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Abstract

A general technique is proposed for the derivation of upper bounds on
channel capacity. The technique is based on a dual expression for channel
capacity where the maximization (of mutual information) over distributions
on the channel input alphabet is replaced with a minimization (of average
relative entropy) over distributions on the channel output alphabet. Every
choice of an output distribution — even if not the channel image of some
input distribution — leads to an upper bound on mutual information.

The proposed approach is used in order to study multi-antenna flat fading
channels with memory where the realization of the fading process is unknown
at the transmitter and unknown (or only partially known) at the receiver. It is
demonstrated that, for high signal-to-noise ratio (SNR), the capacity of such
channels typically grows only double-logarithmically in the SNR. This is in
stark contrast to the case with perfect receiver side information where capacity
grows logarithmically in the SNR. To better understand this phenomenon
and the rates at which it occurs, we introduce the fading number as the
second order term in the high SNR asymptotic expansion of capacity, and
derive estimates on its value for various systems. It is suggested that at rates
that are significantly higher than the fading number, communication becomes
extremely power inefficient, thus posing a practical limit on the achievable
rates.

In an attempt to better understand the dependence of channel capac-
ity on the fading law and on the number of antennae, we derive upper and
lower bounds on the system’s fading number. For Single-Input Single-Output
(SISO) systems we present a complete characterization of the fading num-
ber for general stationary and ergodic fading processes. We also demonstrate
that for memoryless Multi-Input Single-Output (MISO) channels, the fad-
ing number is achievable using beam-forming, and we derive an expression
for the optimal beam direction. This direction depends on the fading law
and is, in general, not the direction that maximizes the SNR on the induced
SISO channel. Using a closed-form expression for the expectation of the loga-
rithm of a non-central chi-square distributed random variable we provide some
closed-form expressions for the fading number of some systems with Gaussian
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fading, including SISO systems with circularly symmetric stationary and er-
godic Gaussian fading. The fading number of the latter is determined by the
fading mean, fading variance, and the mean squared-error in predicting the
present fading from its past; it is not directly related to the Doppler spread.

A key ingredient in the analysis of the fading number is played by the
notion of “capacity achieving input distributions that escape to infinity.” This
is a general property that many cost-constrained channel possess, and it is
hoped that it will find use in the analysis of the high SNR behavior of other
channels too.

For some specific channels, e.g., the Rayleigh, Ricean, and Multi-Antenna
Rayleigh fading channels we also present firm upper and lower bounds on
channel capacity. These bounds are asymptotically tight in the sense that
their difference from capacity approaches zero at high SNR, and their ratio
to capacity approaches one at low SNR.

Keywords: Channel capacity, upper bounds, duality, fading channels, flat fading,
multi-antenna fading number, high SNR, Rayleigh fading, Ricean fading, non-central
chi-square.

1 Introduction

The purpose of this paper is twofold: to propose a general technique for deriving
upper bounds on channel capacity, and to use this technique in order to study
multi-antenna systems on flat fading channels. To motivate the proposed technique
consider the classical expression for the capacity C of a discrete memoryless channel
(DMC) of law W (y|x) over the finite input and output alphabets X and Y :

C = max
Q∈P(X )

I(Q;W ) (1)

where P(X ) denotes the set of all probability measures on X and where I(Q;W )
denotes the mutual information between the channel terminals when the input is
distributed according to the law Q. That is,

I(Q;W ) =
∑
x,y

Q(x)W (y|x) log
W (y|x)

(QW )(y)
(2)

where (QW ) denotes the output distribution corresponding to the input law Q, i.e.,

(QW )(y) =
∑
x′∈X

Q(x′)W (y|x′), y ∈ Y . (3)

While the optimization over input distributions complicates the exact compu-
tation of C, Expression (1) leads to very natural lower bounds on C. Indeed, any
input distribution Q ∈ P(X ) leads to a lower bound

C ≥ I(Q;W ). (4)

A good choice for Q in the above would be a distribution that is close to a capacity-
achieving input distribution and that leads to a tractable expression for I(Q;W ).
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This latter issue of tractability may not be so critical for DMCs, but it is quite
important for channels over continuous alphabets. For such channels the mutual
information can be expanded in terms of differential entropies in two ways:

I(Q;W ) = h(X) − h(X|Y ) (5)

= h(Y ) − h(Y |X). (6)

To understand the difficulty in evaluating I(Q;W ) note that channels are typically
modelled so that the output law W (·|x) corresponding to each input x ∈ X be a
“nice” function, but that for a given input distribution Q ∈ P(X ) — even if “nice”
— the posterior law on X given Y will typically be complicated to compute, let
alone h(X|Y ). Thus, while a “nice” choice for Q will typically allow for an analytic
calculation of h(X), the calculation of h(X|Y ) will typically be complicated and (5)
might not be tractable. Alternatively, if one tries to compute (6) then the nice law
of W (·|x) and a nice choice for Q will typically allow one to compute h(Y |X), but
the computation of h(Y ), which is required for (6), might be difficult because the
output law corresponding to a nice input and a nice channel need not be nice.

A dual expression for channel capacity is [1]

C = min
R∈P(Y)

max
x∈X

D
(
W (·|x)‖R(·)) (7)

where D(·‖·) denotes relative entropy so that

D
(
W (·|x)‖R(·)) =

∑
y∈Y

W (y|x) log
W (y|x)
R(y)

. (8)

Every choice of a distribution R(·) on the output Y thus leads to an upper bound
on channel capacity

C ≤ max
x∈X

D
(
W (·|x)‖R(·)). (9)

In fact, by considering the identity [2]∑
x∈X

Q(x)D
(
W (·|x)‖R(·)) = I(Q;W ) +D

(
(QW )(·)‖R(·)) (10)

and by noting that relative entropy is non-negative, we obtain the bound

I(Q;W ) ≤
∑
x∈X

Q(x)D
(
W (·|x)‖R(·)), R ∈ P(Y) (11)

which implies (9).
As noted above, any choice of a distribution R(·) ∈ P(Y) on the output alphabet

leads to an upper bound on channel capacity via (9). One should typically choose
R(·) to be close to the capacity achieving output distribution and so as to guarantee
that (9) be tractable. This latter condition need not be so difficult to satisfy. Indeed,
since the channel law W (·|x) is often modelled using a “nice” law, and since we are
at liberty to choose R(·) to be nice, there is hope that D

(
W (·|x)‖R(·)) may be

tractable and be a reasonable function of x that can be then maximized. While this
latter maximization is unavoidable, it is at least over input symbols and not over
distributions.
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In this paper we shall extend (11), and hence also (9), to general alphabets and
also demonstrate how to account for input constraints. Such constraints can be
accounted for by modifying (9) by introducing Lagrange multipliers, as in [1], or by
working with (11), as we have chosen to do.

We shall apply the proposed approach to the study of the capacity of multi-
antenna flat-fading channels where the transmitter and receiver — while cognizant
of the fading probability law — have no knowledge (or, in the receiver case, only
partial knowledge) of the realization of the fading matrix. Other channels to which
the proposed approach has been successfully applied include finite state channels
with inter-symbol interference memory [3], and phase noise channels [4].

The fading model we address is described in Section 3 after a brief word about
notation in Section 2. The rest of the paper is organized as follows. In Section 4 we
present our main results concerning the capacity of multi-antenna fading channels.
Subsequent sections are more technical. In Section 5 we prove the extension of (11)
to continuous alphabet channels. In Section 6 we provide some of the mathematical
background that will be useful in the study of the capacity of the fading channel.
This section can be glanced over in a first reading and referred to later as needed.
Section 7 concludes the paper with a brief summary and a discussion of some of the
results.

2 Notation

As is by now fairly customary, we usually try to use upper-case letters for random
quantities and lower-case letters for their realizations. This rule becomes awkward
when dealing with matrices because matrices are usually written in upper case even if
they are deterministic. To better differentiate between scalars, vectors, and matrices
we have resorted to using different fonts for the different quantities. Upper-case
letters such as X are used to denote scalar random variables taking value in the reals
R or in the complex plane C. Their realizations are typically written in lower-case,
e.g., x. For random vectors we use bold face capitals, e.g., X and bold lower-case for
their realization, e.g., x. To be somewhat consistent with common usage we chose
to use upper-case letters even for deterministic matrices. Nevertheless, for clarity,
we use a special font for deterministic matrices, e.g., H. For random matrices we
use yet another font, e.g., H. Scalars are typically denoted using Greek letters, but
the energy per symbol is denoted by Es.

The entries of matrices are denoted using super-scripts so that H(r,t) denotes the
(random) component of the random matrix H that lies in row-r and column-t. Note
that our generic row index is r and the generic column index is t because we think
of r as indexing the receive antennae and of t as indexing the transmit antennae.
Consequently, the number of rows in the matrix will be often denoted by nR and the
number of columns by nT. Sub-scripts will be typically reserved for time indices.
Thus, the fading matrix at time k will be denoted by Hk.

We use ‖ · ‖ to denote the Euclidean norm of vectors or the Euclidean operator
norm of matrices. That is,

‖x‖ =

√√√√ nT∑
t=1

|x(t)|2, x ∈ C
nT (12)
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‖A‖ = max
‖ŵ‖=1

‖Aŵ‖. (13)

Thus, ‖A‖ is the maximal singular-value of the matrix A.
The Frobenius norm of matrices is denoted by ‖ · ‖F and is given by the square

root of the sum of the squared magnitudes of the elements of the matrix, i.e.,

‖A‖F =
√

tr
(
A†A

)
(14)

Here tr (·) denotes the trace of a matrix, (·)† denotes Hermitian conjugation, and
we shall use (·)T to denote the transpose (without conjugation) of a matrix. Note
that for any matrix A

‖A‖ ≤ ‖A‖F

as can be verified by upper bounding the squared-magnitude of each of the compo-
nents of Aŵ using the Cauchy-Schwarz inequality.

All rates specified in this paper are in nats per channel use. We use log(·) to
denote the natural logarithmic function, and set log+(·) to denote its positive part,
i.e.,

log+(ξ) = max{0, log(ξ)}. (15)

We shall denote the indicator function by I{statement}. It takes on the value 1
if the statement is true, and the value 0 if the statement is false.

We shall denote the mean-µ variance-σ2 univariate real Gaussian distribution
by NR (µ, σ2). Similarly the mean-µ covariance-K multivariate real Gaussian distri-
bution will be denoted NR (µ,K). Analogously, a complex random variable X will
be said to have a NC(µ, σ2) distribution if X − µ is a circularly symmetric Gaus-
sian random variable of variance E[|X|2] = σ2, i.e., if the real and imaginary parts
of X − µ are independent NR (0, σ2/2) random variables. Similarly, we shall write
X ∼ NC(µ,K) if X−µ is a circularly symmetric zero-mean Gaussian random vector
of covariance matrix E

[
XX†] = K. The notation N (µ,K), without the subscript

to indicate whether the distribution is complex or real will indicate that the stated
result holds in both cases.

In dealing with sequences of random variables we shall use a combination of
super-scripts and lower-scripts to address consecutive subsets. Thus, if X1, X2, . . . ,
is a sequence of random variables, then Xn

k will designate the sequence Xk, . . . , Xn.

3 The Channel Model

We consider a channel with nT transmit antennae and nR receive antennae whose
time-k output Yk ∈ C

nR is given by

Yk = Hkxk + Zk =

nT∑
t=1

x
(t)
k H

(t)
k + Zk. (16)

Here xk = (x
(1)
k , . . . , x

(nT)
k )T ∈ C

nT denotes the time-k input vector; the random

matrix Hk ∈ C
nR×nT denotes the time-k fading matrix of columns H

(1)
k , . . . ,H

(nT)
k ;

and the random vector Zk ∈ C
nR denotes the time-k additive noise vector.

Unless otherwise specified, we shall assume throughout that the random vectors
{Zk} are spatially and temporally white zero-mean circularly symmetric complex
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Gaussians, i.e., that {Zk} are IID NC(0, σ2I) for some σ2 > 0. Here I denotes
the identity matrix. Similarly, we shall assume throughout that the matrix-valued
fading process {Hk} is stationary and ergodic and independent of the vector-valued
additive noise process {Zk}. We shall also assume a finite-energy fading gain, i.e.,

E
[‖Hk‖2

F

]
<∞ (17)

where ‖Hk‖F denotes the Frobenius norm of the matrix Hk, see (14).
We denote the capacity of this channel with average power Es by C(SNR), where

SNR = Es/σ
2 denotes the signal-to-noise ratio. Thus,

C(SNR) = lim
n→∞

sup
1

n
I
(
X1, . . . ,Xn;Y1, . . . ,Yn

)
(18)

where the supremum is over all joint distributions on the input vectors X1, . . . ,Xn

under which
1

n

n∑
k=1

E
[‖Xk‖2

] ≤ Es (19)

and where I(·; ·) denotes the mutual information functional.
We shall often focus on memoryless fading where the random matrices {Hk}

are independent and identically distributed (IID). In this case we shall drop the
time-dependence index and write

Y = Hx + Z =

nT∑
t=1

x(t)H(t) + Z. (20)

Note that memoryless fading still allows for dependence among the components of
the fading matrix at a given instant k. Thus, in (20) the components of H need not
be independent of each other.

Since mutual information is concave in the input distribution, for memoryless
fading we can replace (19) with the stricter constraint

E
[
X†X

] ≤ Es. (21)

A special case of memoryless fading is memoryless Gaussian fading. In this case
the matrix H can be written as

H = D + H̃ (22)

where the mean matrix D is a deterministic nR × nT complex matrix, and where
the nT · nR components {H̃(r,t)}r,t of H̃ are zero-mean jointly circularly symmetric
and jointly Gaussian complex random variables. To be even more explicit we shall
sometimes refer to memoryless fading of a law that is not necessarily Gaussian as
general memoryless fading.

Some special cases of memoryless Gaussian fading include:

• Rayleigh fading where nR = nT = 1, the mean matrix D is zero, and H̃ is a
zero-mean unit-variance circularly symmetric complex Gaussian;

• Multi-antenna Rayleigh fading where D = 0 and the nR · nT components of H̃

are independent zero-mean unit-variance circularly symmetric complex Gaus-
sians; and

• Ricean fading where nR = nT = 1, the mean matrix — which is now a scalar
d called the “specular component” — is not necessarily zero, and H̃ is a zero-
mean unit-variance circularly symmetric complex Gaussian.
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4 Capacity Results

Apart from Subsection 4.1, which presents some results that are applicable to gen-
eral channels of output alphabet C

nR , the results in this section are focused on
fading channels. In Subsection 4.1 we use the continuous alphabet version of (11),
namely (192) of Theorem 5.1, in conjunction with the family of output laws (210)
to derive general upper bounds on the mutual information between the terminals
of a channel of output alphabet C

nR . In Subsection 4.2 we use these inequalities
to demonstrate the inefficiency of high signal-to-noise (SNR) signaling on fading
channels. Motivated by these results we define in Subsection 4.3 the fading number,
which is the second order term of the high SNR expansion of channel capacity and
which gives some indication of the rates above which channel capacity increases only
double-logarithmically with the SNR. Subsection 4.4 is devoted to the calculation of
the fading number of memoryless fading and Subsection 4.5 to the calculation of the
fading number for fading with memory. This section is concluded in Subsection 4.6
with a non-asymptotic capacity analysis of some specific memoryless Gaussian fading
channels including the Rayleigh, Rice, and Multi-Antenna Rayleigh fading channels.

4.1 A Specific Bound on Mutual Information

Once we extend the basic inequality (11) to general alphabets in Theorem 5.1 of
Section 5, we can apply it to channels whose output alphabet is C

nR by considering
the output distributions R(·) whose densities (with respect to the Lebesgue measure
on C

nR) are given by

‖Ay‖2(1−nR)
(‖Ay‖2 + δ

)(α−1)
e−(‖Ay‖2+δ)/β Γ(nR) | det A|2

πnRβαΓ(α, δ/β)
, y ∈ C

nR (23)

where α, β > 0, δ ≥ 0, and where A is any non-singular deterministic nR × nR

complex matrix. (See (210) and the discussion preceding it in Section 6.1 for a
discussion of this family of densities.) Here Γ(·) denotes the Gamma function (203)
and Γ(·, ·) denotes the incomplete Gamma function (206).

With this choice of R(·) we have

D
(
W (·|x)‖R(·)) = −h(Y|X = x) + log πnR + log βα + log Γ(α, δ/β)

− log Γ(nR) − log | det A|2 + (nR − 1)E
[
log ‖AY‖2|X = x

]
+ (1 − α)E

[
log
(‖AY‖2 + δ

)|X = x
]

+
1

β
E
[‖AY‖2 + δ|X = x

]
(24)

so that by the basic inequality (11), (192) we obtain a general upper bound on the
the mutual information for a channel whose output takes value in C

nR :

I(Q;W ) ≤ −hQ(Y|X) + log πnR + log βα + log Γ(α, δ/β)

− log Γ(nR) − log | det A|2 + (nR − 1)EQ

[
log ‖AY‖2

]
+ (1 − α)EQ

[
log
(‖AY‖2 + δ

)]
+

1

β
EQ

[‖AY‖2 + δ
]
, α, β > 0, δ ≥ 0, det(A) 6= 0

(25)
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where hQ(Y|X) =
∫
h(Y|X = x) dQ(x) denotes the average conditional differential

entropy when X is distributed according to the law Q. Notice that in (25) we have
denoted a generic input to the channel by X because we have in mind that the input
to the channel is a complex vector, but the result is more general.

The (typically sub-optimal) choice of

δ = 0, β =
EQ[‖AY‖2]

α
(26)

in (25) yields the simpler upper bound

I(Q;W ) ≤ log πnR − log Γ(nR) − log | det A|2 + nREQ

[
log ‖AY‖2

]− hQ(Y|X)

+α
(
1 + log EQ

[‖AY‖2
]− EQ

[
log ‖AY‖2

])
+ log Γ(α) − α logα, α > 0, det(A) 6= 0. (27)

This upper bound is tight enough to obtain the first term in the high SNR capacity
expansion, but not quite tight enough for the finer analysis of the second term (which
will be defined later as the fading number).

Note 4.1. It is interesting to note that for low SNR fading channels, the crude
bound (27) is tight. Indeed, if we further simplify it with the choice of α = nR and
A satisfying A†A = (E

[
YY†])−1 then (27) reduces to the max-entropy bound1

I(Q;W ) ≤ log
(
(π · e)nR det E

[
YY†])− h(Y|X) (28)

which is tight enough to obtain the slope of the capacity-energy curve at zero SNR.
See Appendix A for the details.

To use (25) to obtain upper bounds on channel capacity, one needs to upper
bound the right hand side (RHS) of (25) over all admissible input distributions. For
some examples on how this may be carried out, please see Subsection 4.6. The analy-
sis typically requires one to derive upper bounds on expressions of the form EQ[g(X)]
for some real function g(·) and for some unknown (capacity achieving) input distri-
bution that is only known to satisfy some input constraint, e.g., EQ[|X|2] ≤ Es. This
is often performed using Jensen’s inequality (if g(·) is concave), or using the trivial
upper bound supξ g(ξ), when all else fails. Under additional support constraints
(peak power) and/or additional moments constraints one may resort to results on
Tchebycheff Systems, see, e.g., [5]. Another useful approach, which we demonstrate
in Subsection 4.6, is the use of ideas related to stochastic ordering of distributions
[6]; see also Subsection 6.2.

We may also apply (11) to channels W (t|s) whose output T takes value in the
set of non-negative reals R

+. We can choose the output distribution R(·) to be a
regularized Gamma distribution (205), so that

D
(
W (·|s)‖R(·)) = −h(T |S = s) + log βα + log Γ(α, δ/β)

1The fact that this choice reduces to the max-entropy bound is not surprising. Indeed the choice
α = nR reduces the Gamma distribution (204) to a central χ2 distribution, thus reducing (209) to
an IID multivariate Gaussian distribution so that (210) becomes a general multivariate Gaussian
distribution.
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+ (1 − α)E[log(T + δ)|S = s] +
1

β
E[T + δ|S = s] . (29)

Using the basic inequality (192) we obtain the general upper bound on channels
whose output takes value in R

+:

I(Q;W ) ≤ −hQ(T |S) + log βα + log Γ(α, δ/β)

+ (1 − α)EQ[log(T + δ)] +
1

β
EQ[T + δ] , α, β > 0, δ ≥ 0.

(30)

This inequality has proven useful in [4] in the analysis of channels with phase noise.
There it was used with the (typically sub-optimal) choice of

δ = 0, β =
EQ[T ]

α
(31)

which yields the simpler upper bound

I(Q;W ) ≤ −hQ(T |S) + EQ[log T ] + log Γ(α) − α logα

+α
(
1 + log EQ[T ] − EQ[log T ]

)
, α > 0. (32)

4.2 Communication at High SNR is Power Inefficient

We now turn to some asymptotic analysis of channel capacity at high SNR. Our
first result here is that at high SNR capacity grows only double-logarithmically in
the SNR, and in fact, the difference between channel capacity and log log SNR is
bounded as the SNR tends to infinity. We shall state this result in a fairly general
setting that also allows for the availability of some side information at the receiver
(but not at the transmitter). To demonstrate the robustness of this result, we shall
state it without requiring that the additive noise be spatially and temporally white
Gaussian. We shall only require that it be stationary and ergodic, of finite energy,
and of finite entropy rate.

Theorem 4.1. Consider a multi-input multi-output (MIMO) fading channel

Y = Hkxk + Z′
k (33)

with some receiver side information (possibly null) Sk, where the fading process {Hk}
and receiver side information {Sk} are jointly stationary and ergodic, and indepen-
dent of the stationary and ergodic additive noise process {Z′

k}. Assume further that
the joint law of ({Hk}, {Sk}, {Z′

k}) does not depend on the input sequence {xk}. Let
C(Es) denote the capacity of this channel under an average power constraint Es on
the input, so that

C(Es) = lim
n→∞

1

n
sup I

(
Xn

1 ;Yn
1 ,S

n
1

)
(34)

where the supremum is over all input distributions on Xn
1 satisfying

1

n

n∑
k=1

E
[‖Xk‖2

] ≤ Es. (35)
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Assume that both {Hk} and {Z′
k} are of finite differential entropy rate

h({Hk}) , h({Z′
k}) > −∞; (36)

that both have finite second moments

E
[‖Hk‖2

F

]
, E
[‖Z′

k‖2
]
<∞; (37)

and that the mutual information rate I({Hk}; {Sk}) is finite, i.e.,

lim
n→∞

1

n
I
(
H

n
1 ;Sn

1

)
<∞. (38)

Then
lim

Es→∞

{
C(Es) − log log Es

}
<∞. (39)

Proof. The proof of this theorem for memoryless fading, memoryless additive noise,
and in the absence of receiver side information is given in Appendix B. It is based
on an asymptotic analysis of the bound (27) with A chosen as the nR × nR identity
matrix.

The more general case follows from the simpler case by Lemma 4.3 ahead.

It is interesting to note that under the assumptions of Theorem 4.1 Gaussian
input signals are highly sub-optimal. In fact, such input signals achieve a mutual
information that is bounded in the power Es. This result was recently proved by
Lapidoth and Shamai [7, Proposition 6.3.1] for single-antenna (nR = nT = 1) and
Gaussian inputs. Here we generalize it to the vector case and any scale family of
input distributions.

