random
variables and consider independent copies of . Thus, with

Furthermore, let

Definition 2: The set of -typical -sequences is defined
by (see [3, Ch. 3])

Let be defined similar to but now with constraints
corresponding to all nonempty subsets of . We recall now three
basic lemmas (for the proofs we refer to [3]).

Lemma 1: For any the following statements hold for
every integer :

1) If , then

2) If and ,
then

Moreover, the following statements hold for every suffi-
ciently large :

3) ;
4) .

Lemma 2: Let the discrete random variables , have joint
distribution . Let and be independent with the
marginals
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Let the pair of -length random vectors be drawn

and the pair of -length vectors be drawn

Then

Lemma 3: Let the discrete random variables , , have
joint distribution . Let and be condition-
ally independent given , with the marginals

Let

and

Then

III. MAIN RESULTS

The achievable region for the MAC with feedback that we
present is based on the analysis of a transmission system that
can be roughly divided into “two-way” phases and “multiple-
access” phases. To simplify the exposition we shall first present
a result that is related to the two-way phase and only later present
the main result regarding the achievable region.

Consider a MAC and assume that
before the two-way phase begins the -length sequences

are generated independently and identically dis-
tributed (i.i.d.) according to some joint law
so that

(2)

where (respectively, , and ) denotes the time- com-
ponent of the sequence (respectively, and ) and is
assumed to take value in some finite set (respectively,
and ). The sequences are then made available to
Encoder , whereas only the sequence is made

available to the decoder. Encoder then applies componentwise
some deterministic function

(3)

(where is some finite set) to produce the sequence

In the two-way phase, Encoder , whose side information
consists of , wishes to provide Encoder with the se-
quence in order to convey something (possibly ev-
erything) about its private side information . The functions

allow for the possibility that the two encoders may wish
to exchange not and but some functions thereof.

In the two-way phase, the MAC with feedback is used
times in order to exchange the sequence and the
sequence between the two encoders. After the ex-
change (which should be error free with high probability) the
decoder forms a list

of possible sequence pairs, based on its knowledge of the se-
quence and upon the outputs that were produced during the
exchange . Notice that this list will typically be of
an exponential size even for a successful exchange of informa-
tion, because compared to the encoders the decoder is hindered:
at the beginning of the two-way phase only the sequence is
made available to the decoder.

We are interested in the asymptotic ratio of the number
of channel uses to that are needed to guarantee a
reliable exchange of the sequences
and in the exponential rate of growth of the list size
needed by the decoder to guarantee that the correct pair

is (with high probability) in the list
.

More formally, for a MAC with feedback
and sequences

generated i.i.d. from the law we consider
encoding functions

(4)

that given the sequences available to Encoder before the
two-way phase began and the channel outputs that are available
via the feedback link, produces the next channel input.

We shall say that the pair is achievable for
the law and the MAC with feedback

when it is used to convey the sequences
determined by the functions , , if for any and all
sufficiently large , there exists some ; a pair of
encoders as in (4); a pair of decoders

(5)

and a list decoder from to the set of all subsets
of of cardinality not exceeding ; such that
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Fig. 1. Single-output two-way channel for the exchange of (vvv (S ; S ) ; vvv (S ; S )).

the probability that either produces a sequence other than
or produces a sequence other than

or produces a list of pairs that does not contain
is smaller than . The single-output

two-way channel with the encoding/decoding scheme thus
defined is illustrated in Fig. 1.

We denote the set of achievable pairs by

Having defined the set we now proceed to inner bound it.

Theorem 1: Consider a MAC with feedback
and let take value

in the finite set according to the given law
. Let the functions , (3) also be given, and set

, , 2.
Let take value in according to a

joint law of the form

(6)

where and are arbitrary laws on and , respec-
tively, and where is the MAC law, i.e., the proba-
bility that the MAC emits the symbol when its inputs are
and , respectively.

Let the functions

(7)

(where is some arbitrary finite set) be chosen such that with

(8)

the following holds:

(9)

Define the quantities , , and by

(10)

Then any pair satisfying , is
achievable, i.e., it satisfies

Moreover, the set is convex.

Remark: The preferable mappings in (7) are
those for which

The proof of this theorem appears in Section IV.
We next describe the proposed achievable region for a MAC

with feedback.

Theorem 2: Consider a MAC with feedback
. Let the auxiliary random vari-

able take value in some finite set according to some
arbitrary law . Let the random variables take
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value in and assume that the joint law of
, which we denote by , is of the form

where and are arbitrary conditional laws and where
is the MAC law, i.e., the probability that the MAC

produces at its output the symbol when its inputs are
and , respectively. Denote the joint law of by

so that

Let the functions as defined by (3) be arbitrary, and let
, .

Then, if the pair satisfies

and if the rates , satisfy

then the rate pair is achievable on the MAC
with feedback.

Moreover

• Any rate-pair that can be demonstrated to be achievable
using this theorem can also be demonstrated to be achiev-
able using this theorem with the auxiliary random variable

taking value in a finite set of cardinality

• The capacity region of the MAC with feedback is topo-
logically closed and is convex.

The proof of this theorem appears in Section V.
Combining this result with the inner bound of Theorem 1 on
we obtain the following.

Corollary 1: Consider a MAC with feedback
. Let the auxiliary random vari-

able take value in some finite set , according to some
arbitrary law , where . Let
the random variables take value in
and assume that the joint law of , which we
denote by , is of the form

(11)

where and are arbitrary conditional laws. Let
take value in according to a joint

law of the form

where and are arbitrary laws on and , respec-
tively, and where is the probability that the MAC
emits the symbol when its inputs are and , respectively.

For arbitrary deterministic functions

let , and any deterministic functions ,
which are defined as in (7), and satisfy (9) with as in (8).

Finally, with as defined in (10), define the quantities
and by

Then whenever the quadruple satisfies

the rate pair is achievable on the MAC with feedback.
Moreover, the region is topologically closed and convex.

We next demonstrate that the above region always contains
the Cover–Leung region. This can be seen as follows. If and

, are chosen to take on exactly one value each, then
and are deterministic. In

this case, and in which case we obtain
(upon setting ) the achievability of any rate pair

satisfying

(12)

which coincides with the Cover–Leung region [2, Theorem 1].

An example with a strict inclusion
To demonstrate a case with a strict inclusion of the

Cover–Leung region we shall exhibit, for the channel (1),
a symmetric rate pair that belongs to the region defined by
Corollary 1 but is outside the region (12). To that end, we let
the mappings for the channel (1) be defined as follows:

and
otherwise

(13)
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and similarly, the mappings are defined by

and
otherwise.

(14)

Here “ ” denotes an “erasure” meaning that Encoder cannot
infer what Encoder has sent during that particular time.

Next, consider the case where , and let us look at the
quantity . Then, the choice ;

and ; yields a symmetric sum rate
of , where the term tends to
zero as .

On the other hand, the maximal symmetric sum rate in the
Cover–Leung region is . This
rate pair is attained with ; ,

, , and

IV. THE TWO-WAY PHASE: ACHIEVABILITY PROOF OF

THEOREM 1

The two-way phase is composed of recursive encoding
steps and it is decoded via the backward decoding technique [6],
[12]. When backward decoding is used, the decoder as well as
each of the encoders starts decoding only after all blocks (cor-
responding to the encoding steps) have been received. In block
, each encoder transmits the resolution informa-

tion his partner needs in order to decode the previous block. As-
suming the resolution information in block is sent at a low
enough rate, it is then used to transform the high-rate informa-
tion in block into low-rate information. Consequently,
this permits the simultaneous decoding of the aggregate infor-
mation sent in block . Next, this resolution information
transforms the high-rate information in block into decod-
able low-rate information, wherein simultaneous decoding can
be applied again. Continuing this way, each encoder as well as
the the decoder (with the help of the extra resolution information
sent to him by both encoders during the following transmission
phase as described later on) successively decode the information
in all blocks in a block-simultaneous way, with block decoded
last.

