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Abstract

A fading broadcast channel is considered where the transmitter employs two
antennas and each of the two receivers employs a single receive antenna. It is
demonstrated that even if the realization of the fading is precisely known to the re-
ceivers, the high signal-to-noise (SNR) throughput is greatly reduced if, rather than
knowing the fading realization precisely, the trasmitter only knows the fading real-
ization approximately. The results are general and are not limited to memoryless
Gaussian fading.

1 Introduction

It is quite remarkable that if the transmitter and the receivers in a multi-antenna Gaussian
fading broadcast channel are cognizant of the precise realization of the fading process,
then the limiting ratio, as the signal-to-noise ratio (SNR) tends to infinity, of the sum-
rate capacity of the broadcast channel to the capacity of the single-user channel that
results when the receivers are allowed to cooperate is one. Thus, if the fading realization
is perfectly known at all terminals, then no asymptotic loss is incurred due to the lack
of receiver cooperation. Here we investigate this limiting ratio in the more realistic case
where the transmitter has only an approximate estimate of the fading realization. We
show that the broadcast channel’s sum-rate capacity suffers from this inaccuracy far
more than the single-user’s channel capacity. Indeed, in a broadcast channel where the
transmitter employs two transmit antennas and each of the two receivers employs a single
antenna, if the transmitter only has an approximate estimate of the fading realization,
then this limiting ratio is upper bounded by 2/3; see Theorem 1. Thus the price of using
a broadcast channel where the receivers cannot cooperate is in the lack of robustness
with respect to the precision with which the transmitter knows the fading realizations.

It is interesting to note that in the single-user channel the asymptotic capacity is not
sensitive to this precision at all. Indeed, the high SNR asymptotic ratio of the single-
user channel capacity in the absence of any transmitter information about the fading
realization to the capacity in the presence of precise knowledge is typically one.

∗A. Lapidoth and M. Wigger are with the Signal and Information Processing Laboratory, Swiss Fed-
eral Institute of Technology (ETH) Zurich, Switzerland. E-mail: {lapidoth,wigger}@isi.ee.ethz.ch.

†S. Shamai is with the Department of Electrical Engineering, Technion—Israel Institute of Technol-
ogy, Haifa, Israel. E-mail: sshlomo@ee.technion.ac.il.



It should be emphasized that throughout this paper we assume that the receivers
have precise knowledge of the fading realizations. Otherwise, both the sum-rate capacity
of the broadcast channel and the capacity of the single-user channel typically grow only
double-logarithmically in the SNR [5], [9], [10]. Also, we assume that the precision of
the transmitter’s estimate of the fading realization is fixed and does not improve with
the SNR. (This assumption is reasonable when only fixed finite rate feedback links from
the receivers to the transmitter are available.) The fading is not assumed to be Gaussian
and we allow for memory.

2 Previous Results

The Multi-Input-Multi-Output Gaussian Broadcast Channel (MIMO-GBC) has been
studied extensively in recent years. First the optimal sum-rate has been characterized,
[1], [18], [17], [21] and that has been followed by the full determination of the capacity
region [19], which is one of the few examples of a non-degraded broadcast channel for
which the capacity region has been determined completely. For a short review on this
subject, see [2].

Most of the literature focuses on symmetric Gaussian fading, where the transmitter is
equipped with M antennas and there are K single-antenna users which are statistically
equivalent, that is:

Y = HX + N, (1)

where Y is a K component vector composed of the received signal at the different K
users, and H is a (K, M) matrix with IID Gaussian components, X designates the M
component transmit vector, and N the K components IID additive Gaussian noise vector.

One of the great attraction of these capacity results is the multiplexing gain, that is
min(M, K) which remains the pre-log factor of the sum-rate, though no cooperation of the
receivers is allowed in the broadcast setting. This multiplexing gain is the central factor
impacting the rate region in the high SNR regime. Though unable to provide optimal
performance, numerous simple precoding techniques do preserve the multiplexing gain,
and in particular techniques such as vector-perturbation precoding, as well as standard
channel equalization (zero-forcing or MMSE channel inversion) procedures [13], [7], [20],
[2], and references therein.