Theorem 4.2. Let the fading process {Hk} and additive noise process {Z′
k} satisfy

the assumptions of Theorem 4.1, i.e., be independent stationary and ergodic processes
satisfying (36) and (37). Let {Xk} be some stationary process (independent of the
fading and additive noise) with E[‖Xk‖2] = 1 and

E[log ‖Xk‖] > −∞. (40)

Then,

sup
Es>0

lim
n→∞

1

n
I
(√EsX1, . . . ,

√
EsXn;

√
EsH1X1 + Z′

1, . . . ,
√

EsHnXn + Z′
n

)
<∞. (41)

Proof. For a proof in the memoryless case see Appendix C. The more general case
(even with some receiver side information) follows from Lemma 4.3 ahead.

For the memoryless fading case, an intuitive explanation for this result was sug-
gested to us by R.G. Gallager. He suggests that if one ignores the additive noise,
then if one ignores the fact that the channel input and output need not be posi-
tive (or real, for that matter), then by taking logarithms one reduces the channel
to an additive noise channel. The scaling by

√Es translates to an additive con-
stant (0.5 log Es), which has no effect on the capacity of the resulting additive noise
channel.
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Note 4.2. Condition (40) is satisfied whenever Xk is a non-deterministic Gaussian
vector. In fact, it is satisfied whenever some subset of the components of Xk have a
finite joint differential entropy; see Lemma 6.7. (For deterministic inputs the claim
is trivial.)

To better understand the role played by the channel memory and by the side
information, the following lemma can be useful.

Lemma 4.3. Let xk, Yk, Hk, Sk, and Z′
k be as in Theorem 4.1. Then for any

positive integer n,

1

n
I(Xn

1 ;Yn
1 ,S

n
1 ) ≤ 1

n
I(Xn

1 ;Yn
1 ) +

1

n
I(Hn

1 ;Sn
1 ) (42)

≤ I(X1;Y1) + I(Hn; Hn−1
1 ) + I(Z′

n;Z
′n−1
1 ) +

1

n
I(Hn

1 ;Sn
1 ). (43)

Proof. See Appendix D.

4.3 The Fading Number

Motivated by Theorem 4.1 we next define the fading number. Henceforth we shall
always assume that the additive noise {Zk} is spatially and temporally white Gaus-
sian noise of covariance matrix σ2I.

Definition 4.4. The fading number χ
({Hk}|{Sk}

)
of a stationary and ergodic ma-

trix valued fading process {Hk} in the presence of receiver side-information {Sk} is
defined as

χ
({Hk}|{Sk}

)
= lim

Es↑∞

{
C(Es) − log log

Es

σ2

}
. (44)

Thus, whenever χ is finite and the limit in (44) exists,

C(Es) = log

(
1 + eχ log

(
1 +

Es

σ2

))
+ o(1) (45)

where the o(1) term tends to zero as Es tends to infinity. Note that as in (45) and
hereafter we omit the argument of χ when it is clear from the context.

The fading number is thus the second term in the high SNR expansion of channel
capacity. Since an exact expression for channel capacity seems intractable, the
approximation (44) may be useful for the understanding of the behavior of channel
capacity at high SNR.

The fading number serves, however, an additional purpose. The design of com-
munication systems that operate in the region where capacity grows only double-
logarithmically in the SNR is extremely power inefficient. Thus, one would expect
that system designers will try to avoid this region and design the systems for lower
rates (e.g., by using more bandwidth). The fading number may give an indication
of roughly how high need the rate be before one enters this high SNR region. At
rates that significantly2 exceed the fading number, one should expect to square the

2One should remember that for some channels (e.g., the IID Rayleigh fading channel — see
(97) ahead) the fading number may be negative. Since zero bits can always be transmitted with
zero power, we use the term “significantly exceed” rather than simply “exceed”.
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SNR for every additional bit per channel use. In this sense the fading number can
be viewed as an indication of the practical limiting rate for power efficient commu-
nication over the channel.

The following somewhat unintuitive observation is a consequence of the behavior
of the log log(·) function under scaling:

lim
SNR↑∞

{
log log(αSNR) − log log SNR

}
= 0, 0 < α ∈ R. (46)

It may simplify the computation of the fading number, especially for multi-
input single-output (MISO) and single-input multi-output (SIMO) systems where
the fading is spatially correlated:

Lemma 4.5. Consider a stationary and ergodic fading process {Hk} with nT trans-
mit antennae and nR receive antennae. Let the nT × nT deterministic matrix F and
the nR × nR deterministic matrix G be both non-singular. Then

χ
({GHkF}

)
= χ

({Hk}
)
. (47)

Proof. The proof of this lemma is given in Appendix E. It is based on the following
intuitive ideas. The first is that the channel of fading HkF can be mimicked on the
channel of fading Hk by replacing the input X with the input FX. In doing so we
might be boosting the input power and thus possibly violating the input constraint,
but we note that the power boost is at most multiplicative (by ‖F‖2) and is thus
insignificant on a double-logarithmic scale. Similarly, the channel of fading Hk can
be mimicked on the channel of fading HkF by multiplying the input X by F−1 —
again, at a power boost that is at most multiplicative (by ‖F−1‖2).

The invariance with respect to multiplication on the left by G can be argued in a
similar way by post multiplying the channel output. This causes noise coloring and
noise boosting, but this phenomenon can be shown to be insignificant on a log log
scale.

4.4 On the Fading Number for Memoryless Fading

4.4.1 Trading Additive Noise for Input Constraints

The following theorem gives an equivalent expression for the fading number of mem-
oryless fading channels. In this expression the additive Gaussian noise is not present,
but its place is taken by an additional constraint on the input, namely that all inputs
must be bounded away from zero.

Theorem 4.6. Consider the general memoryless fading channel (20) of fading ma-
trix H and assume 0 < E[‖H‖2

F] < ∞ and h(H) > −∞. Then the channel fading
number χ(H) is given by

χ(H) = lim
Ẽs↑∞


 sup

‖X̃‖2≥E0

E[‖X̃‖2]≤Ẽs

I(X̃; HX̃) − log log
Ẽs

E0


 (48)

where E0 denotes any fixed non-zero energy, e.g., one unit of energy3.

3The symbol E0 can be replaced everywhere with 1, but we have chosen not to do so in order
to better keep track of units.
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Moreover, the fading number χ can be achieved by input distributions QEs that
are bounded away from the origin in the sense that

QEs

(‖X‖ ≥ xmin

)
= 1 (49)

where
lim
Es↑∞

xmin = ∞. (50)

This theorem is proved in two steps. In the first step we show that the RHS of
(48) is a lower bound to χ(H), and in the second step we show that it is also an
upper bound. The first step is the easier one. It is an immediate consequence of the
following lemma.

Lemma 4.7. Let the random vector X take value in C
nT and satisfy

Pr
(‖X‖2 ≥ x2

min

)
= 1 (51)

for some xmin > 0. Let H be a random nR × nT matrix satisfying h(H) > −∞ and
E[‖H‖2

F] < ∞. Let Z ∼ NC(0, σ2I) and assume that X, H, and Z are independent.
Then

I(X; HX + Z) ≥ I(X; HX) − sup
‖x̂‖=1

{
h

(
Hx̂ +

Z

xmin

)
− h(Hx̂)

}
. (52)

Consequently, for any fixed positive energy E0,

sup
E[‖X‖2]≤Es

{
I(X; HX + Z)

} ≥

sup
‖X̃‖2≥E0

E[‖X̃‖2]≤Es/ρ

{
I(X̃; HX̃)

}− sup
‖x̂‖=1

{
h

(
Hx̂ +

Z√
ρE0

)
− h(Hx̂)

}
, ρ > 0 (53)

and

χ(H) ≥ lim
Ẽs↑∞


 sup

‖X̃‖2≥E0

E[‖X̃‖2]≤Ẽs

{
I(X̃; HX̃)

}− log log
Ẽs

E0


 . (54)

Proof. Inequality (52) follows from the basic properties of differential entropy:

I(X; HX + Z) = h(HX + Z) − h(HX + Z|X)

≥ h(HX) − h(HX + Z|X)

= I(X; HX) − (h(HX + Z|X) − h(HX|X)
)

≥ I(X; HX) − sup
‖x‖≥xmin

{
h(HX + Z|X = x) − h(HX|X = x)

}
= I(X; HX) − sup

‖x̂‖=1

{
h

(
Hx̂ +

Z

xmin

)
− h
(
Hx̂
)}

,

Pr(‖X‖2 ≥ x2
min) = 1.

13



Inequality (53) follows from (52) by limiting the supremum of I(X; HX + Z)
to random vectors X that are of the form X =

√
ρ · X̃ for some X̃ satisfying

Pr(‖X̃‖2 ≥ E0) = 1 and E
[
‖X̃‖2

]
= Es/ρ:

sup
E[‖X‖2]≤Es

I(X; HX + Z) ≥ sup
‖X̃‖2≥E0

E[‖X̃‖2]≤Es/ρ

I(
√
ρ · X̃;

√
ρ · HX̃ + Z) (55)

≥ sup
‖X̃‖2≥E0

E[‖X̃‖2]≤Es/ρ

I(X̃; HX̃)

− sup
‖x̂‖=1

{
h

(
Hx̂ +

Z√
ρE0

)
− h(Hx̂)

}
(56)

where the second inequality follows by (52) because vectors X of this form satisfy
Pr(‖X‖2 ≥ ρE0) = 1.

To prove (54) we shall use (53) with ρ growing with Es in a controlled way.
Defining Ẽs = Es/ρ we have

χ(H) = lim
Es→∞

{
sup

E[‖X‖2]≤Es

I(X; HX + Z) − log log
Es

σ2

}

≥ lim
Ẽs→∞


 sup

‖X̃‖2≥E0

E[‖X̃‖2]≤Ẽs

I(X̃; HX̃) − log log
Ẽs

E0


−

lim
Es→∞

{
log log

Es

σ2
− log log

Ẽs

E0

}
−

lim
Es→∞

sup
‖x̂‖=1

{
h

(
Hx̂ +

Z√
ρE0

)
− h(Hx̂)

}
.

To prove (54) it thus follows that it suffices to require that ρ tend to infinity so that
by Lemma 6.11 the third term on the RHS of the inequality will tend to zero, and
to additionally require that log ρ/ log Es tend to zero, so that the second term on the
RHS of the inequality will tend to zero. An example of a choice that meets these
two requirements is:

ρ = log
Es

E0

. (57)

We next continue with the second step in the proof of Theorem 4.6. In this step
we show that the RHS of (48) is an upper bound to χ(H). We show that by trying
to make light of the constraint ‖X̃‖2 ≥ E0. More specifically, we shall show that
even in the presence of noise, this constraint does not preclude one from achieving
the fading number. Once we show that, it will be apparent that in the absence of
noise we can do at least as well χ(H), thus concluding the proof of the theorem.

We thus next show that even in the presence of additive temporally and spa-
tially white Gaussian noise, the fading number χ(H) can be achieved using input
distributions that satisfy the constraint ‖X̃‖2 ≥ E0.
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The technique we use to prove this claim may be of independent interest, and
we therefore present this proof in a somewhat general setting. The proof hinges on
the fact that the capacity of our channel can be achieved by input distributions that
assign to any fixed compact set a probability that tends to zero as the SNR tends
to infinity. This property turns out to hold for many cost constrained channels of
interests, and we therefore define it in a fairly general setting. We need, however,
the following preliminary standard definition:

Definition 4.8. Given a channel W (·|·) over the input alphabet X and the output
alphabet Y and given some non-negative cost function g : X → R

+, we define the
capacity-cost function C : R

+ → R
+ by

C(Υ) = sup
EQ[g(X)]≤Υ

I(Q;W ), Υ ≥ 0. (58)

We say that C(Υ) is achieved if the supremum in (58) is achieved.

We are now ready for the definition of capacity achieving input distributions
that escape to infinity. For an intuitive understanding of the following definition
and some of its consequences, it is best to focus on the example where the channel
inputs are vectors in Euclidean space and where the cost function g(·) is the squared
Euclidean norm.

Definition 4.9. Let C(Υ) denote the capacity of a channel over the input alphabet X
and the output alphabet Y subject to a constraint E[g(X)] ≤ Υ, where g : X 7→ R

+.
We shall say that the capacity of this channel can be achieved using input distribu-
tions that escape to infinity, if there exists input distributions {QΥ}Υ≥0 satisfying
EQΥ

[g(X)] ≤ Υ such that

lim
Υ↑∞

{
C(Υ) − I(QΥ;W )

}
= 0 (59)

and such that for every Υ0 ≥ 0,

lim
Υ↑∞

QΥ

(
g(X) ≤ Υ0

)
= 0. (60)

Intuition suggests that if capacity can be achieved using input distributions that
assign an ever decreasing probability to a set K, then at high SNR the capacity
should not suffer appreciably from constraining the inputs to lie outside K almost
surely. This intuition is made precise in the following theorem.

Theorem 4.10. Consider a channel of law W (·|·) over the input alphabet X and
the output alphabet Y. Let g : X → R

+ be some non-negative cost function, and
let C(Υ) denote the capacity-cost function associated with W (·|·) and g. Fix some
Υ0 ≥ 0 and let K = {x ∈ X : g(x) ≤ Υ0}. Let Cc(Υ) denote the capacity-cost
function when the inputs are additionally constrained to lie outside K. Let d(Υ) be
some mapping d : R

+ → R
+ satisfying

lim
ε↓0

lim
Υ↑∞

∣∣∣d((1 + ε)Υ
)− d(Υ)

∣∣∣ = 0 (61)
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for example4,

d(Υ) = log
(
1 + log(1 + Υ)

)
, or d(Υ) =

1

2
log(1 + Υ). (62)

Assume that, as the cost Υ tends to infinity, capacity-achieving input distributions
escape to infinity. Also assume that when the only input constraint is

g(X) ≤ Υ0, with probability one (63)

the capacity is finite. Then,

lim
Υ↑∞

{
Cc(Υ) − d(Υ)

}
= lim

Υ↑∞

{
C(Υ) − d(Υ)

}
. (64)

Proof. Placing additional input constraints cannot increase capacity. Hence,

Cc(Υ) ≤ C(Υ)

so that the LHS of (64) cannot exceed its RHS. We now proceed to prove the reverse
inequality.

Let {Υn} ↑ ∞ and {Qn} ⊂ P(X ) satisfy

EQn [g(X)] ≤ Υn (65)

lim
n→∞

{
I(Qn;W ) − d(Υn)

}
= lim

Υ↑∞

{
C(Υ) − d(Υ)

}
(66)

and
lim

n→∞
Qn(K) = 0. (67)

By (67) it follows that for all sufficiently large n the probability Qn(Kc) is strictly
larger than zero and we can therefore define the conditional law Q̃n so that for any
Borel set A ⊂ X and any sufficiently large n

Q̃n(A) =
Qn(A ∩Kc)

Qn(Kc)
. (68)

Thus, under the priorQn, the probability measure Q̃n corresponds to the a-posteriori
distribution on the input conditional on x /∈ K.

Note that by the non-negativity of the cost function it follows that the cost as-
sociated with Q̃n is not appreciably larger than the one associated with Qn. Indeed,
if we define

Υ̃n =
Υn

Qn(Kc)
(69)

then the cost associated with Q̃n satisfies:

EQ̃n
[g(X)] ≤ 1

Qn(Kc)
EQn [g(X)]

≤ Υn

Qn(Kc)

4In this paper we shall only be interested in the case where d(Υ) = log(1 + log(1 + Υ)) but the
other example can be useful in other applications. See for example [4], [8].
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= Υ̃n. (70)

Let X be distributed according to Qn, and let the binary-valued random variable
E be defined by

E =

{
0 if X ∈ K
1 if X /∈ K . (71)

Note that the probability that E takes on the value 0 is Qn(K), which by (67) tends
to zero with n. We now have

I(Qn;W ) = I(X;Y )

= I(X,E;Y )

= I(E;Y ) + I(X;Y |E)

≤ H(E) +Qn(K)I(X;Y |E = 0) +
(
1 −Qn(K)

)
I(X;Y |E = 1)

= Hb

(
Qn(K)

)
+Qn(K)I(X;Y |E = 0) +

(
1 −Qn(K)

)
I(Q̃n;W )

≤ Hb

(
Qn(K)

)
+Qn(K)I(X;Y |E = 0) + Cc

(
Υ̃n

)
(72)

where Hb(·) denotes the binary entropy function, i.e.,

Hb(ξ) = ξ log
1

ξ
+ (1 − ξ) log

1

1 − ξ
, 0 < ξ < 1. (73)

By subtracting d(Υn) from both sides of (72) we obtain

I(Qn;W ) − d(Υn) ≤ Hb

(
Qn(K)

)
+Qn(K)I(X;Y |E = 0)

+
(
d(Υ̃n) − d(Υn)

)
+
(
Cc

(
Υ̃n

)− d(Υ̃n)
)
. (74)

We now consider the limiting behavior (as n → ∞) of both sides of the inequality
(74). Beginning with the LHS, we note that, by (66), it tends to lim{C(Υ)−d(Υ)}.

We now consider the RHS of (74). By inspecting the behavior of the binary
entropy function Hb(·) about zero, it follows from (67) that the first term tends to
zero. Similarly, since I(X;Y |E = 0) is bounded in Υ (by our assumption that the
capacity under the sole constraint that the input must lie in K is bounded in Υ),
it follows again from (67) that the second term also tends to zero. The third term
converges to zero by (61), (69), and (67). The only remaining term is the last one,
which gives us the inequality

lim
Υ↑∞

{
C(Υ) − d(Υ)

}
≤ lim

Υ̃↑∞

{
Cc(Υ̃) − d(Υ̃)

}
(75)

thus concluding the proof of the theorem.
It is interesting to note that an expansion dual to (72) is also useful in the study

of the redundancy-capacity theorem of universal source coding. See (without costs)
[9, Proof of Theorem 1].

For our multi-antenna fading channel, capacity is clearly bounded when the input
is only constrained to lie inside the radius-

√E0 Euclidean ball (this is even the case
when the receiver knows the realization of the fading matrix), thus demonstrating
that, by Theorem 4.10, if we could show that the capacity of our channel is attained
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by input distributions that escape to infinity, we would also deduce that — even
in the presence of noise — the constraint ‖X̃‖2 ≥ E0 does not preclude one from
achieving the fading number.

The proof of Theorem 4.6 will thus be concluded once we show that for our fading
channel, capacity can be achieved using input distributions that escape to infinity.
We next derive some general conditions that guarantee this property. Again, since
such conditions may be useful in other contexts, we state the conditions in fairly
general terms.

Theorem 4.11. Let W (·|·) be a channel over the input alphabet X and the output
alphabet Y. Let g : X → R

+ be some non-negative cost function, and let C(·) denote
the capacity-cost function associated with W (·|·) and g. Assume:

• As the cost approaches infinity, the capacity-cost function grows to infinity,
but only sub-linearly, i.e.,

lim
Υ↑∞

C(Υ) = ∞, lim
Υ↑∞

C(Υ)

Υ
= 0. (76)

• The relative entropy between the output laws corresponding to different channel
inputs of bounded cost is bounded, i.e.,

sup
g(x),g(x′)≤Υ0

D
(
W (·|x)∥∥W (·|x′)) <∞, 0 ≤ Υ0 <∞. (77)

(Note that this conditions implies — but is not equivalent to — the condition
that the capacity under the constraint that the inputs must lie in K is finite.)

Then, capacity achieving input distributions escape to infinity.

Proof. Here we prove the theorem under the additional Kuhn-Tucker like condition
that for every cost Υ∗ for which C(Υ∗) > 0, the capacity C(Υ∗) is achievable by
some input distribution Q∗ satisfying EQ∗ [g(X)] = Υ∗ and additionally satisfying

D
(
W (·|x)∥∥(Q∗W )(·))− υ∗g(x) = C(Υ∗) − υ∗Υ∗, Q∗-a.s. (78)

for some
C ′

+(Υ∗) ≤ υ∗ ≤ C ′
−(Υ∗) (79)

where C ′
+(Υ∗) and C ′

−(Υ∗) denote the right and left derivatives of the capacity-cost
function C(·) at Υ∗.

For an alternative proof that does not assume this condition see Appendix F.
Fix some Υ0 > 0 and let K = {x ∈ X : g(x) ≤ Υ0}. Let {Υ∗

n} ↑ ∞ be a sequence
of costs tending to infinity and assume that C(Υ∗

n) > 0. Let Q∗
n achieve C(Υ∗

n) and
satisfy

D
(
W (·|x)∥∥(Q∗

nW )(·))− υ∗ng(x) = C(Υ∗
n) − υ∗nΥ∗

n, Q∗
n-a.s. (80)

for some υ∗n satisfying
C ′

+(Υ∗
n) ≤ υ∗n ≤ C ′

−(Υ∗
n). (81)

We need to prove that
lim

n→∞
Q∗

n(K) = 0. (82)
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By possibly passing on to a subsequence, it follows that to prove this it suffices to
derive a contradiction to the assumption that there exists some q > 0 such that

Q∗
n(K) ≥ q > 0, n ≥ 1. (83)

We shall demonstrate the contradiction by studying the LHS of (80) and its RHS,
and by showing that (83) implies that for any x ∈ K the LHS of (80) is bounded in
n, which is in contradiction to the fact that the RHS of (80) must tend to infinity
with n.

We begin with a study of the RHS of (80). We first note that because C(Υ)
grows sub-linearly in Υ, (81) implies that

lim
n→∞

υ∗n = 0. (84)

We next show that the RHS of (80) must be unbounded. Indeed, by the concavity
of C(·), it follows (see for example the proof of [1, Lemma 3.1, Section 2.3]) that

C(Υ∗
n) − υ∗n · Υ∗

n = max
Υ:C(Υ)>0

{C(Υ) − υ∗n · Υ}
≥ {C(Υ) − υ∗nΥ}∣∣

Υ=1/υ∗
n

= C(1/υ∗n) − 1

→ ∞
where the limit follows by (84) and our assumption that the capacity-cost function
tends to infinity with the cost (76).

We next consider the LHS of (80) and show that the assumption (83) implies
that it is bounded in n. Fix then some x ∈ K. In view of (84) it follows that

lim
n→∞

υ∗n · g(x) = 0, x ∈ K. (85)

To show that for every x ∈ K the LHS of (80) is bounded it thus suffices to show
that for such x, the term D

(
W (·|x)‖(Q∗

nW )(·)) is bounded.
To this end we express the output distribution (Q∗

nW ) as

(Q∗
nW )(·) = Q∗

n(K)ν1(·) + (1 −Q∗
n(K))ν0(·) (86)

where for any measurable set B ⊂ Y

ν1(B) =
(Q∗

n ◦W )(K × B)

Q∗
n(K)

so that ν1 is the output distribution conditional on x ∈ K, and

ν0(B) =
(Q∗

n ◦W )(Kc × B)

1 −Q∗
n(K)

so that ν0 is the output distribution conditional5 on x /∈ K. Here (Q∗
n ◦W ) denotes

the joint distribution on X ×Y under the input law Q∗
n and a super-script c denotes

set complementation.

5Since Υn tends to infinity, this probability is not zero for all sufficiently large n. We limit
ourselves to such sufficiently large values of n.
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We now have

D
(
W (·|x)‖(Q∗W )(·)) = D

(
W (·|x)

∥∥∥Q∗
n(K)ν1(·) + (1 −Q∗

n(K))ν0(·)
)

≤ log
1

Q∗
n(K)

+D
(
W (·|x)‖ν1(·)

)
≤ log

1

q
+D

(
W (·|x)‖ν1(·)

)
= log

1

q
+D

(
W (·|x)

∥∥∥∥
∫
W (·|x′) dQ∗

n(x′|X ∈ K)

)

≤ log
1

q
+

∫
D
(
W (·|x)

∥∥W (·|x′)
)
dQ∗

n(x′|X ∈ K) (87)

≤ log
1

q
+ max

x,x′∈K
D
(
W (·|x)

∥∥W (·|x′)
)

<∞ (88)

thus demonstrating (along with (85)) that (83) implies that the LHS of (80) is
bounded. This leads to a contradiction because we have shown that the RHS of
(80) is unbounded.