Before getting into the details of the two-way phase, we de-
fine explicitly what is our aim during this phase.

Let both encoders and the decoder observe an -length se-
quence that is generated i.i.d. according to some joint law

, wherein Encoder has as well access to the side in-
formation . As a result, Encoder forms the corresponding
vector and now both encoders
wish to exchange the pair between them.

For Encoder who knows , the ambiguity regarding
is given by the conditional (on its private side information
as well as on the public side information ) entropy

(15)

where (15) follows by the fact that conditional on the out-
come is a realization of i.i.d. drawings of a pair of
random variables . At the same time for the decoder,
who is ignorant of , the ambiguity regarding is
given by the conditional (just on the public side information )
entropy

(16)

Thus, the problem of exchanging the correlated pair of
sequences between the encoders via the two-way
channel can be envisaged as follows.

Consider a bipartite graph with

right nodes and left nodes (later on
we set ). A right node represents an outcome of the
random vector , while a left node represents an outcome of
the random vector . Each left node has

outgoing edges connected to the corresponding right nodes rep-
resenting the possible outcomes of as viewed by Encoder 1
(who has access to its private side information ). At the same
time each right node has

outgoing edges connected to the corresponding left nodes rep-
resenting the possible outcomes of as viewed by Encoder 2
(later on we set ). Encoder 1 who knows the correct
left node seeks to resolve the correct right node, while Encoder
2 who knows the correct right node seeks to determine the cor-
rect left node.

A two-way communication phase consists of a sequence of
two-way steps, wherein during step , the

encoders use an -length two-user code that is generated
according to the joint distribution induced by
the law (6) as follows.

• Generate sequences ,
each with probability

Label them , .
• Generate sequences ,

each with probability

Label them , .
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Consider next the decoding of a typical two-way communi-
cation phase.

During the first step of the two-way phase the encoders send
the blocklength codeword pair and as a
result both encoders and the decoder observe the channel output

. Thus, Encoder can generate

and the decoding of this step is accomplished assuming that both
encoders have (somehow) exchanged first the pair
thereby obtaining the rates

Consequently, to decode two-way step , ,
presumably via joint typicality considerations, it is assumed that
both encoders exchange first the pair of vectors .
Therefore, two-way step 1, which is intended for the ex-
change of (the information regarding ),
entails the execution of two-way step 2 during which the
encoders exchange (the information regarding

), and so on. As a result of this recursive
encoding procedure, both encoders end up executing a series
of two-way steps with corresponding codewords’ block lengths

, where this chain of inequalities is
implied by the technical condition (9) as shown in the sequel.

The encoders decode the information as follows. Suppose
that in two-way step both encoders use standard multiple-ac-
cess transmission and as a result decode the “resolution infor-
mation” which is needed to interpret the real-
ization of two-way step . Based on , ,
and Encoder 1 decodes taking into account that

resides within a block length codebook of size
, while actually its ambiguity (for En-

coder 1) is just within a subcode (of this codebook) the size of
which equals

Similarly, based on , , and En-
coder 2 decodes taking into account that
resides within a block length codebook of size

, while actually its ambiguity (for
Encoder 2) is just within a subcode of size

As a result, both encoders acquire . This in turn
enables the decoding of two-way step and so on, until
each encoder recovers which concludes the exchange
of the sequences .

We can now choose such that the list sizes corresponding
to two-way step are exponentially small when measuring
them in reference to the initial block length , yet at the same
time is sufficiently large. Thus, the information trans-
mitted during two-way step lies within a set that is sufficiently
small compared to the direct product of the sets corresponding
to two-way steps . Consequently, the duration
consumed by two-way step is negligible.

During two-way step , Encoder 1 esti-
mates the message of Encoder 2 and declares if and
only if there is a unique such that

(17)

Using Lemmas 1 and 3, it can be shown that Encoder 1’s de-
cision will be correct with arbitrarily small probability of error

if (here is some predetermined positive in-
teger)

(18)

and , are sufficiently large.
Similarly, Encoder 2 declares if and only if there

is a unique such that (17) is satisfied. Using Lemmas 1 and
3, it can be shown that Encoder 2’s decision will be correct with
arbitrarily small probability of error if

(19)

and , are sufficiently large.
Thus, the combination of (18), (19) together with the tech-

nical condition (9) ensures that is
admissible.

In conclusion—upon the termination of the two-way phase
both encoders know the exact realization of ,

, as well as .
Turning to the decoder, we recall that the decoder seeks to

determine both sequences and , based
on its knowledge of the sequence and upon the outputs that
were produced during the exchange . To this end,
we consider two possible decoders for the situation at hand.

Decoder 1—joint decoder.
The decoder decodes first two-way step which provides

him with , then it sets .

• Based on Decoder 1 forms an a priori list
of possible transmitted block length codeword
pairs, , the size of which equals

.
• Based on and its acquaintance with the se-

quence , Decoder 1 forms the a posteriori list

of all message pairs such that (17) is satisfied.
Using the resolution information, that both encoders

communicate later on, Decoder 1 resolves the correct
message pair within the list .

• Having acquired , Decoder 1 sets
and, provided that , proceeds backward to decode
two-way step .
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Following the above procedure Decoder 1 obtains

• Based on , Decoder 1 forms an a priori list of
possible transmitted block length codeword pairs,

, the size of which equals
.

• Based on and its acquaintance with the se-
quence , Decoder 1 forms the a posteriori list

of all message pairs such that

(20)

Using the resolution information that both encoders com-
municate later on, Decoder 1 resolves the correct message
pair within .

Decoder 2—successive decoder.
The decoder decodes first two-way step which provides

him with , then it sets .

• Based on Decoder 2 forms an a priori list of pos-
sible transmitted block length codewords, ,
the size of which equals .

• Based on and Decoder 2 forms the a pos-
teriori list of all messages such that

(21)

Using the resolution information that both encoders com-
municate later on, Decoder 2 resolves the correct message

within .
• Based on Decoder 2 forms an a

priori list of possible transmitted block length
codewords, , the size of which equals

.
• Based on and Decoder 2 forms the a pos-

teriori list of all messages such that (17) is
satisfied. Using the resolution information that both en-
coders communicate later on, Decoder 2 resolves the cor-
rect message within .

• Having acquired , Decoder 2 sets
and, provided that , proceeds backward to decode
two-way step .

Following the above procedure Decoder 2 obtains

• Based on Decoder 2 forms an a-priori list of possible

transmitted blocklength codewords, , the

size of which equals .
• Based on and its acquaintance with the se-

quence , Decoder 2 forms the a posteriori list

of all messages such that

(22)

Using the resolution information, that both encoders
communicate later on, Decoder 2 resolves the correct
sequence within .

• Based on Decoder 2 forms an a priori
list of possible transmitted block length code-
words, , the size of which equals

.
• Based on and , Decoder 2 forms the a

posteriori list

of all messages such that (20) is satisfied. Using the
resolution information that both encoders communicate
later on, Decoder 2 resolves the correct sequence
within .

