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Abstract—The dependence of the Gaussian input information rate on the
line-of-sight (LOS) matrix in multiple-input multiple-output (MIMO) co-
herent Rician fading channels is explored. It is proved that the outage prob-
ability and the mutual information induced by a multivariate circularly
symmetric Gaussian input with any covariance matrix are monotonic in
the LOS matrix , or more precisely, monotonic in in the sense of
the Loewner partial order. Conversely, it is also demonstrated that this or-
dering on the LOS matrices is a necessary condition for the uniform mono-
tonicity over all input covariance matrices. This result is subsequently ap-
plied to prove the monotonicity of the isotropic Gaussian input information
rate and channel capacity in the singular values of the LOS matrix. Exten-
sions to multiple-access channels (MAC) are also provided.

Index Terms—Capacity, line of sight, multiple-access channels (MAC),
multiple-input multiple-output (MIMO), outage, partial order, preorder,
Rician fading.

I. INTRODUCTION AND MAIN RESULT

It is well known that the capacity of a single-input single-output
coherent Rician fading channel is monotonic in the magnitude of the
line-of-sight (LOS) component. This can be easily deduced from the
facts that channel capacity is achieved by a zero-mean circularly sym-
metric Gaussian input and that a noncentral chi-square random variable
is stochastically monotonic in the noncentrality parameter [1, Lemma
6.2 (b)], [2]. This result extends easily to the single-input multiple-
output and, with a little more work, to multiple-input single-output
scenarios, from the similar stochastic monotonicity for the noncentral
chi-square random variable of more degrees of freedom.

The extension to the multiple-input multiple-output (MIMO) case,
which may look straightforward at first, requires some extra care. The
first difficulty one encounters is that in order to demonstrate the mono-
tonicity, one has to introduce an ordering on the LOSmatrices and it is a
priori unclear what the natural ordering is for the problem at hand. The
second difficulty is that there is no closed-form expression for the ca-
pacity achieving input distribution. It is straightforward to demonstrate
that the capacity is achieved by a circularly symmetric multivariate
Gaussian input, but no closed-form expression for the eigenvalues of
the optimal covariance matrix is known. Finally, as in the single-input
case, under a fixed input distribution, one LOSmatrix may give rise to a
larger information rate than another LOS matrix for a particular fading
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realization, but it may actually perform worse when averaged over all
realizations.

In this corespondence, we show that the natural ordering on the LOS
matrices is given by the Loewner partial order on y , and through
this orderingwe extend themonotonicity results toMIMORician chan-
nels. More specifically, we say that an m� n LOS matrix is “larger
than or equal to” another m�n LOS matrix ~ , if y is greater than
or equal to ~ y ~ in the Loewner sense, i.e., if y � ~ y ~ is a positive
semidefinite n � n matrix.1 (Here y is the Hermitian conjugate of

.) Under this ordering on the LOS matrices, we shall show the mono-
tonicity of channel capacity, the monotonicity of the information rate
corresponding to the isotropic Gaussian input, and the monotonicity of
outage probability.

We shall also extend the discussion to the multiple-access channel
(MAC). The MAC poses an additional challenge in that the capacity
region depends not only on the LOS matrices of the different users
individually, but also on how these matrices relate to each other. This
requires a joint preorder on LOS matrices, as will be made clear in
Section II.

It should be emphasized that our monotonicity results are proved
when the distribution of the granular component is held fixed. Conse-
quently, as we vary the LOS matrix the output power is not held fixed.
See [5]–[8] for studies where the output power is held fixed.

We state our main theorem, fromwhich the monotonicity results will
follow.

Theorem 1.1: Let be a random m � n matrix whose compo-
nents are independent and identically distributed (i.i.d.) according to a
zero-mean unit-variance circularly symmetric complex Gaussian dis-
tribution. If two deterministic complex m � n matrices and ~ are
such that

y
� ~ y ~ (1)

then

Pr log det m + ( + ) ( + )
y
� t

� Pr log det m + ( + ~) ( + ~)
y
� t (2)

for any t � 0 and any positive semidefinite n � n matrix .