All the associated information-theoretic optimal techniques rely heavily on the precise
availability of the channel propagation matrix, H at both transmitter and all receivers.
In fact, the underlying element in the optimal information theoretic approach to the
MIMO-GBC, that is the ‘Dirty-Paper’ coding [1] renders the whole scheme rather sensi-
tive to the accuracy of the CSI available at the transmitter. Also suboptimal techniques,
such as the classical zero-forcing channel-equalizers assume the full availability of CSI
at the transmitter [7], [20]. Already in [1], this point has been emphasized, and it has
been demonstrated that for a symmetric case where all users enjoy statistically equivalent
channels (as the case here), the rate region of the MIMO-GBC with no CSI available at
the transmitter corresponds to that of K = 1. The total lack of CSI realization knowl-
edge, causes the absolute collapse of the multiplexing gain to unity. This observation in
[1] has been extended to address a general isotropic model in [5]. In [5] H is assumed
to be of an isotropic structure that is: H = UG, where G is a diagonal matrix repre-
senting different channel gains to the different users, while U is a unitary matrix. In
this case it has been shown that the MIMO-GBC capacity region is equivalent to the



capacity region associated with a single transmit antenna broadcast channel, reducing
again the multiplexing gain to unity. The same conclusions remain if the G matrix (i.e.
gain information) is available at the transmitter site, parallelling the achievable perfor-
mance in a TDMA-like regime, where the best single user is addressed [8]. It should
be emphasized that this is in sharp contrast to the single user M transmit K received
antenna case (equivalent to the MIMO-GBC, where the receivers are allowed to cooper-
ate). In the latter, the impact of the lack of CSI is well understood and is rather limited
in the high SNR regime, where optimal singular-value decomposition and water-pouring
provide marginal advantage in the standard model [16], [11]. See [4] and [12] for cases
where special attention is called for. In the standard single user MIMO model the full
multiplexing gain is typically maintained even without any transmitter CSI.

The importance and practical implications of partial CSI knowledge, and the appar-
ent sensitivity of the achievable rate in the MIMO-GBC to accuracy of CSI, motivated
intensive research work which encompasses by now many dozens of recent contributions.
Those span now different aspects, such as opportunistic approaches, linear and non-linear
precoding in the presence of partial CSI, multiple beam-forming subjected to uncertainty
conditions, feedback constrained signaling, Lattice reduction techniques, scheduling, an-
tenna selection, and numerous other approaches. See [2] for a short discussion.

In [15] it was substantiated that the optimal scaling of the sum-rate C(SNR) for

MIMO-GBC, that is: M × log
(

SNR× log(K)
)

can be maintained with a rather limited

CSI. The central idea is based on transmission of random orthogonal M beams and the
CSI comprises the signal-to-interference ratio (SIR) observed at each beam. Transmis-
sion then is done on each beam to the user that enjoys the maximum SIR. While the

M × log
(

SNR × log(K)
)

conditions of fixed M and SNR, while K increases to infinity.

The multiplexing gain however is defined as lim C(SNR)/ log(SNR), SNR → ∞, that is
fix M and K (though can be chosen as large as wished). Under these circumstances, it
is not too difficult to realize that the opportunistic scheme in [15] is interference limited,
that is: C(SNR)/ log(SNR) → 0. This, in principal, is also the case typifying many vari-
ants of MIMO-GBC with a variety of signaling/coding approached under finite precision
CSI, that is the elements of the propagation matrix are available with a finite precision.
This is not to say that any sort of partial CSI inflicts the destruction of the degrees
of freedom, as is demonstrated by considering the case where perfect CSI is available
just for judiciously selected subclass of scheduled users. Another example considers the
availability of spatial information, say U in the isotropic model discussed above. It is
straightforward to realize that full multiplexing gain can be maintained if equalization,
say zero forcing, is performed with respect to U alone [20].