In conclusion—following the above procedures either De-
coder 1 or Decoder 2 acquire which determine the
pair that corresponds to .

In what follows, we upper-bound the list sizes of and .
Since

this provides an upper bound on the exponential growth of
the list size for either decoder type.

Before that, we argue that when analyzing the successive list
decoder performance one may assume that during the list de-
coding of (the successive decoder’s second step), the decoder
exhibits the same a priori statistics as during the list decoding of

. This is true because the first step terminates with the list ,
then Decoder 2 acquires the correct message from somewhere
else via the resolution information sent to him by both encoders
later on. As a result, there is no propagation from the first de-
coding step to the second, as is the case, e.g., with the successive
decoder for the Gaussian MAC [16, Sec. II]. In this sense, the
successive list decoder is a genie-aided decoder which “forgets”
the list , assuming that nature has provided him with the result
of the first decoding step, and proceeds to the second decoding
step as if it were the first task being executed.

Performance evaluation for the successive decoder.
Consider first the set of codewords which at the end

of two-way step , are jointly typical with
. From Lemma 1, we know that

will be jointly typical with with high probability, say
.

Let

otherwise.

Then the cardinality of is the random variable
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and

where denotes the expectation operator.
We now bound the random variable .

Lemma 4: Define

(23)

Then, for any , there exists an such that for
and , the list sizes
accumulated by the successive list decoder are bounded by

(24)

with probability larger than .
In particular, if —i.e., whenever there exists a map-

ping such that for
any pair with , then (24)
reduces to

(25)

with probability larger than .

Apart from providing upper bounds on the list sizes, Lemma
4 characterizes a pair of “good” mappings ,

in the sense that the corresponding list sizes are minimized.
Specifically, this happens when the triple uniquely
determines and in this case the list sizes are determined by
the corresponding mutual information functionals as per (25).

Proof: Using Lemma 3, it follows that

Therefore,

Recall that the relevant codebook sizes during the first
coding steps executed during the two-way phase are determined
as follows:

(26)

Combining (19), (23), and (26) we get (27) (at the bottom of the
page) for , sufficiently large, and any .

Using Markov’s inequality, we obtain for any

for sufficiently large

for sufficiently large

(28)

This completes the proof of Lemma 4.

Consider next the set of codewords which at the end
of two-way step , are jointly typical with

. To this end note that, having acquired , the
decoder’s ambiguity regarding is

(29)

Lemma 5: Define

(30)

Then, for any , there exists an such that for
and , the list sizes
accumulated by the successive list decoder are bounded by

(31)

with probability larger than .
In particular, if —i.e., whenever there exists a map-

ping such that for
any pair with , then (31)
reduces to

(32)

with probability larger than .

(27)
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Proof: The proof follows the same lines as the proof of
Lemma 4 taking into account (18), (29), and (30).

Thus, with high probability

the index required (in a typical two-way phase) in order to
resolve the decoder’s residual uncertainty, about the two-way
phase, takes on no more than

(33)

values.
Noting that (18) and (19) imply that

(34)

we can upper-bound the rate —i.e., the exponential
growth of the list size—implied by the right-hand side (RHS)
of (33) as

(35)

Remark: The rate has been obtained assuming the
decoder performs successive list decoding first on ,

, and then on given , during the two-way
phase. Obviously, an expression similar to (35) can be obtained
assuming the decoder performs successive list decoding first on

and then on given , and the minimal rate should
be selected as .

Bounding the probability of error. For the above scheme, we
declare an error in the two-way communication phase if at least
one of the following events happens.

• : Encoder 1 estimates incorrectly during two-way
step , .

• : Encoder 2 estimates incorrectly during two-way
step .

• :

or

. Here is the message decoded
first by the list decoder.

• : Either or exceed their typical
size as implied by Lemmas 4 and 5.

Using the union of events bound, we can upper-bound the
probability of error for a typical two-way phase (aver-
aged over the choice of codebooks and possible input messages)
by

(36)

This proves the existence of at least one code with an av-
erage probability of error in a typical two-way phase of less than

. The union bound then implies that the average proba-
bility of error while executing a sequence of two-way phases
is less than .

Finally, we compute the aggregate block length of our code,
namely

(37)
Combining (34) with (37) our construction thus demonstrates
that the ratio , with defined in (10), is
achievable with list decoder’s exponential list size not exceeding
(35).

Moreover, the achievability of and im-
plies the achievability of

for any , therefore, the set is convex.
This completes the proof of Theorem 1.

Remark: Let denote the information rate pair
which is attained between both encoders during the two-way
phase. Defining it follows from (18) and (19)
that

(38)
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Here and follow since the pair determine
by (7).

Furthermore, by way of our construction

and the rate pair in (38) is obtained for a joint distribution

Comparing this expression with the dependence balance outer
bound for the capacity region of the single-output two-way
channel (TWC) provided by [5, Theorem 1] we may infer
that our two-way scheme is “optimal” in the sense that the
information exchange between the encoders conforms with a
law which characterizes an outer bound for the capacity region.
It is not claimed, however, that the specific choice of herein
is the capacity achieving one.

V. ACHIEVABILITY PROOF FOR THE TWO-USER DMMAC
WITH FEEDBACK

In this section, we describe a coding scheme for the MAC
with feedback and show that it achieves the rate region defined
in Theorem 2.

Main idea behind our coding strategy.
The key idea in the Cover–Leung coding scheme is the

use of superposition block Markov encoding (SBME). In this
method, transmission occurs in blocks wherein in block
, both encoders send a certain amount

of “fresh information” reliably to each other at the maximum
possible rate. Since the transmission rate at this stage is too
high for reliable transmission to the receiver, all the receiver
can do is reduce the set of possible transmitted messages to
a considerably smaller set of “typical” messages. Since this
set contains the correct message with probability very close to
one, both encoders can cooperate during the next block to send
the final resolution information to the decoder. Superimposed
on this resolution information, the encoders again send fresh
information at high rate.

In our scheme, we use as a starting point the Cover–Leung
construction; however, before the encoders decode block they
exchange some extra information that each one can
tell about himself to his partner in order to improve the infor-
mation rate his partner can obtain. This exchange of informa-
tion is accomplished via an additional two-way communication
phase which is appended to each “fresh information” block.
Only after both encoders have acquired the extra information
from the two-way phase they decode the “fresh information”
that has been transmitted during the current block. At the same
time, the receiver performs list decoding over the two-way phase
and resolves its remaining ambiguity via the resolution infor-
mation which both encoders send during the next block. Having
acquired the extra information from the two-way phase, the re-
ceiver decodes the “fresh information“ as well as the resolution
information contained in the current block, given this extra in-
formation, in the very same way as in the Cover–Leung scheme.

The reason for exchanging the extra information
between the encoders can be explained as follows. Let

be a DMMAC and suppose that when
given the output and the input , the input is not uniquely
determined—i.e., there does not exist for any a func-
tion such that whenever
there is an with . Instead, consider
any pair of functions , that map for
each of the encoders an input–output pair to an element in a cor-
responding set . As a result of observing the feedback link,
Encoder knows yet it needs to acquire . Assume further
that somehow Encoder has acquired and the decoder has
acquired the pair . Presumably, there exists a function

such that
for a subset of triples with

, and consequently

(39)

Inequality (39) is the key for our motivation to exchange the
pair between the encoders since having done so they
can cooperate in order to “shift” this information to the decoder
(to use the terminology of [13]) and this offers an improvement
on the Cover–Leung rate-sum.