To conclude the proof of Theorem 4.6 it is now only remains to check that the
assumptions of Theorem 4.6 imply that the fading channel satisfies the conditions
of Theorem 4.11. The condition E[‖H‖2

F] > 0 implies that channel capacity is
unbounded. Indeed, this condition guarantees that by spacing any finite number of
symbols sufficiently apart, we can achieve an arbitrarily small uncoded probability
of error. See [10, Section IV.B] for the details.

The condition E[‖H‖2
F] < ∞ guarantees that the capacity can only grow sub-

linearly in the power. Indeed, the sub-linear growth is guaranteed even if the receiver
has knowledge of the fading matrix, because this condition guarantees that the
power in HX grows at most linearly in Es, so that the presence of the additive noise
guarantees that capacity can grow at most logarithmically in Es. (The additional
condition h(H) > −∞ guarantees, of course, an even slower increase in capacity,
namely a double-logarithmic one.)

As to the relative entropy, we note that

max
‖x‖2,‖x′‖2≤Υ0

D
(
W (·|x)

∥∥W (·|x′)
)

= max
‖x‖2,‖x′‖2≤Υ0

∫ (∫
NC(Hx, σ2I;y) dPH(H)

)

· log

∫ NC(Hx, σ2I;y) dPH(H)∫ NC(Hx′, σ2I;y) dPH(H)
dµ(y)

≤ max
‖x‖2,‖x′‖2≤Υ0

∫
D
(
NC

(
Hx, σ2I

) ∥∥∥NC

(
Hx′, σ2I

))
dPH(H)

= max
x,x′∈K

1

σ2
E
[‖H(x − x′)‖2

]
≤ max

‖x‖2,‖x′‖2≤Υ0

1

σ2
‖x − x′‖2E

[‖H‖2
]

≤ 4Υ2
0

σ2
E
[‖H‖2

F

]
.
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We will now shortly summarize the proof of Theorem 4.6:

Proof. We proved Theorem 4.6 in two steps. In the first, see Lemma 4.7, we proved
that by restricting the minimum norm that the channel inputs may have, we can
mimic the limiting behavior of a channel without noise. That is,

χ(H) ≥ lim
Ẽs↑∞


 sup

‖X̃‖2≥E0

E[‖X̃‖2]≤Ẽs

I(X̃; HX̃) − log log
Ẽs

E0


 . (89)

In the second step we showed that, even in the presence of noise — let alone in
its absence — the fading number can be achieved with inputs that are additionally
constrained to lie outside a fixed energy ball. This was shown by demonstrating
that the capacity of the fading channel can be achieved by input distributions that
escape to infinity, and by showing that for such channels, the high SNR capacity
asymptotics can be achieved even subject to an additional minimum cost constraint.
The former claim was proved by proving general conditions for capacity achieving
input distributions to escape to infinity (see Theorem 4.11) and by verifying that
the fading channel satisfies these conditions (see the discussion following the proof
of Theorem 4.11). The latter claim about the capacity asymptotics of channel
with capacity achieving input distributions escaping to infinity was proved in The-
orem 4.10.

4.4.2 An Upper Bound on χ for Memoryless Fading

Having established Theorem 4.6 we can now upper bound I(X̃; HX̃) in (48) using
the bound (25). In this way we can obtain the following upper bound on the fading
number of memoryless fading channels:

Theorem 4.12. Consider a memoryless fading channel (20) of fading matrix H

satisfying 0 < E[‖H‖2
F] < ∞ and h(H) > −∞. Then the fading number χ(H) is

upper bounded by χu, where

χu = log πnR − log Γ(nR)

+ inf
A

sup
‖x̂‖=1

{
nRE

[
log ‖AHx̂‖2

]− h(AHx̂)
}

(90)

and where the infimum is over all non-singular nR × nR complex matrices A.

Proof. See Appendix G.

Note 4.3. Using Jensen’s inequality applied to the concave function log(·) one can
further upper bound (90) by

χu ≤ log πnR − log Γ(nR) + inf
A

sup
‖x̂‖=1

{
nR log E

[‖AHx̂‖2
]− h(AHx̂)

}
. (91)

This bound is generally not tight, but it is often much simpler to compute than (90).
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4.4.3 Memoryless SISO Systems

A lower bound to the fading number can be obtained from Theorem 4.6 by lower
bounding I(X̃; HX̃) using specific input distributions. For example, in the SISO
case we can obtain a lower bound from Theorem 4.6 by considering an input X̃ that
is circularly symmetric with log |X̃|2 being uniformly distributed between log E0 and
log Es. It turns out that the resulting lower bound on χ coincides with the upper
bound. Thus, for SISO channels we have a complete characterization of the fading
number. In fact, we can show that the fading number can be achieved even if the
average power constraint E[|X|2] ≤ Es is replaced with the peak power constraint
|X|2 ≤ Es.

Theorem 4.13. Consider a single-input single-output (SISO) memoryless fading
channel with complex fading variable H. Assume that E[|H|2] < ∞ and h(H) >
−∞. Then the limsup in (44) is also a liminf (i.e., the limit exists) and fading
number χ(H) is given by

χ(H) = log π + E
[
log |H|2]− h(H). (92)

Moreover, this fading number is achievable by circularly symmetric inputs X whose
log-magnitude log |X| is uniformly distributed over the interval [log xmin, 1/2 log Es]
for any xmin(Es) satisfying

lim
Es→∞

xmin = ∞.

and

lim
Es→∞

log xmin

log Es

= 0.

Proof. The fact that the RHS of (92) is an upper bound on χ(H) follows from
Theorem 4.12 by choosing the matrix A in (90) as the 1 × 1 identity matrix (i.e.,
the scalar 1).

To derive a lower bound on χ(H) we use Theorem 4.6 with the choice of X̃ being
a circularly symmetric random variable such that

log |X̃|2 ∼ Uniform [log E0, log Es]. (93)

Indeed, for this choice of X̃ we have:

I
(
X̃;HX̃

)
= h

(
HX̃

)− h
(
HX̃

∣∣ X̃)
= h

(
HX̃

)− E
[
log |X̃|2

]
− h(H)

≥ h
(
HX̃

∣∣H)− E
[
log |X̃|2

]
− h(H)

= E
[
log |H|2]+ h

(
X̃
)− E

[
log |X̃|2

]
− h(H)

= log 2π + h
(|X̃|)− E

[
log |X̃|

]
+ E

[
log |H|2]− h(H)

= log 2π + h
(
log |X̃|)+ E

[
log |H|2]− h(H)

= h
(
log |X̃|2)+ log π + E

[
log |H|2]− h(H) (94)

= log log
Es

E0

+ log π + E
[
log |H|2]− h(H). (95)
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Here the first equality follows from the definition of mutual information; the subse-
quent equality from the behavior under scaling of the differential entropy of com-
plex random variable; the following inequality because conditioning cannot increase
differential entropy; the following equality by Expression (325) for the differential
entropy of a circularly symmetric random variables; the subsequent equality by re-
lating the differential entropy of a positive random variable to that of its logarithm
as in Lemma 6.15; the following equality by the behavior of differential entropy
under scaling of a real random variable; and the final equality by evaluating the
differential entropy using (93).

The nature of the input distributions X that achieve χ(H) follows from (93) and
Lemma 4.7.

Note 4.4. It is interesting to note that the fading number is achievable by input
distributions of a law that does not depend on the fading law. This observation can
be useful in the analysis of fading channels with some side information available at
the receiver and/or the transmitter; see Proposition 4.17.

Note 4.5. Note also that the achievability of the fading number with the above
input distributions demonstrates that for SISO channels, the fading number does
not depend on whether average or peak power constraints are imposed.

Corollary 4.14. For Ricean fading, i.e., memoryless SISO Gaussian fading, the
fading number is given (in nats) by:

χ
(NC(d, 1)

)
= −1 + log |d|2 − Ei(−|d|2) (96)

where Ei(·) denotes the exponential integral function defined in (217). In the special
case where d = 0, i.e., Rayleigh fading, the fading number is thus given by:

χ
(NC(0, 1)

)
= −1 − γ (97)

where γ ≈ .577 denotes Euler’s constant.

Proof. Follows directly from Theorem 4.13 by evaluating the differential entropy
of a complex Gaussian random variable and by evaluating the expectation of the
logarithm of a non-central chi-square random variable (215).

With the aid of Lemma 4.7 we can also obtain an asymptotically tight firm lower
bound to the capacity of the Ricean channel:

Corollary 4.15. Let C(Es/σ
2) denote the capacity of a memoryless SISO Ricean

fading channel of fading law NC(d, 1), average power Es, and additive Gaussian noise
variance σ2. Then,

C(Es/σ
2) ≥ hmax(Es/Emin) + χ

(NC(d, 1)
)− log

(
1 +

σ2

Emin

)
, 0 < Emin < Es (98)

where hmax(Es/Emin) is the maximum differential entropy a real random variable W
can have if it is to satisfy

W ≥ log Emin and E
[
eW
] ≤ Es (99)
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namely

hmax(Es/Emin) = log(−Ei(−ζ)) + ζ
Es

Emin

(100)

where ζ is the solution to the equation

e−ζ

−Ei(−ζ) = ζ
Es

Emin

. (101)

Note 4.6. A looser but simpler lower bound follows from the bound

hmax(Es/Emin) ≥ log log
Es

Emin

(102)

which can be verified by considering the differential entropy h(W ) of a random
variable W that is uniformly distributed over the interval [log Emin, log Es] and that
thus satisfies the constraints (99).

Proof. Fix some 0 < Emin < Es and consider a circularly symmetric random variable
X such that

|X|2 ≥ Emin, E
[|X|2] = Es, h(log |X|2) = hmax(Es/Emin). (103)

Then,

I(X;HX + Z) ≥ I(X;HX) − sup
|x|2=Emin

{
h(Hx+ Z) − h(Hx)

}
= I(X;HX) −

(
log
(
πe(Emin + σ2)

)− log(πeEmin)
)

= I(X;HX) − log

(
1 +

σ2

Emin

)

≥ h
(
log |X|2)+ χ(NC(d, 1)) − log

(
1 +

σ2

Emin

)

= hmax(Es/Emin) + χ(NC(d, 1)) − log

(
1 +

σ2

Emin

)
.

Here the first inequality follows from Lemma 4.7; the subsequent equality follows by
the explicit evaluation of the differential entropy of the Gaussian distribution; the
subsequent equality by direct calculation; the following inequality by lower bounding
h(HX) by h(HX|H) as in the steps leading to (94); and the final equality by our
choice of log |X|2 as having the max-entropy distribution.

The expression for hmax(Es/Emin) follows by noting that the density that achieves
hmax(Es/Emin) is of the form [11, Theorem 11.1.1]

1

c
· e−λew

, w ≥ log Emin. (104)

Theorem 4.13 gives an exact expression for the right hand side (RHS) of (48) for
SISO channels and demonstrates that the limsup is in fact a limit. While the theorem
is stated for complex channels, it can also be used to obtain a useful relationship for
real channels. This relation will be useful in the analysis of SIMO channels:
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Corollary 4.16. Let |A| be a non-negative real random variable satisfying E[|A|2] <
∞ and h(|A|) > −∞. Then

lim
Ẽs↑∞


 sup

|X̃|2≥E0

E[|X̃|2]≤Ẽs

I(|X̃| ; |A| · |X̃|) − log log
Ẽs

E0


 = E[log |A|] − h(|A|) − log 2. (105)

Proof. This follows by Theorem 4.6 and Theorem 4.13 applied to the fading H =
|A|ejΘ where Θ is independent of |A| and uniformly distributed over the interval
[−π, π). For this circularly symmetric law of H no information can be passed via
the phase so that the limits in (105) and (48) agree. They are consequently both
given by Theorem 4.13 as

log π + E
[
log |H|2]− h(H) = E[log |A|] − h(|A|) − log 2 (106)

where the relationship h(H) = log 2π+h(|A|)+E[log |A|] follows from Lemma 6.16,
which relates the differential entropy of a complex random variable (in our case H)
to the joint differential entropy of its magnitude and phase (in our case |A| and Θ,
which are independent); see (325)–(326).

An alternative proof, which does not require embedding the real channel in a
complex one, can be based on choosing inputs of energies with logarithms that are
uniformly distributed on the interval [log E0, log Es] and then invoking Lemma 6.10.

4.4.4 Memoryless SISO Systems with Side-Information

Theorem 4.13 extends to situations where the receiver (but not transmitter) has
some side information regarding the realization of the fading. This setting will be
explored in greater detail in Theorem 4.30 but we send forward the following simple
case, which turns out to be instrumental to the analysis of the more general case.

Proposition 4.17. Let H be some complex random variable satisfying E[|H|2] <∞.
Assume that the pair (H,S) is independent of the additive noise Z ∼ NC(0, σ2) and
that the joint law of (H,S, Z) does not depend on the channel input X. Further
assume h(H|S) > −∞. Then

lim
Es/σ2↑∞

{
sup

E[|X|2]≤Es

I(X;HX + Z, S) − log log
Es

σ2

}
= log π + E

[
log |H|2]− h(H|S)

(107)
i.e.,

χ(H|S) = log π + E
[
log |H|2]− h(H|S). (108)

This fading number is achievable by input distributions of the form given in Theo-
rem 4.13.

Note 4.7. Under fairly general conditions (108) continues to be valid even if the
state is also known to the transmitter. This is, for example, the case if S takes value
in a finite set.
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Note 4.8. It is interesting to compare the fading numbers in the presence of receiver
side-information (108) and in its absence (92). The side information increases the
fading number by the mutual information I(H;S).

Proof. The proof relies heavily on the fact that the fading number of a SISO system
can be achieved by input distributions that do not depend on the fading law. The
proof of this proposition is given in Appendix H. Here we merely give a plausibility
argument.

Choose X to be distributed according to the law specified in Theorem 4.13. Then
for any realization S = s we have by Theorem 4.13 (applied to fading law H|S = s)
that at high SNR

I(X;HX + Z, S = s) = I(X;HX + Z|S = s) (109)

≈ log log
Es

σ2
+ log π + E

[
log |H|2|S = s

]− h(H|S = s)

(110)

from which the result follows by taking expectations with respect to S.
The technical problem with this argument is in interchanging the order of taking

the expectation with respect to S with the taking of the limit as Es/σ
2 tends to

infinity.

Corollary 4.18. Assume that H ∼ NC(d, 1) and that the pair (H,S) are jointly
Gaussian and jointly circularly symmetric. Let ε2est > 0 denote the mean squared
error in estimation H from S. Then the fading number in the presence at the
receiver of the side information S is given by:

χ(H|S) = −1 + log
|d|2
ε2est

− Ei(−|d|2). (111)

Proof. Follows directly from Proposition 4.17 and Corollary 4.14 by noting that

I(H;S) = log
1

ε2est
. (112)

4.4.5 Memoryless MISO Systems and Beam-Forming

A different extension of Theorem 4.13 is to MISO fading channels. With the aid
of Theorem 4.13 and the upper bound of Theorem 4.12 we can now also compute
the fading number of memoryless MISO fading channels. As a by-product we shall
infer that — in the sense that it allows one to achieve the fading number — beam-
forming is asymptotically optimal. By beam-forming we refer here to choosing some
fixed deterministic unit vector x̂ and limiting the inputs to vectors in C

nT that
are co-linear with it. Such an approach can greatly reduce the complexity of the
code/decoder.

Theorem 4.19. Consider a MISO memoryless fading channel with row fading vec-
tor HT, where H is random column vector in C

nT satisfying 0 < E[‖H‖2] < ∞ and
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h(H) > −∞. Then the limsup in (44) is also a liminf (i.e., the limit exists) and the
fading number χ(HT) is given by

χ(HT) = sup
‖x̂‖=1

{
log π + E

[
log |HTx̂|2]− h(HTx̂)

}
. (113)

Moreover, this fading number is achievable by inputs that can be expressed as the
product of a deterministic unit vector in C

nT and a circularly symmetric scalar
complex random variable of a law specified in Theorem 4.13.

Proof. If the channel input is of the form X · x̂ where x̂ is a deterministic unit-vector
and X is a scalar complex random variable satisfying E[|X|2] < Es, then the channel
output Y is a scalar random variable that can be expressed as

Y = (HTx̂)X + Z

i.e., as the output of a SISO fading channel of fading HTx̂ and hence (by Theo-
rem 4.13) of fading number

χ(HTx̂) = log π + E
[
log |HTx̂|2]− h(HTx̂).

Since x̂ can be arbitrary, this demonstrates that the RHS of (113) is a lower bound to
χ(HT). A priori, it is not clear that this bound is tight, since there could ostensibly
be other inputs that are not of the form X · x̂ and that give rise to higher mutual
informations and perhaps also to higher fading numbers. This, however, is ruled out
by the upper bound on the fading number χ(HT) of Theorem 4.12 (applied to the
fading matrix H = HT with the matrix A be chosen as the 1 × 1 identity matrix),
which coincides with the RHS of (113).

Corollary 4.20. Consider a memoryless Gaussian MISO fading channel where the
fading matrix is a row vector HT, where H ∼ NC(d,K), det K 6= 0, H ∈ C

nT. Then
the fading number is given by

χ(HT) = −1 + log d2
∗ − Ei(−d2

∗) (114)

where

d∗ = max
‖x̂‖=1

|E[HT] x̂|√
Var(HTx̂)

. (115)

Proof. Follows directly from Theorem 4.19 and Corollary 4.14 because for any
(deterministic) beam direction x̂ the concatenation of the beam-forming mapping
C 3 x 7→ x·x̂ ∈ C

nT and the fading channel result in the mapping x 7→ HT(x·x̂)+Z,
which corresponds to a SISO Ricean channel.

4.4.6 Memoryless SIMO Fading

For memoryless SIMO fading, the capacity achieving input distribution is circu-
larly symmetric. Indeed, since mutual information over such channels is invariant
under deterministic rotation of the input distribution, the concavity of mutual in-
formation implies that there is no loss in optimality in considering only circularly
symmetric input distributions. This is true also in the presence of side information.
Consequently we have:
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Proposition 4.21. Consider a memoryless fading system where the fading vector
H takes value in C

nR and satisfies h(H) > −∞ and E[‖H‖2] < ∞. Assume that
the additive noise vector Z has a NC(0, σ2I) distribution. Then the fading number
χ(H) is given by

χ(H) = I
(
Θ ; HejΘ) + E[log ‖H‖] − h

(‖H‖ ∣∣ ĤejΘ
)− log 2 (116)

where Θ is independent of H and uniformly distributed over the interval [−π, π),
and Ĥ = H/‖H‖. Alternatively, it can be expressed as

χ(H) = hλ(Ĥe
jΘ) − h(H) + nRE

[
log ‖H‖2

]− log 2 (117)

where hλ is the differential entropy on the sphere, see (329).

Proof. Let X = |X|ejΘ have a circularly symmetric distribution so that |X| and Θ
are independent and Θ is uniformly distributed over [−π, π). Then,

I(X;HX) = I
(
X ; ĤejΘ

)
+ I
(
X ; ‖H‖ · |X| ∣∣ĤejΘ

)
= I
(
Θ ; ĤejΘ

)
+ I
(|X| ; ĤejΘ

∣∣Θ)
+ I
(|X| ; ‖H‖ · |X| ∣∣ĤejΘ

)
+ I
(
Θ ; ‖H‖ · |X| ∣∣ĤejΘ, |X|)

= I
(
Θ ; ĤejΘ

)
+ I
(|X| ; ‖H‖ · |X| ∣∣ĤejΘ

)
+ I
(
Θ ; ‖H‖ ∣∣ĤejΘ

)
= I
(
Θ ; HejΘ

)
+ I
(|X| ; ‖H‖ · |X| ∣∣ĤejΘ

)
.

The result (116) now follows by analyzing the asymptotics of the second term on
the right using a conditional version of Corollary 4.16, which follows from Proposi-
tion 4.17 in much the same way that Corollary 4.16 follows from Theorem 4.13.

To derive (117) from (116):

χ = I(Θ;HejΘ) − h(‖H‖|ĤejΘ) + E[log ‖H‖] − log 2

= I(Θ; ‖H‖) + I(Θ; ĤejΘ|‖H‖) − h(‖H‖|ĤejΘ) + E[log ‖H‖] − log 2

= hλ(Ĥe
jΘ|‖H‖) − hλ(Ĥe

jΘ|Θ, ‖H‖) − h(‖H‖|ĤejΘ)

+ E[log ‖H‖] − log 2

= hλ(Ĥe
jΘ|‖H‖) − h(‖H‖|ĤejΘ) − hλ(Ĥ|‖H‖) + E[log ‖H‖] − log 2

= hλ(Ĥe
jΘ) − h(‖H‖) − hλ(Ĥ|‖H‖) + E[log ‖H‖] − log 2

= hλ(Ĥe
jΘ) − h(‖H‖, Ĥ) + E[log ‖H‖] − log 2

= hλ(Ĥe
jΘ) − h(H) + (2nR − 1)E[log ‖H‖] + E[log ‖H‖] − log 2

= hλ(Ĥe
jΘ) − h(H) + nRE

[
log ‖H‖2

]− log 2

where we use Lemma 6.17 for the required change of coordinates.

Note 4.9. This result extends immediately to the case where the receiver has some
side information S such that (H,S) are independent of the input and additive noise.
In that case (117) should be replaced with

χ(H) = hλ(Ĥe
jΘ|S) − h(H|S) + nRE

[
log ‖H‖2

]− log 2 (118)

thus demonstrating that the increase in the fading number may be smaller than
I(H;S).
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Corollary 4.22. Consider a zero-mean memoryless Gaussian SIMO fading channel
of a non-singular nR × nR covariance matrix K, i.e.,

H ∼ NC(0,K) , det K 6= 0. (119)

Then the fading number χ(NC(0,K)) is given by

χ
(NC(0,K)

)
= nRψ(nR) − nR − log Γ(nR), det K 6= 0. (120)

where ψ(·) denotes Euler’s psi function (219).

Proof. By Lemma 4.5 the fading number is unchanged when H is pre-multiplied
by a non-singular matrix, so that we might as well consider the case where the
covariance matrix K is the identity, and the components of H are therefore IID
NC(0, 1). In this case I(Θ;HejΘ) = 0, and H is isotropically distributed so that
h(‖H‖ ∣∣ĤejΘ) = h(‖H‖). Denoting by cnR

= 2πnR/Γ(nR) the surface area of the
nR-dimensional sphere in C

nR we have from (116):

E[log ‖H‖] − h
(‖H‖)− log 2 = E[log ‖H‖] − (h(‖H‖) + log cnR

)
+ log

cnR

2

= nRE
[
log ‖H‖2

]− h(H) + log
cnR

2

= nRE
[
log ‖H‖2

]− nR log πe+ log
cnR

2
= nRψ(nR) − nR − log Γ(nR).

Here the second equality follows by Lemma 6.17 because H is isotropically dis-
tributed, the subsequent equality by evaluating h(H), and the final equality by
the expression for the expected logarithm of a central chi square random variable
(215)–(218).