In this theorem and throughout, the notation � indicates that
� is positive semidefinite. The notation m stands for the m�m

identity matrix. We use H+(n) to denote the set of all n � n positive
semidefinite Hermitian matrices and use U(n) for the set of all unitary
n�nmatrices. For a complexmatrix , denotes its transpose while
y denotes its Hermitian conjugate (i.e., elementwise complex conju-

gate of ). We extend the usual notion of diagonality to nonsquare
matrices by saying that a matrix of any size is diagonal if ij = 0

for all i 6= j. All vectors are column vectors unless specified otherwise.
All logarithms are natural, i.e., to the base e.

In Section II, we describe the single-user and the multiple-access
Rician fading channels and present the main corollaries of Theorem
1.1. The proof of Theorem 1.1 is given in Section III.

1We point out that the Loewner partial order on induces a preorder on
the LOS matrices , for � ~ ~ and ~ ~ � implies = ~ ~, but
not ~ = . It only implies ~ = for some unitary matrix (see, for instance,
[3], [4]).
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IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005 4335

II. APPLICATIONS

We introduce two functions that will simplify the notation in our
subsequent discussion. In the notation of Theorem 1.1, we define for
any t � 0 and 2 H+(n)

F (t; ; ) Pr log det m + ( + ) ( + )
y � t (3)

and

I( ; ) log det m + ( + ) ( + )
y

: (4)

Noting that

I( ; ) =
1

0

1� F (t; ; ) dt (5)

we obtain the following corollary of Theorem 1.1.

Corollary 2.1: If y � ~ y ~ , then

I( ; ) � I( ; ~); 8 2 H+(n): (6)

The following converse to Corollary 2.1 shows that the preorder on
the LOS matrices is natural.

Proposition 2.2: If I( ; ) � I( ; ~) for all 2 H+(n), then
y � ~ y ~ .

Proof: See the Appendix.

We further note the rotational symmetry in F (t; ; ) and I( ; ).
First observe that the law of is invariant under left and right rotations,
i.e., for any 2 U(m) and 2 U(n),

y L= : (7)

Consequently, we have for any 2 U(m) and 2 U(n)

F (t; ;
y)

= Pr log det m + ( + y) ( + y)
y
� t

(8)

= Pr log det m + ( + ) y ( + )
y y � t

(9)

= Pr log det m + ( + ) y ( + )
y � t (10)

= F (t; y
; ): (11)

From this and (5), we also have

I( ;
y) = I( y

; ): (12)

A. The Single-User Rician Fading Channel

The output ( ; YYY ) of the coherent single-user Rician (or Ricean in
certain dialects) fading channel consists of a random m� n matrix
whose components are i.i.d. according to the zero-mean unit-variance
circularly symmetric complex Gaussian distribution N (0; 1), and of
a random m-vector YYY 2 m given by

YYY = ( + )xxx+ZZZ (13)

where xxx 2 n is the channel input; is a deterministic m � n

complex LOS matrix; and ZZZ 2 m is drawn according to the zero-

mean circularly symmetric complex multivariate Gaussian distribution
N 0; �2 m for some �2 > 0. It is assumed that and ZZZ are inde-
pendent of each other, and that their joint law does not depend on the
channel input xxx.

Since the law of does not depend on xxx, we can express the mutual
information between the channel input and output as

I XXX; ; YYY = I XXX;YYY : (14)

Among all input distributions of a given covariance matrix, the
zero-mean circularly symmetric multivariate complex Gaussian
maximizes the conditional mutual information I(XXX;YYY j = ),
irrespective of the realization = . Consequently, it also maximizes
the average mutual information I(XXX;YYY j ). We shall, therefore,
consider zero-mean circularly symmetric Gaussian input distributions
N (0; ) only and focus on the dependence of mutual information
on the LOS matrix when the input covariance matrix is held fixed.
Also, since we can absorb the dependence on �2 into , we assume
�2 = 1 without loss of generality.