To be consistent with the notation in Theorem 2, recall that
the random variables take value in , so
that without loss of generality (w.l.o.g.), we may interpret
as and as .

Provided that

(40)

it is conceivable that it pays to invest the extra time consumed
by the two-way phase, in order to exchange the sequences

, as its impact on the improved
rate-sum (39) would not be that significant, and the net in-
formation rate to the receiver would still be better than the
Cover–Leung result.

The structure of our coding scheme.
In our coding scheme, transmission consists of a sequence of
generic transmission phases, wherein a generic transmission

phase consists of a multiple-access phase succeeded by a
two-way phase. During the MAC phase of generic transmission
phase , , each encoder transmits a new
information block combined with a resolution information
the decoder needs to decode generic phase . Following
the MAC phase, both encoders execute a two-way phase in
order to exchange the realization of the MAC phase.
Upon the termination of the two-way phase, having acquired
common knowledge, both encoders can cooperate to send
the resolution information for the decoder. Consequently, the
resolution information for the decoder is sent during the MAC
phase of the next generic transmission phase in the form of a
common time-sharing random variable. During generic phase

just the resolution information for phase is sent. Fig. 2.
shows schematically the structure of the proposed coding
scheme—specifically blocks and are illustrated.
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Fig. 2. The proposed coding scheme.

The MAC Phase: Achievability proof of Theorem 2

During the multiple-access phase of generic transmission
phase , the encoders use a two-user
code that is generated according to the joint distribution

induced by the law (11) as follows.

• For generate a single sequence

with probability

Label this sequence .
• For , let be a collection of binary -length

sequences drawn independently according to the product
distribution of marginal . Index by , thus,
a generic element of can be expressed as ,

.
Using the terminology of Bergmans [10, Sec. III], the se-

quences are now used as “cloud centers” to generate

the actual transmitted codewords. The codebooks are generated
as follows.

1) Based on every generate sequences
, each with probability

Label them for
and .

2) Similarly, based on every generate sequences
, each with probability

Label them for
and .

Henceforth, as we refer to any specific codeword
, , we refer to as the

cloud center of this codeword.
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During the MAC phase of generic transmission phase ,
the message is encoded in

the following way.
Let

denote the realization for the MAC block of generic transmis-
sion phase . Furthermore, let denote the common random
variable furnished by both encoders upon the termination of
generic transmission phase .

In generic transmission phase 1, the encoders send during the
MAC phase the codewords

Upon the termination of generic phase ,

• Encoder 1, who knows decodes

via the two-way phase that fol-

lowed the MAC phase. Knowing ,

and the cloud center of
Encoder 1 can now decode the information . Specif-
ically, Encoder 1 estimates the message of Encoder 2 by
considering the set of codewords
and declaring if and only if there is a unique

such that

(41)

Using Lemmas 1 and 3, it can be shown that Encoder 1’s
decision will be correct with arbitrarily small probability
of error if

(42)

and is sufficiently large.
• Similarly, Encoder 2 who knows

decodes via the two-way phase.

Knowing , and the

cloud center of , Encoder 2 can now decode the
information . Specifically, Encoder 2 estimates the
message of Encoder 1 by considering the set of code-
words and declaring
if and only if there is a unique such that (41) is
satisfied. Using Lemmas 1 and 3, it can be shown that
Encoder 2’s decision will be correct with arbitrarily small
probability of error if

(43)

and is sufficiently large.
• Both encoders emulate the decoding procedure performed

by the decoder during the two-way phase and obtain the
final set of lists that the decoder is left

with when trying to decode . This forms the
first part of the resolution information that will be sent by
both encoders via the random variable which
serves as the cloud center of the multiple-access block
during the next generic transmission phase. The second
part of the resolution information will be defined sub-
sequently.

In generic transmission phase , , the
encoders transmit during the MAC phase the codewords

We see that and contain new information, while the
rest consists of resolution information.

In generic phase , the encoders do not send new information
and just cooperate to inform the decoder on .

The decoder uses backward decoding to find the transmitted
information. First it decodes generic phase thereby acquiring

. Subsequently, it sets and performs the fol-
lowing procedure.

Decoding Procedure of and

The decoder uses to obtain the complete resolution in-
formation needed in order to decode generic phase .

First, the decoder decodes the two-way phase of generic
transmission phase using the first part of the resolution infor-
mation. This provides the decoder with . Turning
to the MAC block of generic transmission phase the decoder
declares if and only if there is a unique
such that

(44)

Using Lemmas 1 and 3, it can be shown that the decoder’s de-
cision will be correct with arbitrarily small probability of error

if

(45)

and is sufficiently large.
Having determined the decoder forms a list

of all message pairs such that (41) is satisfied.
Using the second part of the resolution information that both
encoders send via the decoder resolves the correct pair
within .

We consider now the set of codewords which
are jointly typical with . Following the same procedure as
Cover–Leung did in [2] one concludes that, provided that (42)
and (43) are satisfied

(46)

for sufficiently large and .
By Markov’s inequality, it follows that with high probability

, the index required in order to resolve
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the decoder’s residual uncertainty about MAC block takes no
more than , values. This index
forms the second part of the resolution information that is sent
by both encoders via the random variable which serves
as the cloud center of the multiple-access block during generic
transmission phase .

End Decoding Procedure—Output ,

Next, the decoder sets and performs the decoding
procedure again.

We see that the decoder starts decoding only after all
blocks have been received. Assuming that the resolution in-
formation in block is sent at low enough rate, it is then
used to resolve the decoder’s ambiguity while decoding block

. Continuing this way, the decoder successively decodes
all blocks, with block decoded last. This is in sharp contrast
to the Cover–Leung scheme wherein the decoder is capable of
decoding block once it has decoded the cloud center ,
and this can be accomplished upon the termination of block

. Thus, the decoding delay of the scheme proposed herein
is strictly larger than that of the Cover–Leung scheme.

Let us now take stock at where we are. The aggregate reso-
lution information should satisfy (45), while on the other hand,
we know that it consists of two components; the first having
list-size exponent not larger than as per (35) and the
second having list-size exponent not larger than as per
(46). Thus, we need

(47)

or equivalently

(48)

where the last step follows since is a Markov
chain.

Bounding the probability of error. For the above scheme, we
declare an error in block if at least one of the following events
happens.

• : Encoder 1 estimates incorrectly during the MAC
phase.

• : Encoder 2 estimates incorrectly during the MAC
phase.

• : The decoder estimates the cloud center
incorrectly during the MAC phase.

• :

• :

• : An error has occurred during the two-way phase.
Using the union of events bound, we can upper-bound the

probability of error (averaged over the choice of codebooks
and possible input messages) in generic block by

(49)

This proves the existence of at least one code with an average
probability of error in generic transmission phase of less than

. The union bound then implies that the average probability
of error in blocks is less than .

Finally, we compute the aggregate block length of our code,
namely

Our construction thus demonstrates that the rate pair
is achievable.

Since this part of the coding scheme is similar to the
Cover–Leung scheme, then using the same arguments re-
garding cardinality bounds as in [4] (that further refers to [14],
[15]), it follows that for the auxiliary random variable it
suffices to take without
affecting the region in Theorem 2.

This completes the proof of Theorem 2.

This construction demonstrates the following.

• The capacity region for the MAC with feedback is very
sensitive to the joint probability structure of the compo-
nent channels.