These methods however do not support finite precision CSI as is in focus here. In fact,
finite precision could be associated with fixed finite rate feedback channels, as classical
rate distortion theory imposes a bound on the accuracy of CSI. When the rate of the
feedback channel may in fact be increased with the increase of SNR, evidently the higher
the SNR, the higher the CSI precision and the full multiplexing gain can be preserved.
In a recent contribution [6], a finite-rate feedback is considered, which scales with SNR.
Multibeam forming is assumed where each user feeds back the vector source coding of
its own channel, employing unitary quantization codes. Then transmission is done to a
randomly selected set of users with different beamformers. It is demonstrated that for
a feedback rate proportional to log(SNR) the full multiplexing gain is maintained. The
resultant effect is due to the enhanced accuracy which scales exponentially with SNR



(proportional to the feedback rate), hence mitigating the interference-limited regime.

3 Channel Model and Main Result

We consider a broadcast channel with a transmitting node X and two receiving nodes
Y and Z. The transmitter employs two antennas so that the transmitted symbol takes
value in R

2. The receivers each employ a single antenna, and the received symbols thus
take value in R. We assume that the sequences of random vectors {Âk}, {Ãk}, {Ĥk} and
{H̃k} taking value in R

2 are generated by nature according to some given law. When at
time-k the symbol xk ∈ R

2 is sent, the received symbol at Terminal Y is given by

Yk = A
T

kxk + N
(y)
k (2)

where Ak models the fading and is given by

Ak = Âk + Ãk (3)

and where {N (y)
k } is a sequence of IID scalar zero-mean variance-σ2 real Gaussian ran-

dom variables modeling the additive noise. (Throughout this paper all Gaussian random
variables are assumed to be of positive variance.) The random vector Âk models the
transmitter’s estimate of the time-k fading level and Ãk denotes the transmitter’s esti-
mation error. That is, we assume that the transmitter has access to the sequence {Âk}
but not to {Ãk}. Both receivers, however, have access to both {Âk} and {Ãk}.

The received signal at Terminal Z is analogously defined with similar statistical as-
sumptions by

Zk = H
T

kxk + N
(z)
k (4)

and
Hk = Ĥk + H̃k (5)

where {Ĥk} is known to both the transmitter and to the two receivers, and where {H̃k} is
only known to the two receivers. Thus, the transmitter knows {Âk} and {Ĥk}, whereas
both receivers know {Âk}, {Ãk}, {Ĥk}, and {H̃k}.

The additive noise sequences {N (z)
k } and {N (y)

k } are assumed to be independent, each

being IID N (0, σ2). Moreover, ({N (z)
k }, {N (y)

k }) is independent of ({Âk}, {Ãk}, {Ĥk},

{H̃k}), and conditional on ({Âk}, {Ĥk}) the joint law of

({N (z)
k }, {N (y)

k }, {Ãk}, {H̃k})

does not depend on the input sequence {xk}.
We denote the message intended for Terminal Y by MY and assume that it is uni-

formly distributed over the set MY = {1, . . . , ⌊enRY ⌋} where n denotes the blocklength
and RY denotes the transmission rate to Terminal Y in nats per channel-use. The objects
MZ , MZ , and RZ are analogously defined and we assume that MY is independent of MZ .

We consider an average power constraint

1

n

n
∑

k=1

E

[

‖Xk

(

MY , MZ , Ân
1 , Ĥ

n
1

)

‖2
]

≤ E , (6)

where xk(mY , mZ , ân
1 , ĥ

n
1 ) denotes the symbol that is transmitted at time-k when the

messages mY & mZ are to be conveyed and when the transmitter’s estimate of the fading



levels are â
n
1 and ĥ

n
1 , respectively. (Here Â

n
1 stands for Â1, . . . , Ân.) We define a rate

pair (RY , RZ) to be achievable as in the standard broadcast channel set-up [3, Ch. 14]
and denote the supremum of RY + RZ over all achievable pairs (RY , RZ) by CTot(E/σ2).