For a given realization = , we can express the conditional mu-
tual information I(XXX;YYY j = ) for a N (0; ) input as

I(XXX;YYY j = ) = log det m + ( + ) ( + )
y
: (15)

By taking the expectation with respect to , we can express the average
conditional mutual information as an explicit function of and as

I(XXX;YYY j ) = log det m + ( + ) ( + )
y (16)

= I( ; ): (17)

Thus Corollary 2.1 can be interpreted as the monotonicity of the av-
erage conditional mutual information over the Rician fading channel
(13) induced by Gaussian inputs with fixed input covariance matrix.
We can also give a more direct interpretation of Theorem 1.1 through
the notion of outage probability. Consider the probability

Pr log det m + ( + ) ( + )
y � R = F (R; ; ):

(18)
We can interpret this quantity as the probability that the realization
of will be such that the information rate on the Gaussian channel
YYY = ( + )xxx + ZZZ for the input distribution N (0; ) does not
exceedR. Under this interpretation, Theorem 1.1 can be viewed as the
monotonicity of the outage probability in the channel LOS matrix.

These monotonicity results can be used to study the power-E
isotropic Gaussian input information rate

I
IG(E; ) I

E

n
n; (19)

and the capacityC(E; ) of the Rician channel under the average input
power constraint XXX

y
XXX � E , i.e.,

C(E; ) max I( ; ) (20)

where the maximum is taken over the set of all input covariance ma-
trices satisfying the trace constraint

tr ( ) � E : (21)

It follows immediately from Corollary 2.1 that, if y � ~ y ~ , then
IIG(E; ) � IIG(E; ~) and C(E; ) � C(E; ~ ).
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Theorem 1.1 can also be used to study the rate-R outage probability
corresponding to the isotropic Gaussian input of power-E

P
IG

out(R; E ; ) F R;
E

n
n; (22)

and the optimal power-E rate-R outage probability P �
out(R; E ; ),

which is the smallest outage probability that can be achieved for the
rate R and the average power E , i.e.,

P
�
out(R; E ; ) minF (R; ; ) (23)

where the minimum is over all positive semidefinite matrices sat-
isfying (21). From Theorem 1.1 we now obtain that y � ~ y ~

implies that P IG

out(R; E ; ) � P IG

out(R; E ;
~) and P �

out(R; E ; ) �
P �
out(R; E ;

~ ).2

Using the rotational invariance (12), we can strengthen these results
by stating them in terms of the singular values of the LOS matrices.
Indeed, for any unitary matrix , we have tr y = tr ( ), and
hence it follows from (12) that for any 2 U(m) and 2 U(n)

I
IG(E; y) = I

IG(E; ) (24)

and

C(E; y) = C(E; ): (25)

In other words, the isotropic Gaussian input information rate and
channel capacity depend on the LOSmatrix only via its singular values.
By a similar argument, it can be verified from (11) that both the outage
probability P IG

out(R; E ; ) corresponding to the isotropic Gaussian
input and the optimal outage probability P �

out(R; E ; ) depend on the
LOS matrix only via its singular values. Consequently, all these
quantities are monotonic in the singular values of the LOS matrix.

Corollary 2.3: Let �1 � �2 � � � � � �minfm;ng and ~�1 � ~�2 �

� � � � ~�minfm;ng be the singular values of the LOS matrices and ~ ,
respectively. Suppose that �i � ~�i for all i. Then

I
IG(E; ) � I

IG(E; ~) (26)

C(E; ) �C(E; ~ ) (27)

P
IG

out(R; E ; ) �P
IG

out(R; E ;
~ ) (28)

and

P
�
out(R; E ; ) � P

�
out(R; E ;

~ ): (29)

We can obtain an alternative proof (cf. [9]) of this corollary based
on the observation that, if the LOS matrix is diagonal, the capacity
achieving covariance matrix is also diagonal. (See also [10].) Since
this structural theorem on the capacity achieving input distribution is
of independent interest, we restate it here.