• Two-way channels which provide equal outputs on both
terminals exhibit an improved capacity region. Moreover,
the solution to this problem is closely related to the solu-
tion of the feedback problem for the MAC. This observa-
tion has been made previously by Dueck in [11].

We demonstrate the results of this section by considering next
the continuous-time ideal two-user Poisson MAC with noiseless
feedback.

VI. THE IDEAL TWO-USER POISSON MAC

The model for the two-user continuous-time Poisson MAC
studied here is described as follows. Two independent users gen-
erate inputs , , , that determine the
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rates of two corresponding doubly stochastic Poisson processes
. The observation is

(50)

which is also a Poisson process with instantaneous rate
. The dark current represented by is a homo-

geneous Poisson process of rate . It is further assumed that a
causal feedback link informs both encoders at every time of
the channel output at all times prior to . Our main focus
here will be the case where which henceforth will be
referred as the ideal Poisson MAC.

An code for the continuous-time Poisson MAC
with feedback is defined as follows.

1) A collection of encoding functions

where is the waveform transmitted at time
by Encoder when attempting to convey Message

to the receiver after observing the channel output ,
. Here denotes the number of different

messages that Encoder can transmit.
2) A decoding function

We shall use the average probability of error criterion as-
suming that the messages are drawn according to a
uniform distribution over . Conse-
quently, the error probability for the code is defined as

A rate pair nats per second is achievable for
the MAC (50) with feedback if there exists a sequence of

codes with ,
such that as . The feedback
capacity region is the closure of the set of all achievable rates.

The information capacity of the one-way Poisson MAC was
determined by Lapidoth and Shamai in [20], while the relia-
bility function (i.e., the exponential behavior of the probability
of error for the best code, as the coding delay increases while
the transmission rate is held fixed) of the one-way Poisson MAC
was computed in [21]. To the best of our knowledge, no result re-
garding the feedback capacity of this channel has been reported.
This is in contrast to the single-user Poisson channel for which
the effect of feedback on the capacity has been studied in de-
tail by Frey [18] who showed that as long as the dark current
is deterministic, capacity is not increased by feedback, whereas
feedback may improve the capacity in the case of a random dark
current. Additionally, the impact that feedback has on the reli-
ability of the single-user Poisson channel has been determined
by Lapidoth in [19].

Our interest here is in fixed-transmission-time coding
schemes (as opposed to sequential coding schemes which
adhere to a random transmission time) which meet the peak
and average-power constraints

(51)

where is the transmission interval and the expectation is
with respect to (w.r.t.) the codebook message distribution. Ex-
cept for these input constraints, it is assumed throughout that the
channel is unlimited in bandwidth.

The main contribution of this section is the introduction of
a feedback code and explicit decoding rules that combine the
ingredients of SBME together with backward decoding to im-
prove on the Cover–Leung result. As a consequence, the Poisson
MAC with noiseless feedback forms a nontrivial example for a
MAC for which SBME per se is suboptimal.

A. The Cover–Leung Inner Bound on the Capacity With
Noiseless Feedback

We begin by recalling some known results which will be
useful later on. Following Wyner [17], the assumption that the
channel is unlimited in bandwidth is made explicit by the fol-
lowing.

a) We fix a small , partition the time interval
into equal segments of length , and consider input
waveforms that take just the extreme values on each of
those segments. Specifically, the channel input waveforms

, , are constant for
, , and take only the

values or . As a result, the receiver may collect the
sufficient statistics -vector , formed by the increments

.
b) The receiver interprets as being the same as

. Thus, it bases its decision on the -vector ,
where

otherwise.

In the limit as these assumptions do not imply any
loss in generality as shown in [17].

Subject to the assumptions a), b), the channel reduces to a
two-user binary-input binary-output (input alphabet ,
output alphabet ) DMMAC with transition probability

given by

(52)

Thus, in the absence of dark current, the continuous-time band-
width-unlimited Poisson MAC can be modeled as a DMMAC
which falls within the category of MACs described by (1).
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TABLE I
ATTAINABLE SYMMETRIC RATES VIA THE COVER–LEUNG CONSTRUCTION AS A FUNCTION OF jUj

1) One-Way Capacity Region: When one may verify
that

implying that a one-way rate-sum capacity of
(nats per second) is attainable with .

2) The Cover–Leung Inner Bound on the Feedback Capacity
Region: Having obtained a discrete-time decomposition for our
continuous-time model, we compute now an inner bound for the
feedback capacity region based on (12).

For general , we define
and , then straightforward computa-
tion yields

(53)

(54)

We seek to maximize (53) subject to the average-power con-
straint . Fixing for any the
sum it follows immediately that

is maximized by letting . Turning to (54), fixing
for any the sum , the function

is maximized by letting . It follows that

(55)

(56)

Table I summarizes the attainable symmetric rates
via (56), and the upper bound on the rate-sum as given by (55),
for . These results have been obtained by numer-
ical search over general , . The search does not give any
improvement in for the case ; in fact, when forcing
all four mass points to have strictly positive probability (as we
do) the rate slightly decreases.

B. A Coding Scheme

Transmission consists of a sequence of generic transmis-
sion phases, each of which is executed during a length in-
terval. Furthermore, each generic transmission phase is split into
the following three parts.

• A multiple-access phase the duration of which is bounded
by . This interval is further partitioned into
equi-length arbitrarily small subintervals labeled as ,

, by taking to be arbitrarily large.

• A two-way phase the duration of which is bounded
by . This interval is further partitioned into
equi-length arbitrarily small subintervals labeled as

, , by taking to be arbitrarily
large.

• A total-cooperation phase the duration of which is
bounded by . This interval is further partitioned into
equi-length arbitrarily small subintervals labeled as ,

, by taking to be arbitrarily large.

In fact, the total cooperation phase does not conform with the
coding scheme presented in Section V. However, for the sake of
brevity we allow both encoders to split the resolution informa-
tion they wish to send to the decoder into two parts; the first part
is conveyed via the random variable (r.v.) during the MAC
phase while the rest is conveyed during the total cooperation
phase. Thus, in the forthcoming analysis we shall take into ac-
count the impact of the total cooperation phase with the aim of
showing that the optimal solution renders this phase superfluous
and the resolution information is communicated just via .

A binary -length codeword , is mapped (by En-
coder ) for transmission during the MAC phase as follows. An
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interval is partitioned into equi-length half-open closed
on the right subintervals , , such that

and the waveform , is defined
as

otherwise

where denotes the th component of . Thus, for example,
the aggregate block length of the MAC phase is . Similar
mappings, of binary -length codewords into waveforms over
the subintervals and , are used during the two-way and
total-cooperation phases, respectively.

During each of the aforementioned phases both encoders
execute sequences of coding steps. A coding step consists of
the generation of a pair of binary -length codewords
(as explained in the sequel) and a repeated transmission of
the corresponding waveforms by sequentially
consuming , subintervals until the first arrival is
registered at the receiver.

The Multiple-Access Phase

During the MAC phase of generic transmission phase ,
, the encoders execute coding steps while using

codebooks generated via the joint distribution (11) as follows.

• For , generate a single sequence

with probability

Label this sequence .
• For , let be a collection of binary -length

sequences drawn independently according to the product
distribution of marginal . Index by , thus,
a generic element of can be expressed as ,

.
Now perform the following.