Since the capacity region of a broadcast channel depends only on the conditional
marginal distributions [3, Theorem 14.61], there is no loss in generality in assuming, as
we shall, that conditional on ({Âk}, {Ĥk}) the processes {Ãk} and {H̃k} are independent,
i.e. that

{Ãk}⊸−−({Âk}, {Ĥk})⊸−−{H̃k} (7)

forms a Markov chain.
The main result of this paper is about the asymptotic behavior of CTot(E/σ2) as the

signal-to-noise ratio E/σ2 tends to infinity.

Theorem 1. In the above set-up assume that for every k the distribution of Ak is the
same as the distribution of A1 and that the distribution of Hk is the same as the distri-
bution of H1. Moreover,

E
[

‖A1‖
2
]

, E
[

‖H1‖
2
]

< ∞ (8)

where ‖ · ‖ denotes the Euclidean norm. If, additionally,

lim
n→∞

1

n
h
(

Ã
n
1

∣

∣

∣
Â

n
1 , Ĥ

n
1

)

> −∞ (9)

and

lim
n→∞

1

n
h
(

H̃
n
1

∣

∣

∣
Â

n
1 , Ĥ

n
1

)

> −∞ (10)

then

lim
E→∞

CTot(E/σ2)

log(1 + E/σ2)
≤

2

3
. (11)

Note that since the transmitter can always choose to transmit to only one receiver,
the limiting ratio is typically at least 1/2. We conjecture that the limiting ratio is indeed
1/2, leading to a “complete collapse of degrees of freedom”. Note that in the coherent
case where the transmitter knows the fading precisely this limit is typically 1. It is also
typically 1, even in the absence of any transmitter side-information, if the receivers can
cooperate.

4 Lemmas

Lemma 1. Let X, A, and H take value in R
2 with X⊸−−S⊸−−A and X⊸−−S⊸−−H

forming Markov chains and U being N (0, σ2) distributed and independent of (X, S,A,H).
If E[‖X‖2] , E[‖A‖2], and E[‖H‖2] are all finite and if h(A|S) > −∞, then

h(AT
X + U |A, S) ≥

1

2
h(HT

X + U |H, S) −
1

2
E
[

log+ ‖H‖
]

− E

[

log+ 1

‖A‖

]

−γ +
1

4
log σ2 +

9

2

(

h(A|S) − h
(

‖A‖
∣

∣S
)

−
1

2
E
[

log ‖A‖2
])

(12)

≥
1

2
h(HT

X + U |H, S) −
1

2
E
[

log+ ‖H‖
]

− E

[

log+ 1

‖A‖

]

− γ

+
1

4
log σ2 +

9

2

(

h(A|S) −
1

2
log(2πeE

[

‖A‖2
]

) −
1

2
log E

[

‖A‖2
])

(13)

where γ is a universal constant.



Lemma 2. Let X and S be possibly dependent random variables with X satisfying
E[X2] ≤ E and S having a finite second moment. Then

1

2
E

[

log
(

2πe
(

S2
E
[

X2
∣

∣ S
]

+ σ2
)

)]

≤
1

2
log

(

2πe(E
[

S2
]

E + σ2)
)

+ ∆ (14)

where ∆ is upper bounded by log(e)/e.

Proof. This is a fairly standard result in “optimal power allocation” [3, Sec. 10.4 & 10.5].
The maximum of the left hand side (LHS) of (14) over all choices for E[X2 | S] integrating
to E has been extensively studied in the literature. Schein & Trott [14] and Zamir & Erez
[22] have, for example, shown that the choice E[X2 | S] = E can be off from the optimum
by at most log(e)/e from which the firm bound follows using Jensen’s inequality.

5 Proof of the Theorem

Consider a sequence of rates (RY , RZ) encoding and decoding functions for the setting
described in Section 3 such that the average probabilities of errors as defined in the
standard broadcast set-up tend to 0. Given such a block-length n encoder define Y n

1

and Zn
1 to be the n-length vectors of the outputs Y1, . . . , Yn and Z1, . . . , Zn, respectively.

Similarly, define Ã
n
1 , H̃

n
1 , Â

n
1 and Ĥ

n
1 to be the n-length sequences of fading coefficients.