2Note that from the definition of power-E �-outage capacity

C
�
out(�; E ; ) sup fR : P �

out(R; E ; ) < �g

we immediately get the monotonicity

C
�
out(�; E ; ) � C

�
out(�; E ;

~); if y � ~ y ~ :

A similar monotonicity holds for

C
IG

out(�; E ; ) sup R : P IG

out(R; E ; ) < � :

Theorem 2.4: Let y have the eigenvalue decomposition y =
y for some unitary matrix and diagonal matrix . Then the ca-

pacity achieving covariance matrix � is given by

� = y (30)

for some diagonal matrix .
Proof: We show that if is diagonal, the capacity achieving

input covariance matrix � is diagonal. The general case follows from
(12) and (20).

Fix some 1 � j � n. Let 2 U(n) be a diagonal matrix with all
diagonal entries equal to 1 except the jth entry, which is�1. Similarly,
let 2 U(m) be diagonal with all diagonal entries equal to 1 except
for the jth entry being �1. (In case j > m, = m.) Since is
diagonal, we have

y = : (31)

Let ~ = y . From (31) and the rotational invariance (12), we have

I(~ ; ) = I( y
; ) (32)

= I( ;
y) (33)

= I( ; ): (34)

Now consider the matrix ^ = 1

2
( + ~). We note that the entries

of ^ are identical to those of except that its off-diagonal elements
in the jth row and in the jth column are zero. In particular, tr ( ) =

tr ^ . On the other hand, it follows from (34) and the strict concavity

of I( ; ) in that

I(^ ; ) �
1

2
I( ; ) + I(~ ; ) (35)

= I( ; ) (36)

with equality if, and only if, = ^ . Repeating this procedure for each
j = 1; . . . ; n � 1 shows that an optimal covariance matrix must be
diagonal.

B. The Rician Multiple-Access Fading Channel

The coherent MIMO Rician MAC with k senders is modeled as fol-
lows. The channel output consists of k independent random matrices
1; . . . ; k , where i is a random m� ni matrix whose components

are i.i.d. N (0; 1), and of a random vector YYY 2 m of the form

YYY =

k

i=1

( i + i)xxxi +ZZZ (37)

where xxxi 2 n is the ith transmitter’s input vector, i is a determin-
isticm�ni complexmatrix corresponding to the LOSmatrix of the ith
transmitter, and ZZZ � N 0; �2 m corresponds to the additive noise
vector. We assume that all fading matrices f ig

k
i=1 are independent of

ZZZ and that the joint distribution of ( 1; . . . ; k; ZZZ) does not depend
on the inputs fxxxigki=1. We will also assume �2 = 1 without loss of
generality.

As in the single-user scenario, it can be shown [11], [12] that
Gaussian inputs achieve the capacity region of the MIMO Rician
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MAC. The rate region R( 1; . . . ; k; 1; . . . ; k) achieved by
independent Gaussian inputs N (0; i), i = 1; . . . ; k, over the
MIMO Rician MAC with LOS matrices f ig

k

i=1 is the set of all rate
vectors (R1; . . . ; Rk) satisfying

i2S

Ri � log det m +
i2S

( i + i) i( i + i)
y (38)

for allS � f1; . . . ; kg. The capacity region of theMIMORicianMAC,
denoted as an explicit function of the input power constraints on the
different users and of their corresponding LOS matrices, can be written
as

C(E1; . . . ; Ek; 1; . . . ; k) =

f g

R( 1; . . . ; k; 1; . . . ; k)

(39)
where the union is over all input covariance matrices f ig

k

i=1 that sat-
isfy the trace constraints tr ( i) � Ei, i = 1; . . . ; k.