1) Based on every generate per each coding step ,
, sequences

each with probability

Label them

for and .
2) Similarly, based on every , generate per each

coding step , , sequences

each with probability

Label them

for and .
With a slight abuse of notation we shall henceforth refer just

to , , while keeping in mind that per
each arrival the relevant codebook is considered.

We next define the deterministic mappings for the
channel (52) (with ) by (13).

This choice and the fact that the event does not
convey any information for the MAC (52), imply a “thinning”
on the time-discrete process leaving just those coordinates
in which relevant. As a result, the effective block length
of the MAC phase, for the purpose of computing the expres-
sions in (10), reduces to , i.e., the number
of coding steps. Consequently, the case at hand—for which we
shall analyze the region defined by Corollary 1—corresponds to
the MAC (1) where ; the MAC phase block length
is ; the effective MAC phase block
length is (as shown later on).
Thus, while the ratio is permitted to be
arbitrarily small, the product is held fixed.

With a slight abuse of notation, we shall henceforth denote
the restriction of to these coordinates by .

Consider the arrivals registered during a MAC phase with
the encoders signaling at the same information rate and same
average power.

Let be the set of photons that arrived
while Encoder 1 was off and Encoder 2 was on. Similarly, let

be the set of photons that arrived while En-
coder 2 was off and Encoder 1 was on. Let

be the probability that just one encoder was on when
an arrival was registered, and let be the set of all subsets of

of cardinality . We note that for sufficiently
large with high probability and will fall within
(which is the set of typical sequences of and ). If
or does not belong to an error is declared by the corre-
sponding encoder.

It follows that

(57)

where the superscript indicates that (which is the rele-
vant size of during the MAC phase) is the message set size
for the information exchange during two-way step 1, and is
the binary entropy function.

Next, we claim that given , the set is actually located
within a strictly smaller subset: of . To see this,
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note that since Encoder 1 already knows , and since
, should be somewhere within

It follows that given , any typical member of can be
described as a subset within a set of size .
That is,

(58)

as similarly, given any typical member of is located
within

and

Upon the termination of the MAC block of generic transmis-
sion phase , the decoder performs joint decoding as follows. It
generates an matrix the columns of which cor-
respond to the possible cloud centers while the rows
of which correspond to the possible pairs .
Initially, all entries in are “active”—i.e., they are set to “ .”

The decoder considers first all arrivals which support just
(it knows these arrivals from ). For each such arrival

the decoder looks at any active entry in and considers
the codeword pair

(59)

where denotes the fact that is de-
termined by the row index . If the pair (59) supports the arrival
just with , entry remains active, otherwise, it is “deacti-
vated”—i.e., it is set to “ .” Having considered the arrivals,
the decoder turns to the arrivals that support just . For
each such arrival and an active entry , the decoder con-
siders the pair (59) and if it supports the arrival just with ,
entry remains active, otherwise, it is deactivated. Turning
to those arrivals supporting both , for each such
arrival and a remaining active entry , the decoder con-
siders the pair (59) and if both and support the arrival,
entry remains active, otherwise it is deactivated.

Upon the termination of this procedure, the decoder should
find but a single surviving active column in that defines
(with high probability) the correct cloud center (if more
than one column survives an error is declared). The decoder sets

, and forms a list of
the remaining active entries in the surviving column of .
This forms the second part of the resolution information that the
decoder needs and which is sent via .

The Two-Way Phase

The communication instance faced by both encoders upon the
termination of the multiaccess phase can be stated as follows.
Consider a bipartite graph with right nodes and left

nodes. A right node represents an outcome of the random vari-
able , while a left node represents an outcome of the r.v. .
Each left node has outgoing edges connected to the corre-

sponding right nodes, and each right node has
outgoing edges connected to the corresponding left
nodes. Encoder 1 who knows the correct left node seeks to re-
solve the correct right node, while Encoder 2 who knows the cor-
rect right node seeks to determine the correct left node. More-
over, the r.v. pair satisfies

(60)

Consequently, the mappings (13) which generate
satisfy (40) and furthermore this is a pair of “good” mappings
in the sense that (25) of Lemma 4 holds. Furthermore, as a con-
sequence of the equalities in (60), the list size
since having acquired the decoder is in the same position
as Encoder 1 was before the execution of the two-way phase, a
fact which renders the second stage of the successive decoding
unnecessary.

For the two-way phase we let be defined as
in (14).

A two-way phase consists of a sequence of two-way steps,
wherein during step , , the encoders execute
coding steps (and decode them) as explained subsequently.

Consider the first step of the two-way phase of generic trans-
mission phase . Let both encoders use an
two-user code which is expressed via the joint distribution (6)
with

(not to be confused with in (1) which in the model analyzed
here is replaced by ), and is generated independently times
(i.e., once per each coding step) as follows.

• Generate sequences

each with probability

Label them , .
• Generate sequences

each with probability

Label them , .
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Consider (for example) the decoding of as performed by
Encoder 2 based on knowing the realization of the arrivals.
Suppose now that arrival , falls where the
transmitted message is on. Let be the survivors set before
arrival has been considered and let denote the survivors
set size. Let be the random variable that equals the number
of messages within which have “ ” on the instant of
arrival . Given that arrival , falls where
the transmitted message is on we have

where is a binomial random variable with parameters
and .
It follows that

and provided that is sufficiently large the reduction factor
of is . Similarly, given that arrival falls where the
transmitted message is off we have

and the reduction factor of is

Let , where is the subset of ar-
rivals which fall where the transmitted message is off and is
the subset of arrivals which fall where the transmitted message
is on. Furthermore, let and be the reduction factors
when or , respectively, then correct decoding of a
codebook with size is assured provided that

(61)

By Markov’s inequality and the fact that given the
random variable is independent of ,

Hence, if we take

inequality (61) is satisfied for sufficiently large and .
Upon the termination of the two-way phase, both encoders

know the exact realization of during the MAC
phase (via backward decoding two-way step , then two-way
step up to two-way step ). Had the decoder been aware
of the sequence, say

-

this would put him precisely in the same position as Encoder 1
was, and consequently, he could as well decode the two-way
phase in the same way as Encoder 1 does. To this end, it is
assumed that knowing the realization of ,

(i.e., the realization of the arrivals during step of the
two-way phase), the decoder performs list decoding on
as explained in the sequel. Thus, it remains for both encoders to
provide the decoder with the exact index of within the
decoder’s final list.

Suppose that a genie informs the decoder on , that
is, which arrivals support Encoder 1’s message and
which support Encoder 2’s message during step
of the two-way phase. The decoder performs a similar decoding
procedure as Encoder 2 does starting with

possible messages and reducing the surviving messages set
size by a factor of whenever the corresponding arrival supports
the transmitted waveform, and by a factor of whenever
the arrival does not support the transmitted waveform. Taking
into account all arrivals this provides a reduction by factor
of . Thus, eventually the list decoder ends with a list of
possible messages that could have been sent by Encoder 1 the
size of which is .

Combining (57) and (58), it follows that the list size exponent,
corresponding to step of the two-way phase equals

(62)

while the list size exponent, corresponding to step ,
, of the two-way phase equals

(63)

Performance evaluation
For the MAC phase consider a joint distribution

where all random variables are binary. Let be distributed ac-
cording to the law and let be a pair
of binary random variables that are conditionally independent
given and satisfy

.
(64)

For this code one obtains

where denotes the average power transmitted by each encoder.
Any transmitted two-user waveform on induces three in-

dependent Poisson processes with corresponding rates
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and

(the joint statistics is given in (74)). Furthermore, our
coding scheme satisfies for any positive

Given that a count was registered, let , , be the bi-
nary random variable indicating whether the arrival falls within
the support of Encoder ’s message. The joint distribution of

equals

.