Note 4.10. Using the approximation

√
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n (121)

one can show that

χ(NC(0,K)) = nRψ(nR) − nR − log Γ(nR)

=
1

2
log

nR

2π
− 1

2
− 1

6nR

+ O

(
1

n2
R

)
, det K 6= 0 (122)

which can be compared to the results of Sengupta and Mitra [12] who studied this
scenario for K being the identity matrix and under the approximation nR � 1. The
approximation they got using the Laplace integration method for nR � 1 is

C ≈ 1

2
log

nR

2π
+ log log SNR. (123)

But for the constant 1/2, the expression (123) and (122) agree as nR → ∞.
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4.4.7 Memoryless MIMO Rotation Commutative Fading

A different extension of Theorem 4.13 is to multi-input multi-output (MIMO) fading
matrices that are of a law with a particular kind of symmetry that we call “rotation
commutative”.

Definition 4.23. We shall say that the law of a random n×n matrix H is rotation
commutative if for any deterministic unitary n × n matrix V the law of VH is
identical to the law of HV.

For such laws we can extend Theorem 4.13 as follows:

Proposition 4.24. Consider a memoryless fading channel where the number of
receive antennae and transmit antennae are equal (nR = nT) and where the fading
matrix H is rotation-commutative. Further assume h(H) > −∞ and E[‖H‖2

F] <∞.
Then the limsup in (44) is also a liminf (i.e., the limit exists) and the fading number
χ(H) is given by:

χ(H) = log
2πnR

Γ(nR)
− log 2 + nRE

[
log ‖Hê‖2

]− h(Hê) (124)

where ê is any deterministic unit-vector in C
nT and cnR

= 2πnR/Γ(nR) is the surface
area of a unit-sphere in C

nR. Moreover, this fading number is achievable by inputs
that can be expressed as the product of a uniformly distributed random vector on
the unit nT-sphere multiplied by an independent circularly symmetric scalar random
variable of a law specified in Theorem 4.13.

Proof. This result can be viewed as a special case of an analogous result for channels
that are “rotation commutative in the generalized sense”, namely Theorem 4.28.
The proof is therefore omitted.

Corollary 4.25. Consider memoryless Gaussian fading of the form H = dI + H̃

where nR = nT = m, the matrix I denotes the identity matrix, d ∈ C is deterministic,
and the components of H̃ are IID NC(0, 1). Then the fading number is given by

χ = mgm(|d|2) −m− log Γ(m) (125)

where the function gm(z) is defined in (216).

Proof. Follows from (124) by direct computation of the differential entropy of the
multi-variate Gaussian distribution and of the expectation of the logarithm of a non-
central chi-square distributed random variable with 2m degrees of freedom (215).

Note 4.11. If H is a random nR × nT matrix of the form

H = D + H̃ (126)

where D is a deterministic nR × nT matrix and H̃ is a random nR × nT matrix of
IID NC(0, 1) components, then

g1

(‖D‖2
)− 1 ≤ χ(H) ≤ nR · gnR

(‖D‖2
)− nR − log Γ(nR) (127)

where ‖D‖ denotes the matrix norm as defined in (13). The upper bound follows
from Theorem 4.12 applied with A being the identity matrix, and the lower bound
follows by beam-forming at the transmitter and linear combining at the receiver.
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Definition 4.26. We shall say that the nR × nT random matrix H is rotation
commutative in the generalized sense if the following two conditions hold:

• For any deterministic unitary nT × nT matrix Vt there exists an nR × nR

deterministic unitary matrix Vr such that

VrH ≡ HVt (128)

where ≡ stands for “equal in law”;

• For any deterministic unitary nR × nR matrix Vr there exists a deterministic
unitary nT × nT matrix Vt such that (128) holds.

The following lemma lists some of the properties that will be useful for the
analysis of the fading number of such matrices:

Lemma 4.27. Let H be rotation commutative in the generalized sense. Then the
following two statements hold:

• If X̂ ∈ C
nT is an isotropically distributed random vector that is independent

of H, then HX̂ ∈ C
nR is isotropically distributed.

• If ê, ê′ ∈ C
nT are two deterministic unit vectors, then

‖Hê‖ ≡ ‖Hê′‖, ‖ê‖ = ‖ê′‖ = 1 (129)

h
(
Hê
)

= h
(
Hê′), ‖ê‖ = ‖ê′‖ = 1. (130)

Proof. We shall prove the first part of the lemma by showing that for any determin-
istic nR ×nR matrix Vr the law of VrHX̂ is identical to the law of HX̂. To this end,
let Vt be such that VrH ≡ HVt. Then

VrHX̂ ≡ HVtX̂

≡ HX̂

where the second equivalence follows because X̂ is isotropically distributed.
To prove the second claim let Vê 7→ê′ be some deterministic unitary matrix sat-

isfying Vê 7→ê′ ê = ê′. Let U be a deterministic nT × nT unitary matrix such that
UH ≡ HVê 7→ê′ . Thus,

Hê′ = HVê 7→ê′ ê

≡ UHê.

The lemma now follows by noting that both the L2 norm of a random vector and its
differential entropy are invariant with respect to unitary matrix multiplication.

We are now ready to generalize Proposition 4.24 to fading matrices that are
rotation commutative in the generalized sense:
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Theorem 4.28. Consider a memoryless fading channel where the fading matrix H

is rotation commutative in the generalized sense. Further assume h(H) > −∞ and
E[‖H‖2

F] < ∞. Then the limsup in (44) is also a liminf (i.e., the limit exists) and
the fading number χ(H) is given by:

χ(H) = log
2πnR

Γ(nR)
− log 2 + nRE

[
log ‖Hê‖2

]− h(Hê) (131)

where ê is any deterministic unit-vector in C
nT and cnR

= 2πnR/Γ(nR) is the surface
area of a unit-sphere in C

nR. Moreover, this fading number is achievable by inputs
that can be expressed as the product of a uniformly distributed random vector on
the unit nT-sphere multiplied by an independent circularly symmetric scalar random
variable of a law specified in Theorem 4.13.

Proof. The fact that the RHS of (131) is an upper bound to χ(H) follows directly
from Theorem 4.12 applied with A chosen as the identity matrix. .

To derive a lower bound, let X = X̂ · ‖X‖ be isotropically distributed with
log ‖X‖2 uniformly distributed over the interval [log E0, log Es] and independent of
the Haar distributed unit vector X̂ = X/‖X‖. Let ê be an arbitrary unit vector in
C

nT . Using the chain rule we now have

I(X; HX) = I(‖X‖; HX) + I
(
X̂; HX

∣∣ ‖X‖). (132)

The term I(‖X‖; HX) can be written as I(‖X‖; (HX̂) · ‖X‖). But (HX̂) is indepen-
dent of ‖X‖ and isotropically distributed, so that

I(‖X‖; HX) = I(‖X‖; ‖Hê‖ · ‖X‖) (133)

= log log
Es

E0

+ E[log ‖Hê‖] − h(‖Hê‖) − log 2 + o(1)

where the last equality follows by Corollary 4.16.
We now turn to the second term on the RHS of (132).

I
(
X̂; HX

∣∣ ‖X‖) = I
(
X̂; HX̂ · ‖X‖ ∣∣ ‖X‖) (134)

= I(X̂; HX̂)

= h(HX̂) − h(HX̂|X̂)

= h(‖Hê‖) + log cnR
+ (2nR − 1)E[log ‖Hê‖] − h(Hê)

where the last equality follows by Lemma 6.17 because HX̂ is isotropically dis-
tributed and because ‖HX̂‖ ≡ ‖Hê‖.

The theorem now follows from (132), (133), and (134).

4.5 On the Fading Number of Fading with Memory

From Lemma 4.3 we obtain immediately the following upper bound on the fading
number.

Theorem 4.29. Let the side information {Sk} and fading process {Hk} satisfy the
assumptions of Theorem 4.1, and let the additive noise be spatially and temporally
Gaussian noise. Then

χ
({Hk}|{Sk}

) ≤ χ
({Hk}

)
+ I
({Hk}; {Sk}

)
(135)
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≤ χIID(H1) + h(H1) − h
({Hk}|{Sk}

)
(136)

where χIID(H1) denotes the fading number in the memoryless fading case with equal
marginal and no side information, and where

I
({Hk}; {Sk}

)
, lim

n↑∞
1

n
I(Hn

1 ;Sn
1 ); (137)

h
({Hk}|{Sk}

)
, lim

n↑∞
1

n
h(Hn

1 |Sn
1 ). (138)

For SISO systems, this bound is tight:

Theorem 4.30. Consider a SISO system where the side information {Sk} and
fading process {Hk} satisfy the assumptions of Theorem 4.1, and let the additive
noise be spatially and temporally Gaussian noise. Then the limsup in (44) is also a
liminf (i.e., the limit exists) and the fading number χ({Hk}|{Sk}) is given by

χ({Hk}|{Sk}) = log π + E
[
log |H1|2

]− h({Hk}|{Sk}). (139)

Moreover, this fading number is achievable by IID input distributions of marginals
of the form specified in Theorem 4.13.

Proof. In view of Theorem 4.29 it suffices to demonstrate that the proposed fading
number is achievable. Here we shall present the main ingredients of the proof and
leave some of the technical details for Appendix I.

Let {Xk} be IID circularly symmetric random variables with

log |Xk|2 ∼ Uniform[log x2
min, log Es]. (140)

Our proof will hinge on the fact that if log x2
min grows sub-linearly in log Es to infinity,

then this input distribution achieves the fading number of any memoryless SISO
channel with any side information, and on the fact that this input distribution allows
us to “identify” the channel, in the sense that from past inputs and past outputs
one can ever more accurately estimate past fading levels. The details follow:

Fix some (large) positive integer κ and use the chain rule and the non-negativity
of mutual information to obtain:

1

n
I
(
Xn;Y n,Sn

)
=

1

n

n∑
k=1

I
(
Xk;Y

n,Sn|Xk−1
)

≥ 1

n

n−κ∑
k=κ+1

I
(
Xk;Y

n,Sn|Xk−1
)
.

We shall now obtain a firm bound on I
(
Xk;Y

n,Sn|Xk−1
)

for κ + 1 ≤ k ≤ n − κ.
By letting n→ ∞ we shall deduce that this firm lower bound is also a lower bound
on the limiting mutual information.

Consider then some κ+ 1 ≤ k ≤ n− κ. Then because {Xk} are IID

I
(
Xk;Y

n,Sn|Xk−1
)

= I
(
Xk;Y

n,Sn, Xk−1
)

≥ I
(
Xk;Yk, Y

k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ

)
= I
(
Xk;Yk, Y

k−1
k−κ , X

k−1
k−κ, H

k−1
k−κ,S

k+κ
k−κ

)− ε
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= I
(
Xk;Yk, H

k−1
k−κ,S

k+κ
k−κ

)− ε

= I
(
Xκ+1;Yκ+1, H

κ
1 ,S

2κ+1
1

)− ε

= I
(
Xκ+1;Yκ+1

∣∣Hκ
1 ,S

2κ+1
1

)− ε, κ+ 1 ≤ k ≤ n− κ (141)

where the equality before last follows from stationarity and where ε, which is given
by

ε = I
(
Xk;Yk, Y

k−1
k−κ , X

k−1
k−κ, H

k−1
k−κ,S

k+κ
k−κ

)− I
(
Xk;Yk, Y

k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ

)
(142)

will be shown in Appendix I to tend to zero as x2
min ↑ ∞. In fact, that is where we

use the fact that the proposed input distribution allows us to “identify” the channel.
Returning to the RHS of (141) we can now view the term

I
(
Xκ+1;Yκ+1

∣∣Hκ
1 ,S

2κ+1
1

)
as the mutual information across a memoryless fading channel in the presence of the
side information (

Hκ
1 ,S

2κ+1
1

)
.

Thus, using Proposition 4.17, we obtain that the fading number

log π + E
[
log |H1|2

]− h
(
Hκ+1

∣∣Hκ
1 ,S

2κ+1
1

)
is achievable. The proof will now be concluded by showing that

lim
κ→∞

h
(
Hκ+1

∣∣Hκ
1 ,S

2κ+1
1

) ≤ h
({Hk}|{Sk}

)
. (143)

(There is, in fact, equality in the above, but we only need the inequality.) This
follows from the inequality

1

κ
h
(
Hκ

1

∣∣Sκ
1

)
=

1

κ

κ∑
k=1

h
(
Hk

∣∣Hk−1
1 ,Sκ

1

)
≥ h

(
Hκ+1|Hκ

1 ,S
2κ+1
1

)
(144)

which holds by stationarity and because conditioning cannot increase differential
entropy:

h
(
Hk

∣∣Hk−1
1 ,Sκ

1

)
= h

(
Hκ+1

∣∣Hκ
κ−k+2 , S

2κ−k+1
κ−k+2

)
≥ h

(
Hκ+1|Hκ

1 ,S
2κ+1
1

)
, 0 ≤ k ≤ κ+ 1.

Note 4.12. The key to the derivation of the fading number for SISO systems with
memory is in having an input distribution that satisfies two conditions: firstly, ir-
respective of the channel law and of any side information, it achieves the fading
number of any memoryless SISO channel, and secondly, it allows us to identify the
channel, so that from past inputs and outputs one can arbitrarily well estimate
the past fading level. Such input distributions can clearly not be found for gen-
eral MIMO channels, and hence the difficulty in evaluating their fading number.
Note, however, that the same input distribution we discussed for SISO channels
also works for SIMO channels and also allows for their identification. Consequently,
Theorem 4.13 can be extended to such channels.
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Corollary 4.31. Consider a SISO fading process {Hk} such that for some specular
component d ∈ C the process {Hk − d} is a zero-mean unit-variance circularly
symmetric stationary and ergodic complex Gaussian process whose spectrum is of
continuous part F ′(λ), −1/2 ≤ λ ≤ 1/2. Then

χ
({Hk}|{Sk}

)
= log |d|2 − Ei(−|d|2) − 1 + log

1

ε2MSE

+ I({Hk}; {Sk}) (145)

where ε2MSE > 0 denotes the minimum mean squared-error in predicting the present
fading from its past (assumed positive)

ε2MSE = exp

{∫ 1/2

−1/2

logF ′(λ) dλ

}
(146)

and where the mutual information rate is assumed finite.

Proof. Follows from Theorem 4.30 by evaluating the expectation of the logarithm of
a non-central chi square random variable as in (215) and by expressing the entropy
rate of a Gaussian process in terms of the minimum mean squared error in estimating
its present value from its past.

4.6 Non-Asymptotic Bounds

4.6.1 Rayleigh Fading Channel

The memoryless SISO Rayleigh fading channel corresponds to the general memo-
ryless fading model (20) in the special case where the random matrix H is a scalar
NC(0, 1) random variable. The capacity of this channel was studied in [13] and [10].
Taricco and Elia [13] derived a lower bound on capacity and also argued that at
high SNR capacity grows double-logarithmically in the SNR. Abou-Faycal et. al.
showed that for any given SNR, capacity is achieved by an input distribution of a
finite number of mass points, and they were thus able to express capacity as a finite-
dimensional (non-concave) optimization problem over the locations and weights of
the mass points. This allowed for an exact calculation of channel capacity at low
SNR, but not at high SNR where the number of mass points becomes large and the
optimization problem, while finite dimensional, becomes intractable.

Here we shall use (25) in order to obtain the upper bound

C ≤ inf
α,β′>0

inf
δ′≥0

{
− 1 + α log β′ + log Γ

(
α,
δ′

β′

)
+

1 + Es/σ
2

β′ +
δ′

β′

+ (1 − α)
(
log δ′ − eδ′ · Ei(−δ′)

)}
. (147)

To this end we first note that conditional on the input X = x, the channel output
Y has a NC(0, |x|2 + σ2) distribution, so that |Y |2 has an exponential distribution
of mean |x|2 + σ2. Consequently,

h(Y |X = x) = log
(
πe(|x|2 + σ2)

)
(148)

E
[|Y |2|X = x

]
= |x|2 + σ2 (149)

E
[
log(|Y |2 + δ)|X = x

]
= log δ − e

δ
|x|2+σ2 · Ei

(
− δ

|x|2 + σ2

)
(150)
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where the last equality follows from [14, 4.337 (2)]. It thus follows from (25) that

I(Q;W ) ≤ −1 + α log
β

δ
+ log Γ

(
α,
δ

β

)
+

Es + σ2 + δ

β

+ EQ

[
log

δ

|X|2 + σ2
− (1 − α)e

δ
|X|2+σ2 · Ei

(
− δ

|X|2 + σ2

)]
(151)

≤ −1 + α log
β

δ
+ log Γ

(
α,
δ

β

)
+

Es + σ2 + δ

β

+ sup
x

{
log

δ

|x|2 + σ2
− (1 − α)e

δ
|x|2+σ2 · Ei

(
− δ

|x|2 + σ2

)}
(152)

= −1 + α log
β

δ
+ log Γ

(
α,
δ

β

)
+

Es + σ2 + δ

β

+ log
δ

σ2
− (1 − α)e

δ
σ2 · Ei

(
− δ

σ2

)
, α, β > 0, δ ≥ 0 (153)

where the final equality follows because for every α > 0 the function

R
+ 3 w 7→ logw − (1 − α)ew · Ei(−w)

is monotonically increasing in w. The inequality (147) now follows from (153) upon
substituting

δ′ =
δ

σ2
, β′ =

β

σ2
. (154)

Figure 4.1 depicts the upper bound (147) on channel capacity. For reference we
also plot the cruder but simpler upper bound that results from choosing δ′ = 0; the
asymptotic approximation (45), (97); the lower bound of [13]; the exact expression
of [10] in the region where it is amenable to numerical calculation; and the capacity
log(1 + SNR) of an additive white Gaussian noise channel of equal SNR.

It is interesting to note the dramatic difference between the high SNR behavior
of channel capacity in the absence of side information (97)

C = log log
Es

σ2
− 1 − γ + o(1) (155)

and in its presence (when perfect) [15]

CPSI = log
Es

σ2
− γ + o(1). (156)

4.6.2 Multi-Antenna Rayleigh Fading Channel

Next, we consider a Rayleigh fading channel with nT transmit and nR receive an-
tennae, i.e., the channel (20) specialized to the case where H is a complex nR × nT

random matrix of IID NC(0, 1) components. We shall derive an upper bound on
the capacity C whose difference from capacity will shrink to zero as SNR ↑ ∞ and
whose ratio to capacity will tend to one as SNR ↓ 0. It is based on an application
of (25) with A = I and is given by

C ≤ inf
α,β′>0

inf
δ′≥0

{
− nR + nRψ(nR) − log Γ(nR) + α log β′
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Figure 4.1: Bounds on the capacity of a Rayleigh fading channel. Depicted are the
upper bound of (147); the upper bound that results from the sub-optimal choice of
δ′ = 0; the lower bound of Taricco and Elia [13]; the exact expression from [10]; the
approximation of (45), (97); and the capacity log(1 + SNR) of a Gaussian channel
of equal SNR.
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+ log Γ(α, δ′/β′) − αψ(nR) +
nR(1 + SNR)

β′

+
δ′

β′ +
1 − α

nR − 1
δ′ · I{α ≤ 1}

}
, nR > 1 (157)

where SNR is defined as Es/σ
2.

To derive (157) from (25) we begin by considering the term

(1 − α)EQ

[
log(‖Y‖2 + δ)

]
= (1 − α)EQ

[
log ‖Y‖2

]
+ (1 − α)E

[
log

(
1 +

δ

‖Y‖2

)]
. (158)

For 0 < α ≤ 1, we upper bound the second term on the RHS of (158) as follows:

(1 − α)EQ

[
log

(
1 +

δ

‖Y‖2

)]
≤ (1 − α)EQ

[(
δ

‖Y‖2

)]

= (1 − α)
δ

nR − 1
EQ

[
1

‖X‖2 + σ2

]

≤ (1 − α)
δ

nR − 1
max

x

1

‖x‖2 + σ2

=
δ(1 − α)

σ2(nR − 1)
, 0 < α ≤ 1, nR > 1 (159)

and for α > 1, we upper bound it by

(1 − α)EQ

[
log

(
1 +

δ

‖Y‖2

)]
≤ 0, α > 1. (160)

We compute the remaining terms in (25) by noting that, conditional on the input
X = x, the channel output Y has a NC(0, (‖x‖2 + σ2)I) distribution and ‖Y‖2 is
central chi-square distributed. Consequently,

h(Y|X = x) = nR log π + nR + nR log(‖x‖2 + σ2) (161)

E
[‖Y‖2|X = x

]
= nR(‖x‖2 + σ2) (162)

E
[
log ‖Y‖2|X = x

]
= log(‖x‖2 + σ2) + ψ(nR) (163)

where the last expression follows from the general expression (215) for the expected
logarithm of a non-central chi-square distribution in the special case where the non-
centrality parameter is zero.

Using (158)–(163) and with our choice A = I we now get from (25) that

I(Q;W ) ≤ −nR − nREQ

[
log(‖X‖2 + σ2)

]− log Γ(nR) + α log β + log Γ(α, δ/β)

+ (nR − α)
(
EQ

[
log(‖X‖2 + σ2)

]
+ ψ(nR)

)
+
nR(Es + σ2)

β
+
δ

β

+ (1 − α)E

[
log

(
1 +

δ

‖Y‖2

)]
(164)

≤ −nR + nRψ(nR) − log Γ(nR) + α log β + log Γ(α, δ/β) − α log σ2

−αψ(nR) +
nR(Es + σ2)

β
+
δ

β
+

δ(1 − α)

σ2(nR − 1)
· I{α ≤ 1}, nR > 1(165)
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where for the second inequality we upper bounded

−αEQ

[
log(‖X‖2 + σ2)

] ≤ −α log σ2, α > 0.

Note that, for high SNR, the optimal values of α and δ tend to zero. Therefore,
in spite of the rather crude bound (159), we will get the correct asymptotic behavior.
Similarly, in the low SNR regime, the optimal α∗ = nR and the optimal value of δ
tends to zero. Therefore, also in the low-SNR regime we get the correct asymptotic
behavior. See also Note 4.1.

The bound (157) now follows from (165) upon substituting

δ′ =
δ

σ2
, β′ =

β

σ2
. (166)

Note that when further substituting

η =
δ′

β′ (167)

we can express the optimal value of β′ in terms of α and η:

β′∗ =

{
nR−1

2η(1−α)

(√
α2 + 4η nR

nR−1
(1 − α)(1 + SNR) − α

)
0 < α ≤ 1

nR(1+SNR)
α

1 < α ≤ nR.
(168)

Figure 4.2 depicts the upper bound (157) for various values of the number of
receive antennae nR. The upper bound for nR = 1 is taken from Subsection 4.6.1,
Equation (147). For reference we also plot lower bounds that extend the bounds of
[13] to the case nR > 1. Note that the number of transmit antennae nT does not
influence channel capacity.

Again, it is of interest to compare the channel capacity in the absence of receiver
side information to capacity in its presence. The latter was computed by Telatar
[16]. Here we only consider the case where nT = 1 so that H is a random vector,
which we denote by H, whose nR components are IID NC(0, 1). For this case we
have that the capacity in the presence of receiver side information is given by:

CPSI(SNR) = E

[
log

(
1 + ‖H‖2 Es

σ2

)]
(169)

= log SNR + E
[
log ‖H‖2

]
+ o(1) (170)

= log SNR + ψ(nR) + o(1), nT = 1 (171)

where the function ψ(·) is defined in (219), the o(1) terms tends to zero as the SNR
tends to infinity, and the calculation of E[log ‖H‖2] is based on (215).