For each set S � f1; . . . ; kg of elements 1 � i1 < i2 < � � � <
is � k, define the block matrices

S [ i ; . . . ; i ] (40)

S [ i ; . . . ; i ] (41)

and

S diag ( i ; . . . ; i ) : (42)

Further define = [ 1; . . . ; k]. Under this simplified notation, the
rate region (38) can be expressed as

i2S

Ri � log det m + ( S + S) S( S + S)
y (43)

= I( S ; S): (44)

Since the condition y � ~ y ~ implies that S
y

S � ~ y
S
~
S for

all S � f1; . . . ; kg, it follows from Corollary 2.1 that it also implies

R( 1; . . . ; k; 1; . . . ; k) � R( 1; . . . ; k; ~ 1; . . . ; ~ k) (45)

and consequently, from (39),

C(E1; . . . ; Ek; 1; . . . ; k) � C(E1; . . . ; Ek; ~ 1; . . . ; ~ k): (46)

We can strengthen this result using the symmetry of the problem as
in the single-user case. The utility of the rotational invariance (12) is,
however, rather limited since the LOSmatrices cannot be assumed to be
jointly diagonalizable. Thus, the monotonicity cannot be simply stated
in terms of the singular values of LOS matrices. Instead, we have the
following.

Corollary 2.5: Let = [ 1; . . . ; k] and ~ = [ ~ 1; . . . ; ~ k] be
LOS matrices such that

[ 1 1; . . . ; k k]
y
[ 1 1; . . . ; k k] � ~ y ~ (47)

for some i 2 U(ni), i = 1; . . . ; k. Then

C(E1; . . . ; Ek; 1; . . . ; k) � C(E1; . . . ; Ek; ~ 1; . . . ; ~ k): (48)

III. PROOF OF THEOREM 1.1

Given any 2 H+(n) and ; ~ 2 m�n satisfying

y � ~ y ~ (49)

we wish to show that for all t � 0,

F (t; ; ) � F (t; ; ~ ) (50)

where

F (t; ; ) = Pr log det m + ( + ) ( + )
y � t : (51)

Without loss of generality, we can assume that the matrices and
~ satisfy

~ = ; = diag (�; 1; . . . ; 1) (52)

for some 0 � � � 1. We justify this reduction as follows. Suppose that
the desired inequality (50) holds under the condition (52). Then for any
m�m permutation matrix and any as in (52) we have

F (t; ;
y ) =F (t; ;

y ) (53)

�F (t; ;
y ) (54)

=F (t; ; ) (55)

where the first equality follows from (11) (with the substitution =
and = n) because any permutation matrix is unitary; the subse-
quent inequality from our assumption that we have already proved the
theorem for as in (52); and the last equality again from (11) (with
the substitution = y and = n). By choosing so that y =
diag (1; . . . ; 1; �; 1; . . . ; 1) it follows from (55) that if the desired in-
equality holds for all as in (52) then it must also hold for all of the
form diag (1; . . . ; 1; �; 1; . . . ; 1). Writing diag (�1; �2; . . . ; �m) =

1 � 2 � � � m where i = diag (1; . . . ; 1; �i; 1; . . . ; 1) we have by
the associativity of matrix multiplication and the theorem for the case
where is of the form diag (1; . . . ; 1; �; 1; . . . ; 1)

F t; ;

m

i=1

i =F t; ; 1

m

i=2

i (56)

�F t; ;

m

i=2

i (57)

...

�F (t; ; ) (58)

thus establishing the result for any arbitrary diagonal contraction
matrix with diagonal elements 0 � �i � 1, i = 1; . . . ;m. Now
applying the rotational invariance (11) once again to arbitrary unitary
matrices 2 U(m), 2 U(m) and nonnegative diagonal contraction
matrix , we obtain

F (t; ;
y ) =F (t; ;

y ) (59)

�F (t; ;
y ) (60)

=F (t; ; ): (61)

Thus, if the desired inequality (50) holds for all ; ~ , and satisfying
(52) then it must also hold whenever

~ = ;
y � m: (62)
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But (62) is equivalent to the original condition (49) (see, for example,
[13]). Therefore, in order to prove the theorem, it suffices to establish
the inequality (50) under the simplified condition (52).