Suppose now that arrivals have been registered during the
MAC phase of generic transmission phase , then (57) and (58)
hold with as defined above.

These arrivals are used by the encoders to decode
and it is shown in Appendix I that

where , , and are defined by (75), (76), and (77),
respectively. Assuming that this amount is communicated per
an interval of duration , the information rate-sum equals

(65)

Define the random variable as the du-
ration time for the completion of coding step of a MAC phase.
The distribution of converges weakly (via similar argu-
ments as in [19]), as goes to infinity, to the exponential dis-
tribution with parameter . Since , the
probability that this phase of our coding scheme fails on an in-
terval of length will be exponentially small once

(66)

In fact, the last inequality expresses the effective block length
in terms of the MAC phase duration

and .
So far, the RHS of (65) provides us with an expression for

in terms of the parameters of our coding scheme, while the max-
imization of this quantity is to be carried out under the constraint
(66).

Recall that for the two-way phase we choose a joint distribu-
tion

where .

Consider next the sequences of coding steps
executed during steps of a two-way phase.

In this case, any transmitted two-user waveform on in-
duces three independent Poisson processes with corresponding
rates and .
Furthermore, our coding scheme satisfies for any positive

Given that a count was registered let , be the bi-
nary random variable indicating whether the arrival falls within
the support of sender ’s message. The joint distribution of

equals

.

Consequently, (61) implies that

which combined together with (58) yields

(67)

As a result of the first step of the two-way phase, both en-
coders need to exchange the new correlated information that is
contained in . This time, the relevant sets sizes are

where it is implicitly assumed (with a slight abuse of notation)
that refers now to the set of all typical subsets of
of cardinality and the notation is inter-
preted similarly.

Again, let both encoders use during step of the two-way
phase an two-user code and feedback decode
it this time based on photon arrivals. This implies that

which yields
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Continuing this way with steps of the two-way
phase, the number of required coding steps is upper-bounded by

(68)

Furthermore, recalling (62) and (63), the list-size exponent
imposed by the two-way phase can be upper-bounded as

Thus, the RHS of (68) provides us with an asymptotic upper
bound on the ratio of the number of coding steps— —that
have been executed during the two-way phase to— —the
number of coding steps executed during the MAC phase. Com-
bined with (69) this yields an attainable pair
for our scheme.

Define the random variable as the
duration time for the completion of coding step of the two-way
phase. The probability that this phase of our coding scheme fails
on an interval of length will be exponentially small once

(69)

We consider next the rate-sum obtained by our decoder during
the MAC phase. Recall from (47) and (48) that if the random
variable provides an amount of resolution information the ex-
ponential size of which is upper-bounded by
whereas

then

(70)

Consequently, we turn our attention to the evaluation of the RHS
of (70) for our coding scheme. Insofar as we assume that part
of the resolution information (for the two-way phase) is

communicated during the total cooperation phase it follows that
this quantity is given by

(71)
In order to evaluate the RHS of (70), we consider the reduc-
tion factor that the joint decoder exhibits, while considering the

entries of the matrix which correspond
to all noncorrect cloud centers, as a result of the arrivals reg-
istered during a MAC phase. This reflects

Equation (65) implies that the encoders’ incremental rate in
response to a pair of arrivals, the first supporting just and the
second supporting just , is

while as shown in Appendix I, the decoder’s incremental rate in
response to this pair of arrivals, while performing joint decoding
of the triple is

Similarly, the encoders’ incremental rate per an arrival which
supports both message waveforms is

while that of the decoder is

Define the indicator functions

otherwise

otherwise.

It is obvious that we shall be interested in those cases where
and .

We can now express the aggregate rate communicated to the
decoder per the duration interval as a function of the informa-
tion rate-sum exchanged between both encoders

It follows that the decoder’s list-size exponent per a generic
transmission phase, upon subtraction of the rate it obtains via

, equals

(72)

where .
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The quantity in (72) is the remaining ambiguity to be resolved
via the total cooperation phase of generic transmission phase
—i.e., it is the expression for as defined in (71) via the

parameters of our coding scheme.
The total cooperation is performed via the single-user feed-

back decoding scheme of [19]. To this end, assume that during
this phase the average power of each encoder is and coding
steps are executed. Thus, we have , implying that

.

Define the random variable as the
duration time for the completion of coding step of the total
cooperation phase. Then the probability that this phase fails on
an interval of length will be exponentially small once

(73)

Combining (65)–(73), the following set of inequalities must be
satisfied:

Setting all inequalities to hold with equality and taking ,
we conclude that the attainable rate-sum for this scheme is

It can be verified numerically that for ,
, , and one

obtains , thus demonstrating an improve-
ment on the Cover–Leung rate-sum. This rate-sum is attained
with , ,
and , in which case .
Thus, cooperation between the encoders is maintained just via
the random variable that furnishes the cloud center during
the MAC phase. As a result, while —i.e.,
the two-way interaction between both encoders in order to
exchange consumes 45.5% of the communication
time. Furthermore, each encoder transmits with average power

. It is thus demonstrated
that it suffices for the encoders to build correlation just via the
random variable as in Theorem 2.

Remark: It is not claimed that our particular choice of
(i.e., ) is optimal. This choice just serves as an

example to show the performance of this scheme as compared
to the Cover–Leung inner bound.

APPENDIX I

Consider a joint distribution where all random
variables are binary. Let be distributed according to the law

and let be a pair of binary random
variables that are conditionally independent given and satisfy

.

The joint statistics of for this code is

(74)

To analyze the reduction factor when Encoder 1 decodes
consider first the arrivals that fall where .
This group is split into two subsets

arrivals which fall where , in which case the reduction
factor for Encoder 1 equals , while the rest

arrivals fall where , in which case the reduction factor for
Encoder 1 equals . In summary

(75)

Consider next the arrivals for which .
By similar arguments it follows that the reduction factor for En-
coder 1 is

(76)

Finally, on the the arrivals for which , the
reduction factor for both encoders is

(77)

To analyze the decoder’s performance while decoding the
triple note that any random variable that
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is generated independently of under the same marginal
satisfies

Consequently, fixing a pair of messages as the de-
coder considers the possible codeword pairs in (59) for say
arrivals that satisfy one obtains

and the same reduction is obtained for any arrivals that satisfy
. On the other hand, if the decoder decodes

the cloud center based on say arrivals that satisfy
one obtains

In summary, suppose the decoder combines arrivals for
which with another arrivals for which

plus additional arrivals for which
and performs joint decoding, his reduction factor due

to these arrivals equals

At the same time, the aggregate reduction factor obtained by
both encoders on the same arrivals equals

In particular, we shall be interested in those cases where

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their careful
reading of the manuscript, and their constructive comments.

REFERENCES

[1] N. T. Gaarder and J. K. Wolf, “The capacity region of a multiple-access
discrete memoryless channel can increase with feedback,” IEEE Trans.
Inf. Theory, vol. IT-21, no. 1, pp. 100–102, Jan. 1975.

[2] T. M. Cover and S. K. Leung, “An achievable rate region for the multiple
access channel with feedback,” IEEE Trans. Inf. Theory, vol. IT-27, no.
3, pp. 292–298, May 1981.