4.6.3 Ricean Fading Channel

We next address the memoryless SISO Ricean fading channel, which corresponds to
the channel (20) with the fading matrix being a NC(d, 1) scalar. Here the mean d ∈ C

is a deterministic constant that is often called the specular component. We shall
upper bound channel capacity using (25) and lower bound it using Corollary 4.15
and the generalized mutual information (GMI) [7]. The former lower bound is useful
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Figure 4.2: The proposed upper bound (157) on the capacity of MIMO Rayleigh
fading channel for various numbers of receive antennae nR > 1. The upper bound
for nR = 1 is taken from (147). For reference, a generalization of the lower bound
of [13] is also depicted.
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at high SNR, whereas the latter is preferable at low SNR. We begin with the upper
bound:

C ≤ inf
0<α≤1

β′>0,δ′≥0

{
− 1 + α log β′ + log Γ

(
α,
δ′

β′
)

+
δ′

β′ +
1 + ρ

β′

+ (1 − α)

(
log

|d|2ρ
ρ+ |d|2 + 1

− Ei

(
− |d|2ρ
ρ+ |d|2 + 1

)

+ log δ′ − eδ′Ei(−δ′) + γ

)}
(172)

where γ denotes Euler’s constant and where we introduced the output signal-to-noise
ratio

ρ =
(|d|2 + 1)Es

σ2
(173)

i.e., the ratio of received signal power to received noise power. This bound is shown
in Figure 4.3 for different values of the specular component d.
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Figure 4.3: The upper bound (172) on the capacity of a Ricean fading channel for
different values of the specular component d. The dotted line depicts the capacity
of a Gaussian channel of equal output SNR, namely log(1 + ρ).

To derive this bound using (25) we note that conditional on X = x, the output
Y has a NC(d · x, |x|2 + σ2) distribution so that:

h(Y |X = x) = log π + 1 + log(|x|2 + σ2) (174)

E
[|Y |2|X = x

]
= |x|2 + σ2 + |d|2|x|2. (175)

41



The additional term we need for the computation of (25) is E[log(|Y |2 + δ)|X = x].
It can be upper bounded by:

E
[
log(|Y |2 + δ)|X = x

] ≤ E
[
log |Y |2|X = x

]
+ sup

x

{
E
[
log(|Y |2 + δ)|X = x

]− E
[
log |Y |2|X = x

] }
= E

[
log |Y |2|X = x

]
+ E

[
log

(
1 +

δ

|Y |2
)∣∣∣∣X = 0

]

= E
[
log |Y |2|X = x

]
+ log

δ

σ2
− eδ/σ2

Ei

(
− δ

σ2

)
+ γ

(176)

where, by (215),

E
[
log |Y |2|X = x

]
= log

( |d|2|x|2
|x|2 + σ2

)
− Ei

(
− |d|2|x|2
|x|2 + σ2

)
+ log(|x|2 + σ2). (177)

Here the first equality follows by (221) because the function ξ 7→ log(1 + ξ) −
log(ξ) is monotonically decreasing and because the distribution of Y conditional
on X = x is stochastically larger than the distribution of Y conditional on X =
0. Indeed, by (225), the distribution |NC(dx, |x|2 + σ2) |2 is stochastically larger
than the distribution |NC(0, |x|2 + σ2) |2, and, by a scaling argument, the latter is
stochastically larger than the distribution |NC(0, σ2) |2. The second equality follows
by a direct calculation [14, 4.337 (2)].

Using (25) we thus obtain:

I(Q;W ) ≤ −1 + α log β + log Γ(α, δ/β) − αEQ

[
log(|X|2 + σ2)

]
+

(1 + |d|2)Es + σ2

β
+
δ

β

+ (1 − α)EQ

[
log

( |d|2|X|2
|X|2 + σ2

)
− Ei

(
− |d|2|X|2
|X|2 + σ2

)]

+ (1 − α)

(
log

δ

σ2
− eδ/σ2

Ei

(
− δ

σ2

)
+ γ

)
(178)

≤ −1 + α log
β

σ2
+ log Γ

(
α,
δ

β

)
+

(1 + |d|2)Es + σ2

β
+
δ

β

+ (1 − α)

(
log

( |d|2Es

Es + σ2

)
− Ei

(
− |d|2Es

Es + σ2

)

+ log
δ

σ2
− eδ/σ2

Ei

(
− δ

σ2

)
+ γ

)
,

0 < α ≤ 1, β > 0, δ ≥ 0. (179)

Here the second inequality follows upon additionally restricting α so that 1−α ≥ 0;
upon applying Jensen’s inequality to the concave function g1(·) (see (216)); and upon
upper bounding − log(|x|2+σ2) by − log(σ2). The inequality (172) now follows from
(179) using the substitutions (154), and (173).

At the cost of some slackness at high SNR, the bound (172) can be simplified by
choosing δ′ = 0 and β′ = (1 + ρ)/α. This leads to the simplified bound

C ≤ inf
0<α≤1

{
− 1 + log Γ(α) − α logα+ α (1 + log(1 + ρ))
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+ (1 − α)

(
log

|d|2ρ
ρ+ |d|2 + 1

− Ei

(
− |d|2ρ
ρ+ |d|2 + 1

))}
. (180)

We now turn to lower bound channel capacity. At low SNR we consider the sub-
optimal signaling scheme where the input distribution is NC(0, Es) and where the
receiver performs nearest neighbor decoding. The generalized mutual information
[7] is a lower bound on the achievable rates under these additional restrictions and
is thus also a lower bound on the capacity without these restrictions. For the case
at hand the generalized mutual information IGMI is given by

IGMI = log

(
1 +

|d|2Es

σ2 + Es

)
(181)

= log

(
1 +

|d|2ρ
ρ+ |d|2 + 1

)
. (182)

Here the first equality follows from [7, Corollary 3.0.1] (by substitutingRejΦk(1) = d),
and the second equality follows from our definition of ρ as the output SNR; see (173).

Since the RHS of (181) is bounded in the SNR, it is apparent that this bound is
quite useless at high SNR. This boundedness has nothing to do with the structure
of the decoder. It is a direct consequence of using the sub-optimal NC(0, Es) input
distribution; see Theorem 4.2.

At high SNR a better bound is the bound of Corollary 4.15. This bound is tight
in the sense that at high SNR it achieves the fading number of the Ricean channel.
It can be rewritten as:

C ≥ C` = sup
0<α≤1

{
log(−Ei(−αβ)) + β − log

(
1 +

|d|2 + 1

αρ

)}
− 1

+ log |d|2 − Ei(−|d|2) (183)

where β is the solution to the equation

β =
e−αβ

−Ei(−αβ)
. (184)

These two lower bounds can be combined to yield

C ≥ max{IGMI, C`}. (185)

As a matter of fact, by a time sharing argument one can show that this lower bound
can be improved to the convex hull of the maximum.

Again, the difference between the high SNR channel capacity in the absence of
side information

C = log log
Es

σ2
− 1 + log |d|2 − Ei(−|d|2) + o(1) (186)

and in its presence is striking. The latter is given by

CPSI = E

[
log

(
1 +

|H|2Es

σ2

)]

= E

[
log

( |H|2Es

σ2

)]
+ o(1)

43



= log
(|d|2 + 1)Es

σ2
− log

|d|2 + 1

|d|2 − Ei(−|d|2) + o(1) (187)

where the last equation follows from the expression for the expected logarithm of a
non-central chi-square random variable (215).

Figure 4.4 shows the situation for a specular component d = 8. It depicts the
upper bound (172) and the lower bound (185). For reference we also plot the cruder
but simpler upper bound that results from choosing δ′ = 0, see (180); the capacity
log(1 + SNR) of an additive white Gaussian noise channel of equal SNR; and the
fading number. It is seen that at rates that are significantly higher than the fading
number, communication becomes extremely power inefficient.
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Figure 4.4: Bounds on the capacity of a Ricean fading channel with specular com-
ponent d = 8: the tighter upper bound is given in (172) and the simplified upper
bound in (180); the lower bound is given in (185). As comparison the channel ca-
pacity of a Gaussian channel is shown as dotted line. Note that on the abscissa ρ
denotes the output SNR (173).

4.6.4 Multi-Antenna Gaussian Fading Channel

We finally treat the more general case of a fading channel with nT transmit and nR

receive antennae

Y = Hx + Dx + Z

where H is a nR×nT matrix with each entry IID ∼ NC(0, 1), D is a constant nR×nT

matrix, and Z ∼ NC(0, σ2 · InR
).
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The upper bound is given as

C ≤ inf
0<α≤m

{
− nR − log Γ(nR) + (nR − α)gnR

(
δ2
maxEs

Es + σ2

)

+α

(
1 + log

m(Es + σ2) + δ2
maxEs

σ2

)
+ log Γ(α) − α logα

}
(188)

where δmax is the maximum singular value of D, and where the function gm(·) is
defined in Appendix J.

This bound is based on (27), using

h(Y|X = x) = nR log
(
πe(‖x‖2 + σ2)

)
(189)

E
[‖Y‖2|X = x

]
= nR(‖x‖2 + σ2) + ‖Dx‖2 (190)

E
[
log ‖Y‖2|X = x

]
= log(‖x‖2 + σ2) + gnR

( ‖Dx‖2

‖x‖2 + σ2

)
. (191)

Further note that

EQ∗
[‖DX‖2

]
= EQ∗

[
tr
(
(DX)(DX)†

)]
= tr

(
DKXD†)

= tr
(
D†DKX

)
or

EQ∗
[‖DX‖2

] ≤ EQ∗
[‖D‖2 · ‖X‖2

]
= EQ∗

[
δ2
max · ‖X‖2

]
= δ2

max · Es

where δmax is the maximum singular value of D.

5 The Basic Inequality

In this section we extend (11) to channels over infinite alphabets. As noted earlier,
the finite alphabet version of this bound follows directly from the identity (10), which
can be found, for example, in [2] and [1, Sec. 2.3 (3.7)]. In fact, the inequality (11)
also appears in [17, Exercise 4.17], except that there the distribution R(·) is required
to correspond to some input distribution, i.e., to be of the form R(·) = (Q̃W )(·).
This restriction complicates things a great deal when dealing with infinite alphabets,
but is fortunately superfluous.

It should be noted that Identity (10) plays a key role in the capacity-redundancy
theorem of universal coding. See for example [9] and references therein. For the
related infinite alphabet universal source coding problem see [18].

Theorem 5.1. Let the input alphabet X and the output alphabet Y of a channel
W (·|·) be separable metric spaces, and assume that for any Borel set B ⊂ Y the
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mapping x 7→ W (B|x) from X to [0, 1] is Borel measurable. Let Q(·) be any prob-
ability measure on X , and R(·) any probability measure on Y. Then the mutual
information I(Q;W ) can be bounded by

I(Q;W ) ≤
∫
D
(
W (·|x)‖R(·)) dQ(x). (192)

Here for any x ∈ X the term D
(
W (·|x)‖R(·)) denotes the relative entropy between

the measure W (·|x) on Y and the measure R(·) on Y, i.e.,

D
(
W (·|x)‖R(·)) =

{∫
log dW (·|x)

dR(·) dW (·|x) if W (·|x) � R(·)
+∞ otherwise.

Proof. To prove the theorem it suffices to consider the case where the output alpha-
bet Y is finite. Indeed, we could treat the more general case by a limiting argument
applied to successively finer output quantization. With successively finer sequence
of partitions that generate the σ-algebra on Y , the mutual information between the
input and the quantized output will converge to the unquantized mutual informa-
tion, and the RHS of (192) will converge by the monotonicity of the relative entropy
with respect to partition refinements and the Monotone Convergence Theorem. See
[19, Theorem (9.15) Part (i) on p.261] for some of the needed supporting theorems.
Henceforth, we shall therefore assume that the output alphabet Y is finite, i.e.,

|Y| <∞. (193)

If D
(
W (·|x)‖R(·)) is not Q-a.s. finite, then, by the non-negativity of relative

entropy, the RHS of (192) is +∞ and the claim is proved. We shall thus consider
now the case where

D
(
W (·|x)‖R(·)) <∞, Q-a.s. (194)

i.e.,
R(y) = 0 =⇒ W (y|x) = 0 Q-a.s. . (195)

The measurability assumption on the channel allows us to define

(QW )(y) =

∫
W (y|x) dQ(x) (196)

which, in view of (195), demonstrates that

R(y) = 0 =⇒ (QW )(y) = 0. (197)

Also, by (196),
(QW )(y) = 0 =⇒ W (y|x) = 0 Q-a.s. . (198)

Since Y is now assumed finite, we can rewrite the RHS of (192) as∫
D
(
W (·|x)‖R(·)) dQ(x) =

∫ ∑
y∈Y

W (y|x) log
W (y|x)
R(y)

dQ(x)

where we define

0 log
0

α
= 0, α ≥ 0 (199)
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and all the terms in the sum are Q-a.s. finite by (195).
We now note that

W (y|x) log
W (y|x)
R(y)

= W (y|x) log
W (y|x)

(QW )(y)
+W (y|x) log

(QW )(y)

R(y)
, Q-a.s. .

This follows from (197), (198), and (199) wheneverW (y|x) = 0 (whence all the terms
are zero) and from the contrapositives of (195) and (198) whenever W (y|x) > 0.
Consequently,∫

D
(
W (·|x)‖R(·)) dQ(x)

=

∫ (∑
y∈Y

W (y|x) log
W (y|x)

(QW )(y)
+
∑
y∈Y

W (y|x) log
(QW )(y)

R(y)

)
dQ(x). (200)

By [20, p. 1728 Eq. (2.10)]∫ ∑
y∈Y

W (y|x) log
W (y|x)

(QW )(y)
dQ(x) = I(Q;W ).

It remains to show that the integral of the additional terms on the RHS of (200) is
nonnegative. This follows because for each y ∈ Y ,∫

W (y|x) log
(QW )(y)

R(y)
dQ(x) = (QW )(y) log

(QW )(y)

R(y)
, y ∈ Y

so that ∫ ∑
y∈Y

W (y|x) log
(QW )(y)

R(y)
dQ(x) =

∑
y∈Y

(QW )(y) log
(QW )(y)

R(y)

= D
(
(QW )(·)‖R(·))

≥ 0.

6 Mathematical Preliminaries

In this section we present some of the mathematical tools and results that will be
needed in later sections for the analysis of the capacity of flat fading channels. This
section may be glanced over in first reading and referred to as needed.

6.1 Some Useful Distributions

In this subsection we introduce some of the distributions and special functions that
appear in this work.

By a zero-mean unit-variance circularly symmetric Gaussian distribution denoted
NC(0, 1) we shall refer to the distribution on the complex field C of density

1

π
e−|z|2 , z ∈ C.
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More generally, we let NC(µ, σ2) denote the distribution that results when a NC(0, 1)
random variable is scaled by σ ≥ 0 and shifted by µ ∈ C. In the multi-variate
case we write X ∼ NC(µ,K) if X − µ is a circularly symmetric zero-mean multi-
variate Gaussian random vector, i.e., if X − µ can be expressed as the product of
a deterministic matrix and a complex random vector whose components are IID
NC(0, 1). In particular,

E[(X − µ)(X − µ)T] = 0; E
[
(X − µ)(X − µ)†

]
= K

where (·)T denotes the transpose operation and (·)† denotes Hermitian conjugation.
See [21], [16] and references therein for additional information on circularly sym-
metric Gaussian variables.

If U1, . . . , Um are IID NC(0, 2) then the sum
∑m

j=1 |Uj|2 has a central chi-square
distribution with 2m degrees of freedom — a distribution that is typically denoted
χ2

2m and which has the density (over the non-negative real line) [22, Ch. 18]

1

2mΓ(m)
xm−1e−x/2, x ≥ 0. (201)

This distribution is a special case (α = m and β = 2) of the Gamma distribution
on the non-negative real numbers, which is of density [22, Ch. 17]

xα−1e−x/β

βαΓ(α)
, x ≥ 0, α, β > 0. (202)

Here Γ(α) denotes the Gamma function and is given by

Γ(α) =

∫ ∞

0

tα−1e−t dt, α > 0. (203)

In fact, 1
2

∑m
j=1 |Uj|2, which corresponds to the sum of the squared-magnitudes of m

independent NC(0, 1) random variables, is a special case (α = m) of the standard
Gamma distribution, which corresponds to the Gamma distribution with β = 1, i.e.,

xα−1e−x

Γ(α)
, x ≥ 0, α > 0. (204)

See [22, Ch. 17] for additional details on the Gamma and central chi-square distri-
butions.

For α < 1 the density of the Gamma distribution has a singularity at the origin.
This motivates us to define a regularized Gamma distribution on the non-negative
real line to be of the density,

(x+ δ)α−1e−(x+δ)/β

βαΓ(α, δ/β)
, x ≥ 0, α, β > 0, δ ≥ 0. (205)

Here Γ(α, ξ) denotes the incomplete Gamma function and is given by

Γ(α, ξ) =

∫ ∞

ξ

tα−1e−t dt, α > 0, ξ ≥ 0. (206)

For δ = 0 the regularized Gamma distribution (205) thus coincides with the Gamma
distribution (202). For δ > 0, however, the density of the regularized Gamma
distribution is bounded for all values of α, β > 0.
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We next derive an isotropic distribution on C
nR under which ‖Y‖2 has a regu-

larized Gamma distribution. Here ‖ · ‖ denotes the Euclidean norm as in (12). We
first recall that if a non-negative real random variable W is of density fW (w) and
if V =

√
W then the density fV of V is given by fV (v) = 2vfW (v2). Consequently,

if ‖Y‖2 is to have a regularized Gamma distribution (205) then ‖Y‖ should be of
density

2 ‖y‖ (‖y‖2 + δ)α−1 e−(‖y‖2+δ)/β

βα Γ(α, δ/β)
, α, β > 0, δ ≥ 0. (207)

Next we recall that the surface area of an nR-dimensional complex sphere of radius
r is

2πnRr2nR−1

Γ(nR)
(208)

so that the density of the isotropic distribution on C
nR under which ‖Y‖2 is of a

regularized Gamma distribution is the ratio of (207) to (208), namely

‖y‖2(1−nR)
(‖y‖2 + δ

)(α−1)
e−(‖y‖2+δ)/β Γ(nR)

πnR βα Γ(α, δ/β)
. (209)

A linear transformation on such isotropic distributions leads to the family of distri-
butions on C

nR that will be of most interest to us. For any α, β > 0, δ ≥ 0 and any
non-singular deterministic matrix A ∈ C

nR×nR the density on C
nR is:

‖Ay‖2(1−nR)
(‖Ay‖2 + δ

)(α−1)
e−(‖Ay‖2+δ)/β Γ(nR) | det A|2

πnRβαΓ(α, δ/β)
. (210)

For the tightness of the proposed bounds at low SNR, it will be important to note
that this family of densities includes the family of all zero-mean circularly symmetric
Gaussians on C

nR with non-singular covariance matrices. Indeed, such Gaussians
are obtained by setting, α = nR, δ = 0, and β = 1.

A non-negative real random variable is said to have a non-central chi-square
distribution with n degrees of freedom and non-centrality parameter s2 if it is dis-
tributed like

n∑
j=1

(Xj + µj)
2 (211)

where {Xj}n
j=1 are IID NR (0, 1) and {µj}n

j=1 satisfy

s2 =
n∑

j=1

µ2
j . (212)

(The distribution of (211) depends on the constants {µj} only via the sum of their
squares.) The pdf of such a distribution is given by [23, Ch. 29]

1

2

( x
s2

)n−2
4
e−

s2+x
2 In/2−1

(
s
√
x
)
, x ≥ 0. (213)

Here Iν(·) denotes the modified Bessel function of the first kind of order ν ∈ R, i.e.,

Iν(x) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)ν+2k

, x ≥ 0 (214)
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(see [14, Equation 8,445]).
If the number of degrees of freedom n is even, i.e., if n = 2m for some non-

negative integerm, then the non-central chi-square distribution can also be expressed
as a sum of the squared-norms of complex Gaussians.

We send forward the following expression for the expected logarithm of scaled
non-central chi-square distributed random variables: Let {Uj}m

j=1 be IID NC(0, 1), let
{µj}m

j=1 be arbitrary complex constants, and let λ be a non-zero complex constant.
Then

E

[
log

(
m∑

j=1

∣∣λUj + µj

∣∣2)] = log(|λ|2) + gm

(∑m
j=1 |µj|2
|λ|2

)
(215)

where

gm(x) = log (x) − Ei (−x) +

m−1∑
j=1

(−1)j

(
e−x(j − 1)! − (m− 1)!

j(m− 1 − j)!

)
x−j (216)

and Ei(·) denotes the exponential integral function defined as

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0. (217)

For future reference we note here that the function gm(·) is a monotonically increas-
ing concave function with

gm(0) = ψ(m) (218)

where ψ(m) is given by

ψ(m) = −γ +
m−1∑
j=1

1

j
(219)

and γ denotes Euler’s constant.
See Appendix J for a derivation of this expectation and the properties of gm(·).

6.2 Stochastic Ordering

Here we recall some of the basic definitions related to stochastic ordering. Only the
univariate real case will be addressed. For more on stochastic ordering please refer
to [24], [25], [6] and references therein. The following definitions and statements can
be found, for example, in [6, Section 1.A].

Definition 6.1. Let F1 and F2 be two distributions on the real line. We shall say
that F1 is stochastically larger than (or equal to) F2 and write

F1 ≥st F2

if the following equivalent conditions hold:

• For any −∞ < ζ < +∞ the probability of the half ray (ζ,+∞) under the law
F1 is at least as large as the probability of that ray under F2, i.e.,

F1

(
(ζ,+∞)

) ≥ F2

(
(ζ,+∞)

)
, −∞ < ζ < +∞. (220)
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• For any increasing functions φ∫
φ(x)dF1(x) ≥

∫
φ(x) dF2(x), φ is increasing (221)

whenever the expectations exist.

• There exists a probability space with two random variables X, Y such that X
is F1 distributed, Y is F2 distributed, and X ≥ Y , almost surely, i.e.,

X ∼ F1, Y ∼ F2, X ≥ Y a.s. . (222)

Slightly abusing notation we shall sometimes write

X ≥st Y

for two real random variables X, Y to indicate that the distribution functions FX

of X is stochastically larger than (or equal to) the distribution function FY of Y .
With this notation it follows from (222) that:

• If X ≥st Y then for any increasing function φ

φ(X) ≥st φ(Y ).

• Also, if X1 ≥st Y1; X2 ≥st Y2; the pair (X1, X2) is independent; and the pair
(Y1, Y2) is independent, then

X1 +X2 ≥st Y1 + Y2. (223)

The main result we need is stated in the following lemma:

Lemma 6.2. The following claims demonstrate stochastic ordering for some specific
distributions.

(a) Let the real random variable X have a continuous strictly unimodal symmetric
density fX , i.e.,

fX(x) = fX(−x), x ∈ R

and
fX(x′) > fX(x′′) ⇔ |x′| < |x′′|, x′, x′′ ∈ R.

Let µ1, µ2 ∈ R be deterministic. Then(
X + µ1

)2 ≥st
(
X + µ2

)2
, |µ1| ≥ |µ2|. (224)

(b) Suppose X1 ∼ N (µ1, σ
2) and X2 ∼ N (µ2, σ

2). Then |µ1| ≥ |µ2| implies
|X1|2 ≥st |X2|2, or stated a little more sloppily

|N (µ1, σ
2
) |2 ≥st |N (µ2, σ

2
) |2, |µ1| ≥ |µ2|. (225)

(c) For any mean vector µ and any covariance matrix K,

‖N (µ,K) ‖2 ≥st ‖N (0,K) ‖2. (226)
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(d) Let W ∼ N (0,K) and let V be independent of W. Then

‖W + V‖2 ≥st ‖W‖2.

(e) Let K1 and K2 be two non-negative definite matrices. Then

‖N (0,K1 + K2) ‖2 ≥st ‖N (0,K1) ‖2. (227)

Proof. (a): The symmetry of the distribution of X allows us to assume, without
loss of generality

µ1 ≥ µ2 ≥ 0.