Noting that revealing MY to Terminal Z cannot increase its average probability of error
and using Fano’s inequality [3] we obtain

RY <
1

n
I(MY ; Y n

1 |Ã
n
1 , Â

n
1 , Ĥ

n
1) + ǫ(n),

RZ <
1

n
I(MZ ; Zn

1 |MY , H̃n
1 , Â

n
1 , Ĥ

n
1) + ǫ(n), (15)

where the term ǫ(n) tends to 0 as n tends to infinity.
The rate RY can be further upper bounded using the following lower bound

h(Y n
1 |MY , Ãn

1 , Â
n
1 , Ĥ

n
1)

=
n

∑

i=1

{

h(Y i
1 , Zn

i+1|MY , Ãi
1, H̃

n
i+1, Â

n
1 , Ĥ

n
1) − h(Y i−1

1 , Zn
i |MY , Ãi−1

1 , H̃n
i , Â

n
1 , Ĥ

n
1)

}

+h(Zn
1 |MY , H̃n

1 , Â
n
1 , Ĥ

n
1)

=
n

∑

i=1

{

h(Yi|Y
i−1
1 , Zn

i+1, MY , Ãi
1, H̃

n
i+1, Â

n
1 , Ĥ

n
1)

−h(Zi|Y
i−1
1 , Zn

i+1, MY , Ãi−1
1 , H̃n

i , Â
n
1 , Ĥ

n
1)

}

+ h(Zn
1 |MY , H̃n

1 , Â
n
1 , Ĥ

n
1) (16)

≥
n

∑

i=1

{

−
1

2
h(Zi|Y

i−1
1 , Zn

i+1, MY , Ãi−1
1 , H̃n

i , Â
n
1 , Ĥ

n
1) +

1

4
log σ2 − γ −

1

2
E

[

log+ ‖Ĥi + H̃i‖
]

−E

[

log+ 1

‖Âi + Ãi‖

]

+
9

2

(

h(Âi + Ãi|Y
i−1
1 , Zn

i+1, MY , Ãi−1
1 , H̃n

i+1, Â
n
1 , Ĥ

n
1)

−
1

2
log

(

2πeE
[

‖Âi + Ãi‖
2
])

−
1

2
log E

[

‖Âi + Ãi‖
2
])}

+h(Zn
1 |MY , H̃n

1 , Â
n
1 , Ĥ

n
1) (17)



≥
n

∑

i=1

{

−
1

2
h(Zi|MY , Zn

i+1, H̃
n
1 , Â

n
1 , Ĥ

n
1) −

1

2
E

[

log+ ‖Ĥi + H̃i‖
]

− E

[

log+ 1

‖Âi + Ãi‖

]

+
1

4
log σ2 − γ +

9

2

(

h(Ãi|Ã
i−1
1 , Ân

1 , Ĥ
n
1) −

1

2
log

(

2πeE
[

‖Âi + Ãi‖
2
])

−
1

2
log E

[

‖Âi + Ãi‖
2
] )}

+ h(Zn
1 |MY , H̃n

1 , Â
n
1 , Ĥ

n
1 ) (18)

≥
1

2
h(Zn

1 |MY , H̃n
1 , Â

n
1 , Ĥ

n
1) +

n

4
log σ2 − nγ −

9n

4
log(2πe) +

9

2
h(Ãn

1 |Â
n
1 , Ĥ

n
1)

−
n

2
E

[

log+ ‖Ĥ1 + H̃1‖
]

− nE

[

log+ 1

‖Â1 + Ã1‖

]

−
9n

2
log E

[

‖Â1 + Ã1‖
2
]