For the rest of our discussion, we need the following result by T. W.
Anderson [14], [15, Theorem 8.10.5].

Lemma 3.1: (Anderson’s Theorem): Let H be a convex set in n,
symmetric about the origin (i.e., ��� 2 H implies ���� 2 H). Let f(���) �
0 be a function on n such that (i) f(����) = f(���) for all ���, (ii)
the set f��� 2 n : f(���) � ug is convex for every u > 0; and (iii)

H
f(���) ��� < 1: Then

H

f(��� + ����)d��� �
H

f(��� + ���)d��� (63)

for every vector ��� 2 n and 0 � � � 1.

The proof of this celebrated result is based on the Brunn–Minkowski
inequality [16]. An interested reader is referred to a nice review by
Perlman [17] for further generalizations and applications in multi-
variate statistics.

Returning to our problem, for any t � 0, we define a set of matrices

Gt = 2 m�n : log det m + y � t : (64)

For any fixed vectors ggg2; . . . ; gggm 2 n, let

Ht (ggg2; . . . ; gggm) = ��� 2 n : [���; ggg2; . . . ; gggm] 2 Gt : (65)

In other words, Ht (ggg2; . . . ; gggm) is the set of the first rows ��� that
belong to Gt with given values of other rows ggg2 ; . . . ; gggm. As will be
checked later at the end of this section, for any ggg2; . . . ; gggm, the set
Ht (ggg2; . . . ; gggm) is convex and symmetric about the origin.

The rest of the proof proceeds along lines similar to those of
Das Gupta, Anderson, and Mudholkar [18]. We represent as
[HHH1; . . . ;HHHm] , where HHHj is the jth row of . Similarly, let dddj de-
note the jth row of . Let f(���jhhh2; . . . ; hhhm) be the conditional density
of HHH1 conditioned on HHHj = hhhj , j = 2; . . . ;m. Since the rows of
are mutually independent, f(���jhhh2; . . . ; hhhm) = f(���) is the density of
the multivariate Gaussian N (0; n), which satisfies the conditions
(i) to (iii) of Anderson’s Theorem. Combining the conditions on f

and Ht with the standing assumption (52), we can invoke Anderson’s
Theorem for the first row of after conditioning on the other rows
HHH2 ; . . . ;HHHm as shown in (66)–(68) at the bottom of the page. By
taking the expectation on both sides of (68) with respect to the joint
density ofHHH2; . . . ;HHHm, we establish the desired inequality (50).

It remains to check the convexity and symmetry of the set
Ht = Ht(ggg2; . . . ; gggm). Let = [���; ggg2; . . . ; gggm] . We show that
det( m + y) is convex and symmetric in ���, which clearly implies
the convexity and symmetry ofHt. For the symmetry, observe that

det( m + y) = det( m + y y) (69)

for any unitary matrix , and in particular for =
diag (�1; 1; . . . ; 1).

For the convexity, let = where is any matrix satisfying

( )
y

= . Recall the identity

det ( k + ) = det ( j + ) (70)

for any 2 k�j , 2 j�k. Then we have

det m + y

= det m + y (71)

= det n + y (72)

= det n +

m

j=2

fff j

y

fff j + fff1

y

fff1 (73)

= det + fff1

y

fff1 (74)

= det ( ) det n + �1
fff1

y

fff1 (75)

= det( ) 1 + fff1
�1

fff1

y

(76)

= det( ) 1 + ���
�1

���
y

(77)

where fff j denotes the jth row of and the positive definite matrix
is defined as

= n +

m

j=2

fff j

y

fff j :

The last line of (77) is a positive semidefinite quadratic form in ���, and,
hence, it is convex.