For any ζ > 0 we have

Pr
(
(X + µ1)

2 ≥ ζ2
)

= Pr
(
X + µ1 ≥ ζ

)
+ Pr

(
X + µ1 ≤ −ζ)

= Pr
(
X ≥ ζ − µ1

)
+ Pr

(
X ≥ ζ + µ1

)
where we have used the symmetry of the distribution of X in the second equality.
Similarly

Pr
(
(X + µ2)

2 ≥ ζ2
)

= Pr
(
X ≥ ζ − µ2

)
+ Pr

(
X ≥ ζ + µ2

)
Consequently,

Pr
(
(X + µ1)

2 ≥ ζ2
)− Pr

(
(X + µ2)

2 ≥ ζ2
)

=

∫ ζ−µ2

ζ−µ1

fX(x) dx−
∫ ζ+µ1

ζ+µ2

fX(x) dx.

Both the integrals on the RHS of the above are over intervals of length µ1 − µ2

but they differ in their centers. We shall now conclude the proof by showing that
the first integral is greater or equal to the second because its center is closer to the
origin.

To this end, define the function

g(β) =

∫ β+(µ1−µ2)/2

β−(µ1−µ2)/2

fX(x) dx, β ∈ R.

The function g(β) is thus symmetric and takes value in the interval [0, 1]. Expressing
its derivative as

dg

dβ
= fX

(
β + (µ1 − µ2)/2

)− fX

(
β − (µ1 − µ2)/2

)
we conclude from the strict monotonicity of fX(|x|) that dg

dβ
is zero at the origin,

and negative whenever β > 0. Thus, g(β) attains its maximum at the origin, and is
monotonically decreasing for β ≥ 0.

(b): The real case follows immediately from Part (a). For the complex case we
note that |NC(µ1, σ

2) |2, being non-central chi-square distributed, can be written
as the sum of the squares of two real Gaussian random variables NR (0, σ2/2) and
NR (|µ1|, σ2/2). Expressing |NC(µ2, σ

2) |2 similarly proves the claim by Part (a) and
(223).
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(c): Using a diagonalization argument we shall prove that Part (c) follows from
Part (b) and (223). Let W ∼ N (0,K). We shall demonstrate that ‖W + µ‖2 ≥st

‖W‖2. Let U be a unitary matrix that diagonalizes K so that

UKU† = Diag{λj}

where {λj} are the (non-negative) eigenvalues of K. Let W̃ = UW so that the
covariance matrix KW̃ of W̃ is Diag{λj} and so that the components {W̃j} of W̃
are independent. Let µ̃ = Uµ. Since U is unitary, i.e., norm-preserving,

‖W + µ‖2 = ‖U(W + µ)‖2

= ‖W̃ + µ̃‖2

=
∑

j

|W̃j + µ̃j|2 (228)

where µ̃j denotes the j-th component of µ̃. Similarly,

‖W‖2 = ‖W̃‖2

=
∑

j

|W̃j|2. (229)

But, by Part (b) it follows that

|W̃j + µ̃j|2 ≥st |W̃j|2

and consequently, by the independence of {W̃j} and by (223), it follows that∑
j

|W̃j + µ̃j|2 ≥st
∑

j

|W̃j|2

which concludes the proof by (228) and (229).
(d): This follows from (c) by a conditioning argument:

Pr
(‖W + V‖2 > ζ

)
=

∫
Pr
(‖W + v‖2 > ζ

)
dFV(v)

≥
∫

Pr
(‖W‖2 > ζ

)
dFV(v)

= Pr
(‖W‖2 > ζ

)
where the inequality follows from (c).

(e): This follows from Part (d) by choosing W ∼ N (0,K1) and V ∼ N (0,K2).

6.3 The Rayleigh-Ritz Theorem

The name of Lord Rayleigh appears in this paper not only in reference to the fading
distribution that is named after him, but also because the following proposition
is based on the Rayleigh-Ritz characterization [26, Theorem 4.2.2] of the extremal
eigenvalues of Hermitian matrices:
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Proposition 6.3. Let H be an nR × nT complex random matrix all of whose com-
ponents have a finite second moment, so that E[‖H‖2

F] < ∞. Denote by λmax(H)
(λmin(H)) the largest (resp. smallest) eigenvalue of the covariance matrix of the
nR · nT-random vector that results when the entries of H are stacked on top of each
other. Let x̂ ∈ C

nT be a deterministic unit-norm complex vector and denote by
λmax(Hx̂) (λmin(Hx̂)) the maximal (resp. minimal) eigenvalue of the covariance ma-
trix of the random vector Hx̂. Then,

λmax(Hx̂) ≤ λmax(H) (230)

λmin(Hx̂) ≥ λmin(H). (231)

Proof. The proofs of (230) and (231) are almost identical, so we shall only prove the
latter. By the Rayleigh-Ritz Theorem [26, Theorem 4.2.2] the smallest eigenvalue
of the covariance matrix of an n-dimensional random vector W can be expressed as

min∑n
j=1 |α(j)|2=1

E



∣∣∣∣∣

n∑
j=1

α(j)W (j)

∣∣∣∣∣
2

 .

Consequently, for any ‖x̂‖ = 1 there exist coefficients {α(r)} such that
∑nR

r=1 |α(r)|2 =
1 and

λmin(Hx̂) = E



∣∣∣∣∣

nR∑
r=1

α(r)(Hx̂)(r)

∣∣∣∣∣
2



= E



∣∣∣∣∣

nR∑
r=1

nT∑
t=1

α(r)x̂(t)H(r,t)

∣∣∣∣∣
2



≥ λmin(H)

where the last inequality follows from the Rayleigh-Ritz characterization of λmin(H),
because the sum of squares of the nR · nT coefficients {(α(r) · x̂(t))} is one, but these
coefficients do not necessarily achieve λmin(H).

6.4 Differential Entropy

In this section we present some results on differential entropy. Our focus is on
relationships between the differential entropy h(X) of a random vector X and the
expectation of the logarithm of its norm E[log ‖X‖]. We shall also need some results
relating the differential entropy h(H) of a random matrix H and the differential
entropy h(Hx) of the vector Hx that results when the matrix H is multiplied by
a deterministic vector x. Results on uniform continuity of differential entropy will
also be presented.

6.4.1 Some Definitions

The differential entropy h(X) of an n-dimensional real random vector X is defined
if the density fX(x) (with respect to the Lebesgue measure on R

n) is defined and if
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at least one of the integrals

h+(X) =

∫
{x∈Rn:0<fX(x)<1}

fX(x) log
1

fX(x)
dx

h−(X) =

∫
{x∈Rn:fX(x)>1}

fX(x) log fX(x) dx

is finite. In this case h(X) is defined as the difference between the two non-negative
integrals,

h(X) = h+(X) − h−(X) (232)

where we use the rules +∞ − a = +∞ and a − ∞ = −∞ for all a ∈ R. This is
written as

h(X) =

∫
Rn

fX(x) log
1

fX(x)
dx. (233)

The differential entropy of an n-dimensional complex random variable is defined
as the differential entropy of the 2n-dimensional real vector comprising of the real
and imaginary parts of each of its components. Finally, the differential entropy
h(H) of a random matrix H is the differential entropy of the vector comprising of
its entries.

6.4.2 Some Bounds and Integrability Conditions

We begin with some upper bounds on h(X) and h+(X). The bound on h(X) is
standard. The bound on h+(X) is fairly crude, but it serves to show that a second
moment constraint not only guarantees that h(X) is bounded, but also gives an
upper bound on h+(X).

Lemma 6.4. Let the complex random vector X have a density fX(x) with respect to
the Lebesgue measure on C

n, and assume that its norm is of finite second moment

E
[‖X‖2

]
<∞. (234)

Then,
h(X) ≤ n log

(
πeE

[‖X‖2
]
/n
)

(235)

and

h+(X) ≤ n+ 1

e
+ n log+

(
πeE

[‖X‖2
]
/n
)
. (236)

Proof. Inequality (235) is standard. Its proof relies on the fact that of all random
vectors of given marginals, differential entropy is maximized by the one whose com-
ponents are independent [11]; on the fact that of all complex random variables of a
given second moment, differential entropy is maximized by the circularly symmet-
ric Gaussian distribution; and by the concavity (in the variance) of the differential
entropy of a circularly symmetric complex Gaussian.

We now proceed to prove Inequality (236). To this end define

X+ = {x ∈ C
n : fX(x) < 1} (237)

and set
α = Pr(X ∈ X+) = Pr(fX(X) < 1). (238)
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If α = 0 then h+(X) = 0 and Inequality (236) is satisfied. We now focus on the case
α > 0. In this case we can express h+(X) as

h+(X) = α

∫
X+

fX(x)

α
log

1

fX(x)/α
dx − α logα. (239)

Equation (239) thus relates h+(X) to α and to the differential entropy of the density
on X+ given by

fX(x)

α
, x ∈ X+. (240)

This density on X+ is of second moment∫
X+

‖x‖2fX(x)

α
dx ≤ 1

α

∫
Cn

‖x‖2fX(x) dx

= α−1E
[‖X‖2

]
so that by (235) and (239)

h+(X) ≤ α · n log
(
πeE

[‖X‖2
]
/n
)− (n+ 1)α logα. (241)

Inequality (236) now follows by noting that α logα ≥ −1/e, for all α > 0, and by
noting that α log x ≤ log+ x, for all 0 ≤ α ≤ 1.

We now prove a conditional version of Lemma 6.4:

Lemma 6.5. Let the random vectors X and Y satisfy E[‖X‖2] <∞ and h(X|Y) >
−∞. Let

h−(X|Y = y) =

∫
x:fX|Y(x|y)>1

fX|Y(x|y) log fX|Y(x|y) dx (242)

h−(X|Y) =

∫
y

h−(X|Y = y)fY(y) dy (243)

h+(X|Y = y) =

∫
x:0<fX|Y(x|y)<1

fX|Y(x|y) log
1

fX|Y(x|y)
dx (244)

h+(X|Y) =

∫
y

h+(X|Y = y)fY(y) dy. (245)

Then the mappings y 7→ h−(X|Y = y) and y 7→ h+(X|Y = y) are non-negative
integrable mappings, i.e.,

h−(X|Y), h+(X|Y) <∞. (246)

In particular,
h−(X|Y = y), h+(X|Y = y) <∞, Y-a.s. . (247)

Proof. We shall prove the results for h−(X|Y = y) and h−(X|Y). The analogous
proofs for h+ are omitted. Using

h−(X|Y = y) = h+(X|Y = y) − h(X|Y = y) (248)
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and Lemma 6.4 we obtain

h−(X|Y = y) ≤ n+ 1

e
+ n log+

(
πeE

[‖X‖2|Y = y
]
/n
)− h(X|Y = y). (249)

Consequently,

h−(X|Y) ≤ n+ 1

e
− h(X|Y)

+

∫
y:E[‖X‖2|Y=y]≥n/(πe)

n log

(
πeE[‖X‖2|Y = y]

n

)
fY(y) dy.(250)

Using the upper bound log ξ < ξ and expanding the range of integration we obtain

h−(X|Y) ≤ n+ 1

e
− h(X|Y) + πeE

[‖X‖2
]
<∞. (251)

6.4.3 Random Matrices Operating on Deterministic Vectors

The next lemma will be used to exhibit a uniform lower bound on h(Hx) in terms
of h(H). Using Lemma 6.4 an analogous conclusion about h−(Hx) can be drawn.

Lemma 6.6. Let the random nR×nT matrix H satisfy h(H) > −∞ and E[‖H‖2
F] <

∞. Then,
inf

‖x̂‖=1
h
(
Hx̂
)
> −∞ (252)

and
sup
‖x̂‖=1

h−
(
Hx̂
)
<∞. (253)

Proof. Assume without loss of generality that H is of zero mean. Since h(H) > −∞
it follows that the (nR · nT) × (nR · nT) covariance matrix of the nR · nT compo-
nents of H is non-singular. Let λmin(H) > 0 denote the minimal eigenvalue of this
covariance matrix. Let HG denote a zero-mean Gaussian matrix whose components
have the same covariance matrix as the components of H. The non-singularity of
the covariance matrix implies that

h(HG) > −∞. (254)

Using the data processing inequality for relative entropy we obtain

D(Hx̂‖HGx̂) ≤ D(H‖HG) (255)

where the relative entropy between two random vectors/matrices is defined as the
relative entropy between their corresponding distributions. It now follows from (255)
that

h(HGx̂) − h(Hx̂) ≤ h(HG) − h(H) (256)

or
h(Hx̂) ≥ h(HGx̂) + h(H) − h(HG). (257)

Any lower bound on h(HGx̂) will now yield a bound on h(Hx̂) via (257). For exam-
ple, using Proposition 6.3 we obtain that the smallest eigenvalue of the covariance
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matrix of HGx̂ is no smaller than the smallest eigenvalue of the covariance matrix
of the elements of HG, namely λmin(H). We thus obtain

h(Hx̂) ≥ nR log(πeλmin(H)) + h(H) − h(HG) (258)

which implies (252).
To prove (253) we note that the condition E[‖H‖2

F] < +∞ implies

sup
‖x̂‖=1

E
[‖Hx̂‖2

]
< +∞ (259)

so that by Lemma 6.4
sup
‖x̂‖=1

h+(Hx̂) < +∞. (260)

The proof of (253) now follows from (252) and (260) by expressing h−(Hx̂) as
h+(Hx̂) − h(Hx̂).

6.4.4 Differential Entropy and Expectations of Logarithms

The following lemma relates the differential entropy of a random vector to the ex-
pectation of the logarithm of its norm.

Lemma 6.7. Let X be an n dimensional complex random vector of density fX(x).
Then the following relationships between differential entropy and the expected log-
norm hold:

(a) For any 0 < δ ≤ 1 and 0 < α < n

E
[
log ‖X + c‖−1 · I{‖X + c‖ ≤ δ}]

≤ ε(n, δ, α) +
1

α

∫
‖x+c‖≤δ
fX(x)≥1

fX(x) log fX(x) dx, c ∈ C
n

≤ ε(n, δ, α) +
1

α
sup
c∈Cn

∫
‖x+c‖≤δ
fX(x)≥1

fX(x) log fX(x) dx

where the term ε(n, δ, α) tends to zero as δ ↓ 0.

(b) Consequently, if in addition h−(X) <∞, then

lim
δ↓0

sup
c∈Cn

E
[
log ‖X + c‖−1 · I{‖X + c‖ ≤ δ}] = 0. (261)

(c) Moreover, for any 0 < δ ≤ 1 and 0 < α < n we have the uniform bound

sup
c∈Cn

E
[
log ‖X + c‖−1 · I{‖X + c‖ ≤ δ}] ≤ ε(n, δ, α) +

1

α
h−(X). (262)

(d) If h−(X) <∞, then for any 0 < α < n there exists some finite number ∆(n, α)
(not depending on the law of X) such that

E[log ‖X‖] ≥ − 1

α
h−(X) − ∆(n, α). (263)
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(e) Let Y be an n-dimensional random vector. Assume that the differential entropy
of some subset of its elements is defined and is greater than −∞. Then

E[log ‖Y‖] > −∞. (264)

(f) Let the random matrix H satisfy h(H) > −∞ and E[‖H‖2
F] < +∞. Then

inf
‖x̂‖=1

E[log ‖Hx̂‖] > −∞. (265)

(g) Let the random vectors Z and X be independent and of the same dimension.
Assume that h−(Z) <∞. Then

E[log ‖Z + X‖] > −∞. (266)

Proof. To prove Part (a) we express

E
[
log ‖X + c‖−1 · I{‖X + c‖ ≤ δ}] =

∫
‖x+c‖≤δ

fX(x) log ‖x + c‖−1 dx (267)

as the sum of two integrals:

I1 =

∫
‖x+c‖≤δ

fX(x)≤‖x+c‖−α

fX(x) log ‖x + c‖−1 dx

≤
∫

‖x+c‖≤δ
fX(x)≤‖x+c‖−α

fX(x) log+ ‖x + c‖−1 dx

≤
∫
‖x+c‖≤δ

‖x + c‖−α log+ ‖x + c‖−1 dx

=

∫
‖x‖≤δ

‖x‖−α log+ ‖x‖−1 dx

= ε(n, δ, α)

and

I2 =

∫
‖x+c‖≤δ

fX(x)>‖x+c‖−α

fX(x) log ‖x + c‖−1 dx

≤ 1

α

∫
‖x+c‖≤δ

fX(x)>‖x+c‖−α

fX(x) log fX(x) dx

≤ 1

α

∫
‖x+c‖≤δ
fX(x)>1

fX(x) log fX(x) dx.

Parts (b) and (c) follow directly from Part (a). Part (d) follows from Part (a) by
choosing δ = 1 and c = 0.

To prove Part (e) we note that since the logarithm function is monotonic, it
follows that if the expected-log of the squared-norm of a subset of the components
of Y is greater than −∞, then so is the expected-log of the norm-squared of all
its components. Consequently, it suffices to prove the lemma for the case that
h(Y) > −∞, i.e., in the case where h−(Y) < +∞. But in this case the claim
follows directly from Part (d).

Part (f) follows from Part (d) and Lemma 6.6, i.e., from (263) and (253).
Part (g) follows from by conditioning on X and applying Part (c) with δ = 1.
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The following lemma extends Lemma 6.7 to provide uniform bounds for the
case where a random matrix operates on deterministic vectors. It will allow us to
limit attention to integrations over sets that avoid the singularity of the logarithmic
function at the origin.

Lemma 6.8. Let the nT × nR complex random matrix H satisfy E[‖H‖2
F] <∞ and

h(H) > −∞. Then

lim
δ↓0

sup
‖x̂‖=1

E
[
log ‖Hx̂‖−1 · I{‖Hx̂‖ ≤ δ}] = 0. (268)

Proof. Since the lemma only addresses limiting behaviors as δ ↓ 0, we shall restrict
ourselves throughout the proof to

0 < δ ≤ 1/
√
nT. (269)

We shall prove the result by showing that for any integer 1 ≤ τ ≤ nT

lim
δ↓0

sup
x̂∈D(τ)

E
[
log ‖Hx̂‖−1 · I{‖Hx̂‖ ≤ δ}] = 0 (270)

where
D(τ) =

{
x̂ ∈ C

nT : ‖x̂‖ = 1,
∣∣x̂(τ)

∣∣ ≥ 1/
√
nT

}
. (271)

To this end we shall show that6

lim
δ↓0

sup
x̂∈D(τ)

E
[
log ‖Hx̂‖−1 · I{‖Hx̂‖ ≤ δ}

∣∣∣ {H(t)}t 6=τ

]
= 0, {H(t)}t 6=τ -a.s. (272)

and exhibit a dominating function that will allow us to use the Dominated Conver-
gence Theorem to infer that

lim
δ↓0

E{H(t)}t 6=τ

[
sup

x̂∈D(τ)

E
[
log ‖Hx̂‖−1 · I{‖Hx̂‖ ≤ δ}

∣∣∣ {H(t)}t 6=τ

]]
= 0. (273)

Since (273) implies (270), the lemma will follow.
To prove (272) fix then some integer 1 ≤ τ ≤ nT, and for any {h(t)}t 6=τ consider

sup
x̂∈D(τ)

E
[
log ‖Hx̂‖−1 · I{‖Hx̂‖ ≤ δ}

∣∣∣ {H(t) = h(t)}t 6=τ

]
. (274)

The argument in the conditional expectation in (274) can be written as

log
∥∥∥x̂(τ)

(
H(τ) + c̃

)∥∥∥−1

· I
{∥∥∥x̂(τ)

(
H(τ) + c̃

)∥∥∥ ≤ δ
}

(275)

where

c̃ =
1

x̂(τ)

∑
1≤t≤nT

t 6=τ

x̂(t)h(t). (276)

Since any element x̂ in D(τ) satisfies

1/
√
nT ≤ ∣∣x̂(τ)

∣∣ ≤ 1 (277)

6Recall that H(t) is the t-th column of H.
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it follows from (269), from the lower bound in (277), and from the upper bound in
(277) that

δ ≤ δ
√
nT |x̂(τ)| ≤ |x̂(τ)| ≤ 1 (278)

so that for x̂ ∈ D(τ) and for δ satisfying (269) the integrand (275) can be upper
bounded by

log
∥∥∥x̂(τ)

(
H(τ) + c̃

)∥∥∥−1

· I
{∥∥∥x̂(τ)

(
H(τ) + c̃

)∥∥∥ ≤ δ
√
nT |x̂(τ)|

}
. (279)

Using (277) again we can further upper bound (279) (for x̂ ∈ D(τ) and for δ satisfying
(269)) by

log (
√
nT)·I{∥∥H(τ)+c̃

∥∥ ≤ δ
√
nT

}
+log

∥∥H(τ)+c̃
∥∥−1 ·I{∥∥H(τ)+c̃

∥∥ ≤ δ
√
nT

}
. (280)

To prove (272) we shall now consider the supremum (over c̃) of the conditional
(on {H(t)}, t 6= τ) expectation (over H(τ)) of the two terms in (280) separately.
With regard to the first we have that

sup
c̃∈C

nR

Pr
(
‖H(τ) + c̃‖ ≤ δ

√
nT

∣∣∣ {H(t) = h(t)}t 6=τ

)
(281)

can be upper bounded by

sup
c̃

∫
‖h(τ)+c̃‖≤δ

√
nT

f
H(τ) | {H(t)}t 6=τ

(h(τ) | {h(t)}t 6=τ )≥e

fH(τ)|{H(t)}t 6=τ

(
h(τ)

∣∣{h(t)}t 6=τ

)

· log fH(τ)|{H(t)}t 6=τ

(
h(τ)

∣∣{h(t)}t 6=τ

)
dh(τ)

+

∫
‖h(τ)‖≤δ

√
nT

e dh(τ) (282)

which for almost every {h(t)}t 6=τ converges to zero as δ ↓ 0 because by Lemma 6.5

h−(H(τ)|{H(t) = h(t)}t 6=τ ) <∞, {H(t)}t 6=τ -a.s. . (283)

Having established the pointwise convergence of this term to zero, we can now justify
the swapping of the limit δ ↓ 0 with the expectation (with respect to {H(t)}t 6=τ ) by
exhibiting an integrable (with respect to {H(t)}t 6=τ ) dominating function (of {h(t)}t 6=τ

but not depending on 0 < δ < 1/
√
nT or c̃). An appropriate function is, for example,

h−
(
H(τ)|{H(t) = h(t)}t 6=τ

)
+ e · Vol(1, nR) (284)

which is integrable by Lemma 6.5. Here we used Vol(1, nR) to denote the volume of
the unit ball in C

nR .
The supremum (over c̃) of the conditional (on {H(t)}, t 6= τ) expectation (over

H(τ)) of the second term in (280) can be similarly analyzed using Lemma 6.7 to
show that for almost every realization of {H(t)}t 6=τ ,

sup
c̃

E
[
log
∥∥H(τ) + c̃

∥∥−1 · I{∥∥H(τ) + c̃
∥∥ ≤ δ

√
nT

} ∣∣∣ {H(t) = h(t)}t 6=τ

]
(285)

converges to zero as δ ↓ 0. This can be argued because for almost every realization
of {H(t)}t 6=τ it follows from Lemma 6.5 that h−(H(τ)|{h(t)}t 6=τ ) < ∞ so that the
limiting behavior in (285) follows from a conditional version of Lemma 6.7 Part (b).
To demonstrate a dominating function we can rely on the conditional version of
Lemma 6.7 Part (c) and use Lemma 6.5 to demonstrate the integrability of the
dominating function.
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6.4.5 Continuity Issues

We turn now to address some continuity claims about differential entropy and related
functions.