(19)

where γ is a universal constant. Here Equation (16) is obtained by subtracting the term
∑n

i=1 h(Y i−1
1 Zn

i+1|MY , Ãi
1, H̃

n
i+1, Â

n
1 , Ĥ

n
1 ) and then adding

∑n

i=1 h(Y i−1
1 Zn

i+1|MY , Ãi−1
1 , H̃n

i ,

Â
n
1 , Ĥ

n
1) where both sums are equal because (Ãi, H̃i)⊸−−(MY , Ãi−1

1 , H̃n
i+1, Â

n
1 , Ĥ

n
1)⊸−−

(Y i−1
1 , Zn

i+1) forms a Markov chain. In the following let Si = (Y i−1
1 , Zn

i+1, MY , Ãi−1
1 , H̃n

i+1,

Â
n
1 , Ĥ

n
1). Then the Markov chains (Âi + Ãi)⊸−−Si⊸−− Xi and (Ĥi + H̃i)⊸−−Si⊸−− Xi

are fulfilled and h(Âi + Ãi|Si) > −∞ holds due to (9). Thus Lemma 1 can be applied
and Inequality (17) follows. In Inequality (18) we used that differential entropy cannot
be increased by conditioning and is invariant under shift together with the fact that
Zi⊸−−(Si, H̃i)⊸−−H̃

i−1
1 and Ãi⊸−−(Ãi−1

1 , Ĥn
1 , Â

n
1 ) ⊸−−Si form Markov chains. Finally,

Inequality (19) follows due to the chain rule and because the marginal distributions of
Ai and Hi do not depend on the index i. Note that the Markov chains used to justify
these inequalities follow mainly from Assumption (7) and because the transmitter has
access only to Â

n
1 and Ĥ

n
1 but not to Ã

n
1 or to H̃

n
1 .

From this follows that

RY <
1

n
h(Y n

1 |Ã
n
1 , Â

n
1 , Ĥ

n
1) −

1

2n
h(Zn

1 |MY , H̃n
1 , Â

n
1 , Ĥ

n
1) −

9

2n
h(Ãn

1 |Â
n
1 , Ĥ

n
1) −

1

4
log σ2

+
1

2
E

[

log+ ‖Ĥ1 + H̃1‖
]

+ E

[

log+ 1

‖Â1 + Ã1‖

]

+ γ

+
9

4
log(2πe) +

9

2
log E

[

‖Â1 + Ã1‖
2
]

+ ǫ(n), (20)

RZ <
1

n
h(Zn

1 |MY , H̃n
1 , Â

n
1 , Ĥ

n
1 ) −

1

n
h(Zn

1 |MY , MZ , H̃n
1 , Â

n
1 , Ĥ

n
1) + ǫ(n). (21)

Using the chain rule for differential entropy and the fact that differential entropy
cannot decrease if conditioning is removed we have

h(Y n
1 |Ã

n
1 , Â

n
1 , Ĥ

n
1) =

n
∑

i=1

h(Yi|Y
i−1
1 , Ãn

1 , Â
n
1 , Ĥ

n
1) ≤

n
∑

i=1

h(Yi|Ãi, Âi). (22)

The terms on the right hand side of (22) can then be upper bounded using the fact that a
Gaussian distribution maximizes differential entropy under a second moment constraint,
followed in a second step by using the Cauchy-Schwarz inequality and by splitting up the
expectation over Âi + Ãi into the expectations over the magnitude and phase of Âi + Ãi

and applying Jensen’s inequality to the expectation over the phase. Further, Lemma
2 can be applied since E[‖Ai‖2] < ∞ for every i due to Condition (8) and by defining
Ei , E[‖Xi‖2] which is finite according to (6). The last inequality follows by using again



Jensen’s inequality and because the distribution of Âi + Ãi is assumed not to depend on
the index i:

n
∑

i=1

h(Yi|Ãi, Âi) ≤
n

∑

i=1

E

[

1

2
log

(

2πe

(

E

[

∥

∥

∥

(

Âi + Ãi

)

T

Xi

∥

∥

∥

2 ∣

∣

∣
(Âi + Ãi)

]

+ σ2

))]

≤
n

∑

i=1

E

[

1

2
log

(

2πe
(

‖Âi + Ãi‖
2 · E

[

‖Xi‖
2
∣

∣‖Âi + Ãi‖
]

+ σ2
))

]

≤
n

∑

i=1

{

1

2
log

(

2πe
(

E

[

‖Âi + Ãi‖
2
]

Ei + σ2
))

}

+ n
log e

e

≤
n

2
log

(

2πe
(

E

[

‖Â1 + Ã1‖
2
]

E + σ2
))

+ n
log e

e
. (23)