[3] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[4] F. M. J. Willems, “The feedback capacity region of a class of discrete
memoryless multiple-access channels,” IEEE Trans. Inf. Theory, vol.
IT-28, no. 1, pp. 93–95, Jan. 1982.

[5] A. P. Hekstra and F. M. J. Willems, “Dependence balance bounds for
single-output two-way channels,” IEEE Trans. Inf. Theory, vol. 35, no.
1, pp. 44–53, Jan. 1989.

[6] F. M. J. Willems and E. C. Van Der Meulen, “The discrete memory-
less multiple-access channel with cribbing encoders,” IEEE Trans. Inf.
Theory, vol. IT-31, no. 3, pp. 313–327, May 1985.

[7] L. H. Ozarow, “The capacity of the white Gaussian multiple-access
channel with feedback,” IEEE Trans. Inf. Theory, vol. IT-30, no. 4, pp.
623–629, Jul. 1984.

[8] G. Kramer, “Capacity results for the discrete memoryless network,”
IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 4–21, Jan. 2003.

[9] , “Directed information for channels with feedback,” Ph.D. disser-
tation, Swiss Federal Inst. Technol., Zurich, Switzerland, 1998.

[10] P. P. Bergmans, “Random coding theorem for broadcast channels with
degraded components,” IEEE Trans. Inf. Theory, vol. IT-19, no. 2, pp.
197–207, Mar. 1973.

[11] G. Dueck, “The capacity region of the two-way channel can exceed the
inner bound,” Inf. Contr., vol. 40, pp. 258–266, 1979.

[12] T. S. Han and K. Kobayashi, “A new achievable rate region for the inter-
ference channel,” IEEE Trans. Inf. Theory, vol. IT-27, no. 1, pp. 49–60,
Jan. 1981.

[13] R. Ahlswede and N. Cai, “Seminoisy deterministic multiple-access
channels: Coding theorems for list codes and codes with feedback,”
IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2153–2162, Aug. 2002.

[14] R. Ahlswede and J. Körner, “Source coding with side information and
a converse for degraded broadcast channels,” IEEE Trans. Inf. Theory,
vol. IT-21, no. 6, pp. 629–637, Nov. 1975.

[15] M. Salehi, “Cardinality Bounds on Auxiliary Variables in Multi-User
Theory via the Method of Ahlswede and Körner,” Dep. Statist., Stanford
Univ., Stanford, CA, Tech. Rep. 33, 1978.

[16] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the Gaussian
multiple-access channel,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp.
364–375, Mar. 1996.

[17] A. D. Wyner, “Capacity and error exponent for the direct detection
photon channel—Parts I and II,” IEEE Trans. Inf. Theory, vol. 34, no.
6, pp. 1449–1471, Nov. 1988.

[18] M. R. Frey, “Information capacity of the Poisson channel,” IEEE Trans.
Inf. Theory, vol. 37, no. 2, pp. 244–256, Mar. 1991.

[19] A. Lapidoth, “On the reliability function of the ideal Poisson channel
with noiseless feedback,” IEEE Trans. Inf. Theory, vol. 39, no. 2, pp.
491–503, Mar. 1993.

[20] A. Lapidoth and S. Shamai (Shitz), “The Poisson multiple-access
channel,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 488–502, Mar.
1998.

[21] S. I. Bross, M. V. Burnashev, and S. Shamai (Shitz), “Error exponents for
the two-user Poisson multiple-access channel,” IEEE Trans. Inf. Theory,
vol. 47, no. 5, pp. 1999–2016, Jul. 2001.


	toc
	An Improved Achievable Region for the Discrete Memoryless Two-Us
	Shraga I. Bross, Member, IEEE, and Amos Lapidoth, Fellow, IEEE
	I. I NTRODUCTION
	II. P RELIMINARIES
	A. Notation
	B. Achievable Rates
	Definition 1: A two-user DMMAC is a quadruple $\left ({\cal X}_{

	C. Weak Typicality
	Definition 2: The set ${\cal A}_{\epsilon }$ of $\epsilon $ -typ
	Lemma 1: For any $\epsilon >0$ the following statements hold for
	Lemma 2: Let the discrete random variables $X$, $Y$ have joint d
	Lemma 3: Let the discrete random variables $X$, $Y$, $Z$ have jo


	III. M AIN R ESULTS

	Fig. 1. Single-output two-way channel for the exchange of $% \left
	Theorem 1: Consider a MAC with feedback $({\mathtilde {\cal X}}_
	Remark: The preferable mappings $ {\mathtilde {g}}_{\mu }({\math
	Theorem 2: Consider a MAC with feedback $\left ({\cal X}_{1},{\c
	Corollary 1: Consider a MAC with feedback $({\cal X}_{1},{\cal X
	IV. T HE T WO -W AY P HASE: A CHIEVABILITY P ROOF OF T HEOREM 1
	Lemma 4: Define $$\varpi _{1} \triangleq {{ I ({\mathtilde {X}}_
	Proof: Using Lemma 3, it follows that $$\BBE \Psi _{k} ({\mathti

	Lemma 5: Define $$\varpi _{2} \triangleq {{ I ({\mathtilde {X}}_
	Proof: The proof follows the same lines as the proof of Lemma 4 

	Remark: The rate $R_{L}^{(TW)}$ has been obtained assuming the d
	Remark: Let $\left ({\mathtilde {R}}_{1}, {\mathtilde {R}}_{2}\r

	V. A CHIEVABILITY P ROOF FOR THE T WO -U SER DMMAC W ITH F EEDBA
	Fig. 2. The proposed coding scheme.

	VI. T HE I DEAL T WO -U SER P OISSON MAC
	A. The Cover Leung Inner Bound on the Capacity With Noiseless Fe


	TABLE I A TTAINABLE S YMMETRIC R ATES V IA THE C OVER L EUNG C O
	1) One-Way Capacity Region: When $\lambda _{0}=0$ one may verify
	2) The Cover Leung Inner Bound on the Feedback Capacity Region: 
	B. A Coding Scheme
	Remark: It is not claimed that our particular choice of $P_{UX_{

	N. T. Gaarder and J. K. Wolf, The capacity region of a multiple-
	T. M. Cover and S. K. Leung, An achievable rate region for the m
	T. M. Cover and J. A. Thomas, Elements of Information Theory . N
	F. M. J. Willems, The feedback capacity region of a class of dis
	A. P. Hekstra and F. M. J. Willems, Dependence balance bounds fo
	F. M. J. Willems and E. C. Van Der Meulen, The discrete memoryle
	L. H. Ozarow, The capacity of the white Gaussian multiple-access
	G. Kramer, Capacity results for the discrete memoryless network,
	P. P. Bergmans, Random coding theorem for broadcast channels wit
	G. Dueck, The capacity region of the two-way channel can exceed 
	T. S. Han and K. Kobayashi, A new achievable rate region for the
	R. Ahlswede and N. Cai, Seminoisy deterministic multiple-access 
	R. Ahlswede and J. Körner, Source coding with side information a
	M. Salehi, Cardinality Bounds on Auxiliary Variables in Multi-Us
	B. Rimoldi and R. Urbanke, A rate-splitting approach to the Gaus
	A. D. Wyner, Capacity and error exponent for the direct detectio
	M. R. Frey, Information capacity of the Poisson channel, IEEE Tr
	A. Lapidoth, On the reliability function of the ideal Poisson ch
	A. Lapidoth and S. Shamai (Shitz), The Poisson multiple-access c
	S. I. Bross, M. V. Burnashev, and S. Shamai (Shitz), Error expon