IV. CONCLUDING REMARKS

In this corespondence we have found a natural ordering of MIMO
Rician channels via their LOS matrices. We have shown that for two
LOS matrices ; ~ 2 m�n

y � ~ y ~ () I( ; ) � I( ; ~ ) 8 2 H+(n) (78)

where I( ; ) = I(XXX;YYY j ) is the mutual information induced by
a N (0; ) input over a coherent MIMO Rician channel with LOS
matrix . From this result, we obtained monotonicity results for the
isotropic Gaussian input information rate and for channel capacity, not
only for the single-user channel but also for themultiple-access channel
(MAC).

In some sense the results of this corespondencemay not be surprising
because the relation y � ~ y ~ implies tr( y ) � tr(~ y ~) and
hence a “larger” LOS matrix results in a larger output power. Note,
however, that some care must be exercised because in MIMO commu-
nications a larger output power need not imply a larger capacity. For
instance, if

1 =
10 10

10 0
; 2 =

10 10

10 10
(79)

Pr log det m + ( + ) ( + )
y � t HHHi = hhhi; i = 2; . . . ;m

=
H (hhh +ddd ;...;hhh +ddd )

f(��� � ddd1)d��� (66)

�
H (hhh +ddd ;...;hhh +ddd )

f(��� � �ddd1)d��� (67)

= Pr log det m + + ~ + ~ � t HHHi = hhhi; i = 2; . . . ;m : (68)
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then although the output power increases while changing from 1 to
2, one can numerically show that the isotropic Gaussian input infor-

mation rate and channel capacity are larger for the channel with LOS
matrix 1. The intuition is that 1 has full rank with singular values
16.18 and 6.18, whereas 2 is rank-deficient with singular values 20
and 0, thus providing only one LOS eigenmode.

APPENDIX

Instead of proving Proposition 2.2 directly, we will prove the equiv-
alent statement

y ~ y ~ ) I( ; ) < I( ; ~); for some 2 H+(n):

(80)

We first note that y ~ y ~ means that there exists a vector aaa 2 n

such that

aaa
y y

aaa < aaa
y ~ y ~aaa: (81)

For such a vector aaa, let 0 = aaaaaay 2 H+(n). We will show that the
strict inequality I( 0; ) < I( 0;

~) holds.
By (5) it suffices to show that F (t; 0; ) > F (t; 0;

~) for all
t > 0. Define GGG = aaa, bbb = aaa, and ~bbb = ~aaa. Then we have for any
t > 0

F (t; 0; ) = Pr log det m + ( + )aaaaaay( + )
y
� t (82)

= Pr log 1 + aaa
y( + )

y
( + )aaa � t (83)

= Pr log 1 + (GGG+ bbb)y(GGG+ bbb) � t (84)

> Pr log 1 + (GGG+~bbb)
y
(GGG+~bbb) � t (85)

= Pr log 1 + aaa
y( + ~)

y
( + ~)aaa � t (86)

= Pr log det m + ( + ~)aaaaaay( + ~)
y
� t (87)

= F (t; 0;
~) (88)

where (83) follows from (70), and (85) follows from the strict mono-
tonicity result for the single-antenna case [1, Lemma 6.2 (b)]. Indeed,
GGG isN 0; aaayaaa m distributed and (GGG+ bbb)y(GGG+bbb) thus has a scaled
noncentral chi-square distribution with (scaled) noncentrality param-
eter bbbybbb. Now (GGG+~bbb)

y
(GGG + ~bbb) in (85) is also a scaled noncentral

chi-square random variable, which, from (81), has a strictly larger non-
centrality parameter ~bbb

y~bbb > bbb
y
bbb. Hence, (GGG+~bbb)

y
(GGG+ ~bbb) is stochasti-

cally strictly larger than (GGG+ bbb)y(GGG+ bbb), so that the strict inequality
in (85) is justified for any t > 0.
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