Since the random vector Xk is determined by the messages MY , MZ and by the fading
coefficients Â

n
1 and Ĥ

n
1 and since the sequence N

(z)
1 , . . . , N

(z)
n is IID N (0, σ2) it follows

that
h(Zn

1 |MY , MZ , H̃n
1 , Â

n
1 , Ĥ

n
1) =

n

2
log(2πeσ2). (24)

Combining the bounds (20) and (21) and applying (22), (23) and (24) one obtains

RY +
1

2
RZ <

1

2
log



1 +
E

[

‖Â1 + Ã1‖2
]

E

σ2



 −
9

2n
h(Ãn

1 |Â
n
1 , Ĥ

n
1 ) + γ′

+
1

2
E

[

log+ ‖Ĥ1 + H̃1‖
]

+ E

[

log+ 1

‖Â1 + Ã1‖

]

+
9

2
log E

[

‖Â1 + Ã1‖
2
]

+
3

2
ǫ(n) (25)

where γ′ = γ + log e

e
+ 10

4
log(2πe).

By exchanging the roles of the two receiving terminals in all the steps an upper bound
on 1

2
RY + RZ is obtained. This upper bound summed up with Bound (25) and divided

by 3
2

yields

RY + RZ <
1

3
log



1 +
E

[

‖Â1 + Ã1‖2
]

E

σ2



 +
1

3
log



1 +
E

[

‖Ĥ1 + H̃1‖2
]

E

σ2





+
4

3
γ′ −

3

n
h(Ãn

1 |Â
n
1 , Ĥ

n
1 ) −

3

n
h(H̃n

1 |Â
n
1 , Ĥ

n
1)

+
1

3
E

[

log+ ‖Â1 + Ã1‖
]

+
1

3
E

[

log+ ‖Ĥ1 + H̃1‖
]

+
2

3
E

[

log+ 1

‖Â1 + Ã1‖

]

+
2

3
E

[

log+ 1

‖Ĥ1 + H̃1‖

]

+3 logE

[

‖Â1 + Ã1‖
2
]

+ 3 log E

[

‖Ĥ1 + H̃1‖
2
]

+ 2ǫ(n). (26)

Taking now the limit as n tends to infinity the term ǫ(n) tends to 0 and the sum rate



can be upper bounded by

RY + RZ <
1

3
log



1 +
E

[

‖Â1 + Ã1‖2
]

E

σ2



 +
1

3
log



1 +
E

[

‖Ĥ1 + H̃1‖2
]

E

σ2





+
4

3
γ′ − 3 lim

n→∞

1

n
h
(

Ã
n
1

∣

∣

∣
Â

n
1 , Â

n
1

)

− 3 lim
n→∞

1

n
h
(

H̃
n
1

∣

∣

∣
Â

n
1 , Â

n
1

)

+
1

3
E

[

log+ ‖Â1 + Ã1‖
]

+
1

3
E

[

log+ ‖Ĥ1 + H̃1‖
]

+
2

3
E

[

log+ 1

‖Â1 + Ã1‖

]

+
2

3
E

[

log+ 1

‖Ĥ1 + H̃1‖

]

+3 logE

[

‖Â1 + Ã1‖
2
]

+ 3 log E

[

‖Ĥ1 + H̃1‖
2
]

. (27)

Theorem 1 follows from (27) by dividing by log
(

1 + E

σ2

)

and letting E tend to infinity
because, by assumptions (8), (9), and (10), all the additive terms on the right hand side
of (27) except for the first two are bounded. To see that the terms on the second to last
line are finite one can condition on Â1 and Ĥ1 respectively and invoke [10, Lemma 6.7 c)].
(Note that h(Ã1|Â1) and h(H̃1|Ĥ1) are finite by assumptions (9) and (10).) Further-

more, it can be shown using Jensen’s inequality that the terms E

[

log+ ‖Ĥ1 + H̃1‖
]

and

E

[

log+ ‖Â1 + Ã1‖
]

stay finite whenever E[‖A1‖2] and E[‖H1‖2] are finite, which holds

by (8).
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