Lemma 6.9. Let X and Y be two independent real random variables satisfying
E[|X|] <∞ and E[|Y |] <∞. Then,

lim
ε→0

h(X + εY ) = h(X). (286)

Proof. The idea of the proof is to relate differential entropy to relative entropy, and
to then use the lower semi-continuity of the latter. This approach is surveyed in
[27]. We begin by first treating the case where X is not deterministically zero, i.e.,
E[|X|] > 0. Let

αε = E[|X + εY |] .
Note that the assumption E[|X|] > 0 guarantees that αε > 0 for all sufficiently small
values of ε.

Let Pε denote the probability measure corresponding to X + εY , and let Pε,L be
the probability measure corresponding to a Laplacian random variable Lε of equal
expected magnitude, i.e., of expected magnitude αε. Thus, Pε,L has the density

1

2αε

e−
|ξ|
αε , ξ ∈ R. (287)

Since Pε converges weakly to P0 and since Pε,L converges weakly to P0,L [28, 17.1.d],
it follows by the lower semi-continuity of relative entropy (see, e.g., [20, Proof of
Lemma 4] and references therein) that

lim
ε→0

D
(
Pε‖Pε,L

) ≥ D
(
P0‖P0,L

)
. (288)

But using the explicit form of the density of Pε,L (287) we have

D
(
Pε‖Pε,L

)
= 1 + log

(
2αε

)− h(X + εY ). (289)

It thus follows from (288), (289) (and from our assumption α0 = E[|X|] > 0, which
implies the continuity of log(2αε)) that

lim
ε→0

h(X + εY ) ≤ h(X). (290)

This completes the proof of the lemma (for the case E[|X|] > 0) because the indepen-
dence of X and Y guarantees that h(X + εY ) ≥ h(X), and hence limh(X + εY ) ≥
h(X).

The case E[|X|] = 0 can be treated by other methods: For this case h(X) = −∞
and h(X + εY ) = h(εY ) = log ε + h(Y ). The result now follows by noting that
because E[|Y |] < ∞ it follows that h(Y ) < ∞. (The max-entropy distribution
under an expected magnitude constraint is the Laplacian distribution, which has a
finite differential entropy.)

Lemma 6.10. Let H be a complex random variable satisfying E[|H|2] < ∞ and
h(H) > −∞. Let U = log |H|2 and let V be independent of U and uniformly
distributed over an interval of length β. Then

lim
β→∞

h(V + U) − h(V ) = 0. (291)
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Proof. Since differential entropy is invariant under translation, it follows that there
is no loss in generality in assuming that V is uniformly distributed over the interval
[0, β]. By the scaling property of differential entropy [11, Theorem 9.6.4] it follows
that

h(V + U) − h(V ) = h(V ′ + β−1U) − h(V ′) (292)

where V ′ = V/β is uniformly distributed over the interval [0, 1] and independent of
U . The claim now follows from Lemma 6.9 because the conditions E[|H|2] <∞ and
h(H) > −∞ guarantee that E

[∣∣log |H|∣∣] <∞; see Lemma 6.7.

Lemma 6.11. The following continuity results of differential entropy with respect
to Gaussian perturbations hold:

(a) Let W ∈ C
ν be a random vector satisfying E[‖W‖2] < ∞ and h(W) > −∞.

Let Z ∈ C
ν be a Gaussian random vector that is independent of W. Then

lim
σ→0

{
h(W + σZ) − h(W)

}
= 0. (293)

(b) Let H be a random nR × nT matrix such that E[‖H‖2
F] <∞ and h(H) > −∞.

Let Z ∼ NC(0, InR
) be independent of H. Then:

lim
σ→0

sup
‖x̂‖=1

{
h(Hx̂ + σZ) − h(Hx̂)

}
= 0. (294)

Proof. The proof of (a) is very similar to the proof of Lemma 6.9 except that rather
than considering relative entropies with respect to Laplacian random variables we
need to consider relative entropies with respect to multivariate Gaussians of equal
covariance matrices. We begin by noting that since differential entropy is invariant
under deterministic translation [11] we may assume without loss of generality that
E[W] = 0.

Consider now a sequence {σ2
n} converging to zero. Let Wn = W + σnZ. Since

conditioning on Z cannot increase differential entropy, we have

h(Wn) ≥ h(W) (295)

so that
lim

n→∞
h(Wn) ≥ h(W). (296)

To study the lim sup of h(Wn) we first note that

Wn =⇒ W

where we use the symbol “=⇒” to denote weak convergence7.
Denoting the law of W by PW, the law of Wn by PWn , the law of a zero mean

covariance E
[
WW†] Gaussian NC

(
0,E

[
WW†]) by PW,G, and the law of a zero

mean covariance E
[
WnW

†
n

]
Gaussian NC

(
0,E

[
WnW

†
n

])
by PWn,G we obtain from

the lower semi-continuity of relative entropy that

lim
n→∞

D (PWn‖PWn,G) ≥ D (PW‖PW,G) . (297)

7By weak convergence we refer to the standard definition of weak convergence of probability
measures [28, Chapter 17]. Functional analysts would have perhaps preferred to refer to it as
weak* convergence.
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But
D (PWn‖PWn,G) = log(πe)ν + log det E

[
WnW

†
n

]− h(Wn) (298)

and
D (PW‖PW,G) = log(πe)ν + log det E

[
WW†]− h(W) (299)

so that since log det E
[
WnW

†
n

]→ log det E
[
WW†] we obtain

lim
n→∞

h(Wn) ≤ h(W) (300)

which combines with (296) to prove Part (a).
To prove (b) define the nR × nT random matrix Z to have independent NC(0, 1)

components. We will show that

h(Hx̂ + σZ) − h(Hx̂) ≤ h(H + σZ) − h(H), ‖x̂‖ = 1. (301)

Once this relation is established, the result will follow by noting that the RHS of
(301) converges to zero as σ2 ↓ 0. (This convergence of the RHS follows from Part (a)
by stacking the nR × nT components of H and Z into vectors.)

To prove (301) express the difference in the differential entropies as a mutual
information:

h(H + σZ) − h(H) = I(Z; H + σZ)

≥ I
(
Z; (H + σZ)x̂

)
= I
(
Zx̂; Hx̂ + σZx̂

)
= I(Z; Hx̂ + σZ)

= h(Hx̂ + σZ) − h(Hx̂).

Here the inequality follows from the data processing theorem; the subsequent equal-
ity because Zx̂ is sufficient statistics for Hx̂ + σZx̂; and the subsequent equality
because Zx̂ ∼ NC(0, InR

).

Lemma 6.12. Let the nR × nT random matrix H satisfy E[‖H‖2
F] < ∞, and let

Z ∼ NC(0, InR
) be independent of H. Then for any σ > 0 the mapping from C

nT to
the real line

x 7→ h(Hx + σZ)

is continuous in x.

Proof. Let the sequence {xn} converge to x. It then follows that the sequence
{Hxn + σZ} converges weakly to Hx + σZ. By relating the differential entropy
h(Hxn + σZ) to the relative entropy between the distribution of Hxn + σZ and a
Gaussian distribution of equal second order moments, we can infer from the lower
semi-continuity of relative entropy that

lim
n→∞

h(Hxn + σZ) ≤ h(Hx + σZ). (302)

It therefore remains to prove the reverse inequality

lim
n→∞

h(Hxn + σZ) ≥ h(Hx + σZ). (303)
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By the behavior of differential entropy under scaling, it suffices to prove the
lemma for x = 0 and for all unit vectors ‖x‖ = 1. The case x = 0 is straightforward
because the inequality h(Hxn + σZ) > h(σZ) suffices, in this case, to demonstrate
(303) and therefore to prove continuity with the aid of (302). We therefore now
focus on the case where x is a unit vector. As a reminder that this is the case at
hand, we replace x with the symbol x̂, where the hat is an indication that ‖x̂‖ = 1.
Thus, {xn} now converges to x̂.

Let Z̃ ∼ N (0, InR
) be independent of H and Z. For the purposes of obtaining

uniform bounds that do not depend on the transmitted vector it will be helpful to
consider matrix extensions of Z and Z̃. Let Z and Z̃ be two independent nR × nT

random matrices, both independent of H, each of which has NC(0, 1) IID compo-
nents. By stacking the components of the matrices H and Z into nR · nT arrays, we
can invoke [29], [30], [31] to infer that the entropy power of H + σZ is concave in σ,
so that, in particular, h(H + σZ) is continuous in σ, for σ > 0. Since any continu-
ous function is also uniformly continuous on compact intervals, it follows that there
exists some σ̄ > 0 such that

h(H + β · σZ + σ̄Z̃) − h(H + β · σZ) < ε, |β − 1| ≤ 1/2. (304)

By the monotonicity of the LHS of (304) in σ̄ it thus follows that if we define
σ̃ = σ̄/1.5, then

I(H + β · σZ + β · σ̃Z̃ ; Z̃) < ε, |β − 1| ≤ 1/2. (305)

It now follows from (305) that for any x′ satisfying
∣∣‖x′‖−1 − 1

∣∣ ≤ 1/2,

I(Hx′ + σZ + σ̃Z̃ ; Z̃) = h(Hx′ + σZ + σ̃Z̃) − h(Hx′ + σZ)

= I

(
H

x′

‖x′‖ +
σ

‖x′‖Z +
σ̃

‖x′‖Z̃ ; Z̃

)

= I

((
H +

σ

‖x′‖Z +
σ̃

‖x′‖Z̃

) x′

‖x′‖ ; Z̃
x′

‖x′‖
)

≤ I

(
H +

σ

‖x′‖Z +
σ̃

‖x′‖Z̃ ; Z̃

)
< ε,

∣∣‖x′‖−1 − 1
∣∣ ≤ 1/2 (306)

where the first inequality follows by the data processing theorem, because

Z̃
x′

‖x′‖(−−Z̃(−−H +
σ

‖x′‖Z +
σ̃

‖x′‖Z̃(−−
(
H +

σ

‖x′‖Z +
σ̃

‖x′‖Z̃

) x′

‖x′‖
form a Markov chain, and where the last inequality follows from (305) with β =
1/‖x′‖.

It now follows from (306) that for
∣∣‖x′‖−1 − 1

∣∣ ≤ 1/2,

h(Hx′ + σZ) ≥ h(Hx′ + σZ + σ̃Z̃) − ε

≥ h
(
Hx̂ + H(x′ − x̂) + σZ + σ̃Z̃

∣∣∣H(x′ − x̂) + σ̃Z̃
)
− ε

= h
(
Hx̂ + σZ

∣∣∣H(x′ − x̂) + σ̃Z̃
)
− ε
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= h
(
Hx̂ + σZ

)
− I
(
Hx̂ + σZ ; H(x′ − x̂) + σ̃Z̃

)
− ε (307)

where the second inequality follows because conditioning cannot increase differential
entropy. Expanding the mutual information term we obtain:

I
(
Hx̂ + σZ ; H(x′ − x̂) + σ̃Z̃

)
= h

(
H(x′ − x̂) + σ̃Z̃

)− h
(
H(x′ − x̂) + σ̃Z̃

∣∣Hx̂ + σZ
)

(308)

≤ nR log

(
E[‖H‖2

F]

nR

‖x′ − x̂‖2 + σ̃2

)
− nR log σ̃2. (309)

Here the inequality follows by noting that because Z̃ is Gaussian and independent
of H(x′ − x̂) even conditional on Hx̂ + σZ

h
(
H(x′ − x̂) + σ̃Z̃|Hx̂ + σZ

) ≥ h
(
σ̃Z̃
)

= nR log
(
πeσ̃2

)
and because among all random vectors of a given expected squared-norm, differential
entropy is maximized by the one whose components are IID Gaussian, so that

h
(
H(x′ − x̂) + σ̃Z̃

) ≤ nR log
(
πeE

[
‖H(x′ − x̂) + σ̃Z̃‖2

]
/nR

)
= nR log

(
πe
(
E
[‖H(x′ − x̂)‖2

]
+ nRσ̃

2
)
/nR

)
≤ nR log

(
πe
(
E
[‖H‖2

F

] ‖x′ − x̂)‖2/nR + σ̃2
))
.

Inequalities (307) and (309) combine to prove that

lim
n→∞

h
(
Hxn + σZ

)
≥ h

(
Hx̂ + σZ

)
− ε (310)

and since ε > 0 was arbitrary, (303) is proved, which combines with (302) to prove
the lemma.

6.4.6 Differences between Expected-Logarithms and Entropies

Lemma 6.13. Let H be a complex random nR × nT matrix satisfying h(H) > −∞
and E[‖H‖2

F] < ∞. Let Z′ be a zero-mean complex random vector in C
nR satisfying

E[‖Z′‖2] <∞ and h(Z′) > −∞. Then the function

x 7→ nRE
[
log ‖Hx + Z′‖2

]− h(Hx + Z′) (311)

is a bounded function of x ∈ C
nR.

Proof. We begin by using Jensen’s inequality to upper bound nRE[log ‖Hx + Z′‖2]
to obtain for every x 6= 0

nRE
[
log ‖Hx + Z′‖2

] ≤ nR log E
[‖Hx + Z′‖2

]
= nR log

(
E
[‖Z′‖2

]
+ E

[‖Hx‖2
])

≤ nR log
(
E
[‖Z′‖2

]
+ E

[‖H‖2
] ‖x‖2

)
(312)
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= nR log

(
E[‖Z′‖2] + E[‖H‖2] ‖x‖2

‖x‖2

)
+ nR log ‖x‖2

≤ nR log

(
E[‖Z′‖2] + E[‖H‖2

F] ‖x‖2

‖x‖2

)
+ nR log ‖x‖2.(313)

We next lower bound h(Hx + Z′) by conditioning on Z′ to obtain:

h(Hx + Z′) ≥ h(Hx)

= h

(
H

x

‖x‖
)

+ 2 log ‖x‖nR

≥ inf
‖x̂‖=1

h(Hx̂) + 2 log ‖x‖nR (314)

where the equality follows from the behavior of differential entropy under the scaling
of complex random vectors, and where the RHS of the last inequality is finite by
Lemma 6.6.

Combining (313) and (314) we obtain the upper bound:

nRE
[
log ‖Hx + Z′‖2

]− h(Hx + Z′) ≤
nR log

(
E[‖Z′‖2] + E[‖H‖2

F] ‖x‖2

‖x‖2

)
− inf

‖x̂‖=1
h(Hx̂) (315)

which demonstrates that the mapping (311) is bounded outside the unit ball. To
demonstrate that the mapping is also bounded inside the unit ball, we note that

nRE
[
log ‖Hx + Z′‖2

]− h(Hx + Z′) ≤
nR log

(
E
[‖Z′‖2

]
+ E

[‖H‖2
F

] ‖x‖2
)− h(Z′) (316)

which follows from (312) and the inequality h(Hx + Z′) ≥ h(Z′).

The following lemma is provided for completeness. It will not be used in sub-
sequent sections. It demonstrates that if Z is Gaussian, then the mapping (311) is
continuous:

Lemma 6.14. Let H be a complex random nR × nT matrix satisfying h(H) > −∞
and E[‖H‖2

F] <∞. Fix some σ2 > 0 and let Z ∼ NC(0, σ2InR
) be independent of H.

Then the function

x 7→ nRE
[
log ‖Hx + Z‖2

]− h(Hx + Z) (317)

is a continuous function of x ∈ C
nR.

Proof. By Lemma 6.12 continuity will be established once we demonstrate that the
mapping

x 7→ E
[
log ‖Hx + Z‖2

]
(318)

is continuous. Let {xn} converge to x. We now have

E
[
log ‖Hxn + Z‖2

]
=

∫
H

∫
z

log ‖Hxn + z‖2 dFZ(z) dFH(H).
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By the explicit formula for the expectation of the logarithm of a non-central chi-
squared random variable (215) it follows that the inner integral converges, i.e., that

lim
n→∞

∫
log ‖Hxn + z‖2 dFZ(z) =

∫
log ‖Hx + z‖2 dFZ(z), ∀H. (319)

The required continuity now follows from the Dominated Convergence Theorem as
follows: We first note that ‖Hxn + Z‖2 is by Lemma 6.2 stochastically larger than
‖Z‖2 so that by the monotonicity of the logarithmic function

E
[
log ‖Hxn + Z‖2

] ≥ E
[
log ‖Z‖2

]
= log σ2 + ψ(nR), ∀H. (320)

Next, we note that by Jensen’s inequality and the definition of the norm

E
[
log ‖Hxn + Z‖2

] ≤ log E
[‖Hxn + Z‖2

]
= log

(‖Hxn‖2 + nRσ
2
)

≤ log
(‖H‖2‖xn‖2 + nRσ

2
)
, ∀H. (321)

The RHS of (320) is integrable with respect to H, and the condition E[‖H‖2
F] < ∞

implies that the RHS of (321) is also integrable with respect to H. Consequently, the
conditions of the Dominated Convergence Theorem hold, and the required continuity
is established.

6.4.7 Change of Coordinates

The behavior of differential entropy under coordinate transformations is governed by
the corresponding behavior of joint densities. Here we mention some of the results
that will be used repeatedly.

We begin by relating the differential entropy of a positive random variable to the
differential entropy of its logarithm and of its square.

Lemma 6.15. Let S ≥ 0 be a non-negative real random variable. Then

h(logS) = h(S) − E[log S] (322)

and
h(S2) = h(S) + E[logS] + log 2. (323)

Proof. To prove (322) let T = logS, and let fS(s) be the density function of S. The
density fT (t) of T is then

fT (t) = et · fS(et), t ∈ R

so that
− log fT (T ) = − log fS(S) − logS

from which (322) follows upon taking expectations.
To prove (323) let T = S2, and let fS(s) be the density function of S. Then the

density fT (t) of T is

fT (t) =
1

2
√
t
· fS

(√
t
)
, t ≥ 0.

so that
− log fT (T ) = − log fS(S) + logS + log 2

from which (323) follows again upon taking expectations.
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We next relate the differential entropy of a complex random variable to the joint
differential entropy of it magnitude and phase:

Lemma 6.16. Let W be a complex random variable of differential entropy h(W ).
Let |W | ≥ 0 and −π ≤ Θw < π be two real random variables designating the
magnitude and phase of W , so that W = |W | · ejΘw . Let h

(|W |,Θw

)
denote the

joint differential entropy of the pair (|W |,Θw) when the pair is viewed as a pair of
real random variables. Then

h(W ) = h
(|W |,Θw

)
+ E[log |W |] . (324)

In particular, if W is circularly symmetric then

h(W ) = log 2π + h(|W |) + E[log |W |] (325)

= log π + h
(|W |2), W circularly symmetric. (326)

Proof. The differential entropy h(W ) is given by −E[log fW (W )] where fW is the
joint density function of the real and imaginary parts of W with respect to the
Lebesgue measure on R

2. The result now follows by relating the density fW and the
density f|W |,Θw(|w|, θw) with respect to polar coordinates:

fW (w) · |w| = f|W |,Θw(|w|, θw).

Equation (326) is a consequence of (323).

The extension of this result to complex vectors is slightly more intricate. In the
following we shall relate the differential entropy h(W) of a complex random vector
in C

m to some entropy-like quantities related to its magnitude ‖W‖ and its direction

Ŵ =
W

‖W‖ . (327)

To express the desired result we shall need a differential entropy-like quantity for
random vectors that take value on the unit-sphere in C

m.
Let λ denote the area measure on the unit sphere in C

m. Let cm denote the area
of the entire unit-sphere, so that

cm =
2πm

Γ(m)
. (328)

If a random vector G takes value in the unit-sphere and has the density fλ
G(g)

with respect to λ, then we shall let

hλ(G) = −E
[
log fλ

G(G)
]

(329)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant under translation,

so is hλ(G) invariant under rotation. That is, if V is a deterministic unitary matrix,
then

hλ(VG) = hλ(G). (330)

Also note that if G is uniformly distributed on the unit sphere, then hλ(G) = log cm.
(Recall that we use cm to denote the surface of the unit-sphere — see (328).)
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If W is any random vector, and if conditional on W = w the random vector G
has density fλ

G|W(g|W = w) then we can define

hλ(G|W = w) = −E
[
log fλ

G|W(G|W = w)
]

(331)

and we can define hλ(G|W) as the expectation (with respect to W) of hλ(G|W =
w).

Lemma 6.17. Let W be a complex random vector taking value in C
m and of dif-

ferential entropy h(W). Let ‖W‖ denote its norm and Ŵ denotes its direction as
in (327). Then

h(W) = h(‖W‖) + hλ

(
Ŵ
∣∣ ‖W‖

)
+ (2m− 1)E[log ‖W‖] (332)

whenever all the quantities in (332) are defined. Here the first term on the right is
the differential entropy of ‖W‖ when viewed as a real (scalar) random variable.

Proof. Omitted.

6.5 Isotropic Distribution

In this section we recall the definition and some properties of isotropically distributed
vectors and matrices.

Definition 6.18. A random vector X taking value in C
n is said to be uniformly

distributed over the unit sphere if ‖X‖ = 1 with probability one, and if for any
deterministic unitary matrix V the distribution of VX is identical to the distribution
of X.

Definition 6.19. A random vector X ∈ C
n is said to be isotropically distributed if

one of the following equivalent conditions holds:

(a) For any deterministic n×n unitary matrix V the distribution of VX is identical
to the distribution of X.

(b) The random vector X can be written in the form X = RX̂, where R ≥ 0 is a
non-negative random variable; X̂ is uniformly distributed over the unit sphere
in C

n; and the pair (R, X̂) are independent.

(c) For any random n× n unitary matrix V that is independent of X, the law of
X is identical to the law of VX.

The most important example of an isotropically distributed random vector X is
the one whose components are IID NC(0, 1). Any multiplication of such a vector
by an independent non-negative random variable also results in an isotropically
distributed random vector.

Definition 6.20. We shall say that a random n × n unitary matrix U is Haar
distributed if it is distributed according to the Haar measure on the set of all unitary
n × n matrices. That is, if U is with probability one unitary, and if for any n × n
deterministic unitary matrix V the law of VU is identical to the law of U.
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Definition 6.21. We shall say that an n × n random matrix A is isotropically
distributed if for any deterministic n×n unitary matrix V the law of VA is identical
to the law of A.

Lemma 6.22. Let A by an n× n isotropically distributed random matrix. Then

1. For any deterministic vector x ∈ C
n, the vector Ax is isotropically distributed.

2. For any random vector X ∈ C
n that is independent of A, the vector AX is

isotropically distributed.

3. Each of the columns of A is an isotropically distributed random vector.

4. If V is any deterministic unitary n× n complex matrix, then the law of AV is
identical to the law of A.

5. If U is any random unitary n × n matrix that is independent of A, then the
law of AU and the law of UA are both identical to the law of A.

Proof. Omitted.

We turn now to rotation-commutative matrices. See Definition 4.23.

Lemma 6.23. Let A be an n× n random rotation commutative matrix.

(a) If ê1 and ê2 are two deterministic unit-vectors, then the distributions of ‖Aê1‖
and of ‖Aê2‖ are identical. Equivalently, if X is independent of A, then
‖AX‖/‖X‖ is independent of X and has a law that is identical to the law
of ‖Aê‖, for any deterministic unit vector ê.

(b) If X is an isotropically distributed random n-vector that is independent of A,
then the random vector AX is isotropically distributed.

(c) Let ê ∈ C
n be some arbitrary deterministic unit-vector. For every determinis-

tic unit vector x̂ ∈ C
n let Vx̂ be some deterministic unitary matrix such that

Vx̂ê = x̂. Let X be an arbitrary random vector in C
n that is independent of

A. Then conditional on X/‖X‖ = x̂, on ‖X‖ = ‖x‖, and on ‖AX‖/‖X‖ the
distribution of V†

x̂AX/‖AX‖ does not depend on (x̂, ‖x‖).
Proof. To prove (a) let V be some deterministic unitary matrix such that V ê1 = ê2.
Then because V is unitary we have

‖Aê2‖ = ‖VV†
AVê1‖

= ‖V†
AVê1‖

and the result now follows because A is rotation commutative so that the law of
V†

AV is the same as the law of A.
To prove (b) we shall show that for any deterministic unitary n × n matrix

V, the law of VAX is identical to the law of AX. Let V be such a matrix. Then
VAX = VAV†VX, which can also be written as (VAV†)(VX) from which the result is
apparent because the the fact that A is isotropically distributed implies that the law
of (VAV†) is the same as the law of A, and the fact that X is isotropically distributed
implies that the law of (VX) is the same as the law of X. The independence of A
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and X guarantees that the law of the product (VAV†)(VX) is determined by the
individual laws of each of the terms.

The proof of (c) relies on expressing V†
x̂AX/‖AX‖ as

V†
x̂

AX

‖AX‖ =

(
V†

x̂AVx̂

)
ê

‖(V†
x̂AVx̂

)
ê‖ (333)

and noting that, because A is isotropically distributed, the law of V†
x̂AVx̂ is identical

to the law of A.

7 Summary and Conclusions

In this paper we have proposed a technique for deriving upper bounds on channel
capacity and demonstrated its use by studying the capacity of multi-antenna sys-
tems operating over flat fading channels with neither receiver nor transmitter side
information. Extensions to receivers with partial side information were also consid-
ered. This technique has been subsequently successfully employed in the study of
the capacity of other channels such as finite state channels with only inter-symbol
interference memory [17, Section 4.6] [3], and channels with both additive noise and
phase noise [4].

The technique is based on the inequality (11), which we extended to continuous
alphabets in (192) of Theorem 5.1. To derive an upper bound on mutual information
(and ultimately on channel capacity) one would typically start by judiciously picking
some family of distributions on the output alphabet. Applying (192) to any output
distribution R(·) in the family leads to an upper bound on mutual information, and
if the family is sufficiently rich, the tightest such bound may be quite good.

In the study of multi-antenna flat fading channels we have had some success with
the family of output distributions of densities (210). By applying (192) to output
distributions R(·) in this family we obtained the upper bound (25). It should,
however, be noted that (25) is not specific to fading channels. It can be applied to
any channel taking output in Euclidean space.

For channels taking value in the non-negative reals, we considered the family
of regularized Gamma distributions (205), which leads (via Theorem 5.1) to the
inequality (30). This inequality can be useful in the study of non-coherent channels
where the channel output has a non-negative sufficient statistic. See, for example,
[4] for an application of this inequality to non-coherent communication.

Using Inequality (25) we derived upper bounds on the capacity of Rayleigh and
Ricean fading channels in the absence of any receiver side information. These bounds
were complemented by some new lower bounds. The bounds are tight in the sense
that their difference from capacity tends to zero at high SNR and in the sense that
their ratio to channel capacity approaches one at low SNR. For the Ricean model,
where the fading is NC(d, 1) distributed, our bounds indicate the following: Up
to some threshold, which is nearly a rate of log(1 + |d|2), Gaussian inputs with
nearest-neighbor decoding that ignores the fading are nearly optimal. Above this
threshold, one needs more sophisticated coding and decoding techniques to achieve
capacity, but capacity soon grows so slowly with the SNR that communication
becomes extremely power inefficient, and thus of only limited engineering interest.
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The poor power efficiency of communication over flat fading channels at high
SNR is not specific to the Ricean model. We have demonstrated that under very
general conditions, even allowing for memory and partial receiver side informa-
tion, channel capacity typically grows only double-logarithmically with the SNR;
see Theorem 4.1. In an attempt to better understand the high SNR behavior of
channel capacity and to assess the rate above which capacity only increases double-
logarithmically in the SNR, we have introduced the “fading number” χ as

χ = lim
SNR→∞

{
C(SNR) − log log SNR

}
. (334)

For channels for which the limsup in (334) is actually a limit, capacity at high SNR
can be expressed as

C(SNR) = log log SNR + χ+ o(1) (335)

where the o(1) term decays to zero as the SNR tends to infinity. In this sense χ is
the second order term in the high SNR capacity expansion. It is also in this sense
that it would seem that at rates that are significantly higher that χ, communication
becomes power inefficient and capacity increases only double-logarithmically in the
SNR.

Motivated by these interpretations of the fading number, we set out to compute
its value. This computation was significantly simplified by Theorem 4.6, which
allowed us to replace the additive noise with a minimal input power constraint
without altering the high SNR asymptotics. The proof of this theorem hinges on
the notion of “capacity achieving input distributions that escape to infinity”, which
also has applications in the high SNR analysis of other channels with costs [4].

Loosely speaking, we say that the capacity of a channel can be achieved by input
distributions that escape to infinity if the high SNR channel capacity asymptotics
can be achieved even if the channel input are subjected to an additional input
constraints that only allows inputs of a given minimal cost. It turns out that, in
addition to some technical conditions, for a channel to have this property it suffices
that its capacity grows sub-linearly to infinity in the cost; see Theorem 4.11. We
hope that this observation may be of some use in the study of the high SNR capacity
of other channels.

By replacing the additive noise with a minimal energy constraint we were able
to compute the fading number of some memoryless fading channels including SISO
channels (with Rayleigh and Ricean channels as special cases), the fading number
for SIMO channels, and the fading number for MISO channels. The latter was
shown to be achievable using beam forming. Note, however, that the beam forming
“direction” (113) is not typically the one that maximizes the SNR in the resulting
SISO channel. In the Gaussian fading case, it is the direction that maximizes the
specular-to-granular fading ratio (115).

For fading channels with memory the computation of the fading number is more
intricate. Theorem 4.30 solves the problem for the SISO case. It hinges on the
fact that the fading number of a memoryless SISO system can be achieved by input
distributions that do not depend on the fading law and that are bounded away
from zero so that from past inputs and outputs one can arbitrarily well estimate
past fading levels. These properties also hold for SIMO channels, but not for MISO
systems.
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If the fading process is a stationary and ergodic Gaussian process then the fading
number takes on a particularly simple form; see Corollary 4.31. It is interesting that
for such fading and in the absence of any receiver side information, the fading number
is determined by the (normalized) specular component and the mean squared error
in prediction the fading value from its past. It is not directly related to such concepts
as the Doppler-spread or coherence-time.

It is instructive to compare the high SNR behavior of channel capacity C(SNR)
in the absence of side information (335) with the behavior in its presence CPSI(SNR).
In its presence — if perfect — capacity (for IID zero-mean Gaussian fading) typically
grows logarithmically in the SNR [16], [32], with

lim
SNR→∞

{
CPSI(SNR) − min{nT, nR} · log SNR

}
> −∞ (336)

which is in stark contrast to (335).
(The formula we derived for the expectation of the logarithm of a non-central

chi-square random variable (215) also allows us to evaluate the high SNR channel
capacity of some fading channels with a non-zero mean in the presence of perfect re-
ceiver side information, e.g., the Ricean channel (187) and SIMO Gaussian channels
with mean.)

Other models also lead to results that are dramatically different from (335). For
example, the block constant fading model of [33] was analyzed at high SNR in [34].
It was shown there that at high SNR capacity is given asymptotically as

M∗(1 −M∗/T ) log SNR +O(1) (337)

where M∗ = min{nT, nR, bT/2c} and T ≥ 2 is the number of symbols over which
the channel remains constant.

It is thus seen that the high SNR, the behavior of the capacity of fading channels
depends critically on the assumed fading model.

A Low SNR Analysis

In this appendix we discuss the bound (27) at low SNR. In particular, we show that
the choice α = nR and A satisfying A†A = (E

[
YY†])−1 yields the max-entropy bound

(28) and demonstrate that this bound is tight enough to give the right capacity-
energy slope at zero SNR. We begin with the former task.

Substituting α = nR in (27) yields the bound

I(Q;W ) ≤ log(π · e)nR + nR log EQ

[‖AY‖2
]

− log det (AA†) − nR log nR − hQ(Y|X).

Computing EQ[‖AY‖2] and substituting A†A = (E
[
YY†])−1 yields

EQ

[‖AY‖2
]

= tr
(
E
[
AY(AY)†

])
= tr

(
AE
[
YY†]A†)

= tr
(
AE
[
YY†]A†AA−1

)
= tr

(
AA−1

)
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= nR

and
− log det (AA†) = log det E

[
YY†]

thus establishing (28).
We now turn to demonstrating tightness at low SNR. Using the bound h(Y|X) ≥

h(Y|X,H) = h(Z) we obtain from (28)

I(X;Y) ≤ log det

(
I +

E
[
HXX†

H
†]

σ2

)

≤ 1

σ2
tr
(
E
[
HXX†

H
†])

=
1

σ2
E
[‖HX‖2

]
≤ 1

σ2
E
[‖X‖2

]
max
‖x̂‖=1

E
[‖Hx̂‖2

]
≤ Es

σ2
max
‖x̂‖=1

x̂†E
[
H

†
H
]
x̂

=
Es

σ2
λmaxE

[
H

†
H
]

where λmaxE
[
H

†
H
]

denotes the maximal eigenvalue of the matrix E
[
H

†
H
]
. At low

SNR this agrees with the asymptotic expression [35]

lim
Es↓0

σ2

Es

C(Es/σ
2) = λmaxE

[
H

†
H
]
. (338)

B A Proof of Theorem 4.1

Proof. In view of Lemma 4.3 it suffices to prove this theorem in the case where the
fading is memoryless, the additive noise is memoryless, and the side information is
null. Consequently, to simplify notation, we remove all time indices. Also, since the
mean of the noise can be subtracted off at the receiver, we shall assume throughout
E[Z′] = 0.

The proof of the theorem is based on a study of the bound (27) when it is applied
to input distributions Q satisfying the average power constraint EQ[‖X‖2] ≤ Es. In
fact, it will suffice to consider (27) with the possibly sub-optimal choice of the matrix
A as the identity matrix:

I(Q;W ) ≤ log πnR − log Γ(nR) + nREQ

[
log ‖Y‖2

]− hQ(Y|X)

+α
(
1 + log EQ

[‖Y‖2
]− EQ

[
log ‖Y‖2

])
+ log Γ(α) − α logα, α > 0. (339)

We begin noting that by Lemma 6.13

sup
x∈C

nR

{
nRE

[
log ‖Y‖2

∣∣X = x
]− h(Y|X = x)

}
<∞ (340)
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and consequently

sup
Q

{
nRE

[
log ‖Y‖2

]− hQ(Y|X)
}
<∞ (341)

where the supremum is over all input distributions, irrespective of their power.
We now continue the proof of the theorem with a study of the remaining terms

in (339). We begin by noting that if log E[‖Y‖2] − E[log ‖Y‖2] does not approach
infinity with the SNR, then the theorem follows directly from (339) and (341) by
choosing any fixed α > 0. In fact, in this case the capacity is bounded in the SNR.

The more interesting case is, of course, when log E[‖Y‖2]−E[log ‖Y‖2] does tend
to infinity with the SNR. In this case we shall derive the theorem by focusing on
(339) with the choice,

α∗ =
(
1 + log E

[‖Y‖2
]− E

[
log ‖Y‖2

])−1
(342)

where α∗ ↓ 0 with the SNR.
For small values of α∗ we note that since Γ(z) is analytic at z = 1 with Γ(1) = 1,

we obtain from the relationship

Γ(α) =
1

α
Γ(α+ 1)

that

log Γ(α∗) = log
1

α∗ + o(1) (343)

where the correction term o(1) tends to zero as α∗ tends to zero. Consequently,
since α∗ logα∗ = o(1) we obtain from (339) and (342) the bound

C ≤ nR log π − log Γ(nR) + sup
x∈CnR

{
nRE

[
log ‖Y‖2

∣∣X = x
]− h(Y|X = x)

}
+ 1 + log

1

α∗ + o(1). (344)

The theorem will now follow from (340) and (344) once we obtain the logarithmic
bound on 1/α∗:

1

α∗ = 1 + log E
[‖Y‖2

]− E
[
log ‖Y‖2

]
≤ 1 + log

(
E
[‖H‖2

F

] Es + E
[
‖Z′‖2

])
− inf

c∈C
nR

E
[
log ‖Z′ + c‖2

]
(345)

where the last term in the above is finite by (262) (evaluated at δ = 1).
This bound can be derived by upper bounding log E[‖Y‖2] by

log E
[‖Y‖2

]
= log

(
E
[‖HX‖2

]
+ E

[‖Z′‖2
])

≤ log
(
E
[‖H‖2

]
E
[‖X‖2

]
+ E

[‖Z′‖2
])

≤ log
(
E
[‖H‖2

F

] Es + E
[‖Z′‖2

])
(346)

and by lower bounding E[log ‖Y‖2] by

E
[
log ‖Y‖2

]
= E

[
log ‖HX + Z′‖2

]
(347)

≥ inf
c∈CnR

E
[
log ‖Z′ + c‖2

]
(348)

as can be justified by the independence of HX and Z′.
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C A Proof of Theorem 4.2

Proof. In view of Lemma 4.3 it suffices to prove this in the memoryless case. We
shall therefore proceed to treat this case, and dispense of all time indices.

Expanding the mutual information term we obtain using the data processing
inequality

I
(√EsX;

√
EsHX + Z′) ≤ I

(√EsX;
√

EsHX
)

= I
(
X; HX

)
= h(HX) − h(HX|X)

= h(HX) − 2nRE[log ‖X‖] − h

(
H

X

‖X‖
∣∣∣∣X
)
.

The proof is now concluded by noting that, since IID Gaussians maximize differential
entropy subject to an expected squared-norm constraint

h(HX) ≤ nR log
πeE[‖HX‖2]

nR

≤ nR log
πeE[‖H‖2 · ‖X‖2]

nR

= nR log
πeE[‖H‖2]

nR

<∞
and by noting that by Lemma 6.6

h

(
H

X̃

‖X̃‖

∣∣∣∣∣ X̃
)

≥ inf
‖x̂‖=1

h(Hx̂)

> −∞.

D A proof of Lemma 4.3

Proof. The first inequality is a simple consequence of the chain rule and the basic
properties of mutual information:

I(Xn
1 ;Yn

1 ,S
n
1 ) = I(Xn

1 ;Yn
1 ) + I(Xn

1 ;Sn
1 |Yn

1 )

= I(Xn
1 ;Yn

1 ) + I(Xn
1 ,Y

n
1 ;Sn

1 ) − I(Yn
1 ;Sn

1 )

≤ I(Xn
1 ;Yn

1 ) + I(Xn
1 ,Y

n
1 ;Sn

1 )

≤ I(Xn
1 ;Yn

1 ) + I(Xn
1 ,Y

n
1 ,H

n
1 ;Sn

1 )

= I(Xn
1 ;Yn

1 ) + I(Hn
1 ;Sn

1 ).

The second inequality can be argued by using the chain rule to write

I(Xn
1 ;Yn

1 ) =

n∑
k=1

I(Xn
1 ;Yk|Yk−1

1 ) (349)
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and by studying the term I(Xn
1 ;Yk|Yk−1

1 ) as follows:

I(Xn
1 ;Yk|Yk−1

1 ) = I(Xn
1 ,Y

k−1
1 ;Yk) − I(Yk;Y

k−1
1 )

≤ I(Xn
1 ,Y

k−1
1 ;Yk)

= I(Xk−1
1 ,Yk−1

1 ,Xk;Yk)

≤ I(Xk−1
1 ,Yk−1

1 ,Hk−1
1 ,Z

′k−1
1 ,Xk;Yk)

= I(Hk−1
1 ,Z

′k−1
1 ,Xk;Yk)

= I(Xk;Yk) + I(Hk−1
1 ,Z

′k−1
1 ;Yk|Xk)

= I(Xk;Yk) + I(Hk−1
1 ,Z

′k−1
1 ;Xk,Yk)

≤ I(Xk;Yk) + I(Hk−1
1 ,Z

′k−1
1 ;Z′

k,Hk,Xk,Yk)

= I(Xk;Yk) + I(Hk−1
1 ,Z

′k−1
1 ;Z′

k,Hk)

= I(Xk;Yk) + I(Hk; H
k−1
1 ) + I(Z′

k;Z
′k−1
1 )

≤ I(Xk;Yk) + I(Hn; Hn−1
1 ) + I(Z′

n;Z
′n−1
1 ).

E A Proof of Lemma 4.5

Proof. To simplify notation we shall prove this lemma for the memoryless case. The
general case follows along similar lines but with more cumbersome notation. We
prove this lemma in two steps. In the first we shall show that χ(H) is invariant with
respect to multiplication by a deterministic matrix on the right, namely,

χ(HF) = χ(H), det F 6= 0. (350)

In the second step we shall demonstrate invariance on the left, i.e.,

χ(GH) = χ(H), det G 6= 0. (351)

To prove (350) it suffices to show

χ(H) ≤ χ(HF), det F 6= 0, (352)

because an application of the inequality to the random matrix HF and the deter-
ministic matrix F−1 will prove the reverse inequality.

To proceed with the proof of (352) we write:

I(X; HX + Z) = I(F−1X; HX + Z)

= I(F−1X; HFF−1X + Z)

= I(X̃; HFX̃ + Z)

where X̃ = F−1X. We now note that

E
[
‖X̃‖2

]
≤ ‖F−1‖2E

[‖X‖2
]

(353)

so that the capacity of the channel X 7→ HX+Z with average power Es is no larger
than the capacity of the channel X̃ 7→ HFX̃+Z with average power ‖F−1‖2Es. This
proves (352) in view of (46).
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We next prove (351) for which it suffices to show

χ(H) ≤ χ(GH), det G 6= 0. (354)

To prove (354) write

I(X; HX + Z) = I(X; GHX + GZ)

= I(X; GHX + Z̃)

where Z̃ ∼ NC

(
0, σ2GG†) can be written as Z̃ = Z̃1 + Z̃2 where Z̃1 and Z̃2 are

independent zero-mean circularly symmetric multi-variate Gaussians of covariances
σ2λminInR

and σ2GG†−σ2λminInR
respectively. Here λmin denotes the minimal eigen-

value of GG†. Thus we have

I(X; HX + Z) = I(X; GHX + Z̃)

= I(X; GHX + Z̃1 + Z̃2)

≤ I(X; GHX + Z̃1).

We thus conclude that the capacity of the channel X 7→ HX+Z with noise variance
σ2 (and SNR given by Es/σ

2) is no larger than the capacity of the channel with
fading matrix GH and noise variance σ2λmin (and SNR given by Es/(σ

2λmin)). This
demonstrates (354) in view of (46).

F A proof of Theorem 4.11

Proof. Fix some Υ0 > 0 and let K = {x ∈ X : g(x) ≤ Υ0}. For any υ > 0 and any
probability law Q on X define

Ĩυ(Q) = I(Q;W ) − υEQ[g(X)]

=

∫
X

(
D
(
W (·|x)∥∥(QW )(·))− υg(x)

)
dQ(x). (355)

Define also the function F (υ) for any υ > 0 by

F (υ) = sup
Q
Ĩυ(Q)

= max
Υ≥0

{
C(Υ) − υΥ

}
.

Note that the concavity of C(·) and its sub-linear growth imply

lim
Υ↑∞

C ′
−(Υ) = lim

Υ↑∞
C ′

+(Υ) = 0 (356)

where C ′
−(Υ) and C ′

+(Υ) denote the left and right derivatives of C(·) at Υ. This
observation combined with the duality F (·) ↔ C(·) [1, Lemma 3.1, Section 2.3] and
the observation that if two probabilities measures assign a small probability to K
then so does any convex combination of the two, show that to prove the theorem
it suffices to show that for any ε > 0 and any υ > 0 there exists some law Qυ such
that

Ĩυ(Qυ) > F (υ) − ε (357)
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and such that
lim
υ↓0

Qυ(K) = 0. (358)

To prove this we begin by noting that the RHS of (357) approaches infinity as
υ ↓ 0. Indeed,

F (υ) = max
Υ≥0

{
C(Υ) − υΥ

}
≥ C(Υ) − υΥ

∣∣
Υ=1/υ

C(1/υ) − 1

→ ∞ (359)

where the last step follows by the unboundedness of C(·).
Fix now some ε > 0. For any υ > 0 let Q

(1)
υ satisfy

Ĩυ
(
Q(1)

υ

)
> F (υ) − ε. (360)

By the finiteness of
Dmax = sup

x,x′∈K
D
(
W (·|x)∥∥W (·|x′)) (361)

which implies

sup
Q(K)=1

Ĩυ(Q;W ) ≤ sup
Q(K)=1

I(Q;W ) <∞, υ > 0 (362)

it follows from (359) that for all sufficiently small υ > 0 we have Q
(1)
υ (Kc) > 0. We

can therefore define a probability measure Q
(0)
υ as the conditional distribution of

Q
(1)
υ conditioned on x /∈ K, i.e., for any Borel set B in Y

Q(0)
υ (B) =

Q
(1)
υ (B ∩ Kc)

Q
(1)
υ (Kc)

. (363)

Note that
Q(0)

υ (K) = 0. (364)

Consider now
Qυ,θ = (1 − θ)Q(1)

υ + θQ(0)
υ , 0 ≤ θ ≤ 1 (365)

and let θ∗ achieve the maximum of the mapping θ 7→ Ĩυ(Qυ,θ) on the interval 0 ≤
θ ≤ 1. Let Qυ = Qυ,θ∗ . By its construction it follows that Ĩυ(Qυ) ≥ Ĩυ(Q

(1)
υ ) so that

by (360)
Ĩυ
(
Qυ

)
> F (υ) − ε. (366)

We now proceed to study Qυ(K). If θ∗ = 1 then Qυ = Q
(0)
υ so that by (364)

Qυ(K) = 0 and Qυ has fully “escaped” from K. Otherwise, we note that if we define

Qυ,λ = (1 − λ)Qυ + λQ(0)
υ (367)

then the construction of Qυ guarantees that, as a function of 0 ≤ λ ≤ 1, Ĩυ
(
Qυ,λ

)
is

maximized at λ = 0, so that
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0 ≥ ∂

∂λ
Ĩυ
(
(1 − λ)Qυ + λQ(0)

υ

)∣∣∣∣
λ=0

=

∫ (
D
(
W (·|x)∥∥(QυW )(·))− υg(x)

)
dQ(0)

υ − Ĩυ(Qυ)

=
1

Qυ(Kc)

∫
Kc

(
D
(
W (·|x)∥∥(QυW )(·))− υg(x)

)
dQυ − Ĩυ(Qυ)

=
1

Qυ(Kc)

(
Ĩυ(Qυ) −

∫
K

(
D
(
W (·|x)∥∥(QυW )(·))− υg(x)

)
dQυ

)
− Ĩυ(Qυ)

=

(
1

Qυ(Kc)
− 1

)
Ĩυ(Qυ) − 1

Qυ(Kc)

∫
K

(
D
(
W (·|x)∥∥(QυW )(·))− υg(x)

)
dQυ

≥
(

1

Qυ(Kc)
− 1

)
Ĩυ(Qυ) − 1

Qυ(Kc)

∫
K
D
(
W (·|x)∥∥(QυW )(·)) dQυ

≥
(

1

Qυ(Kc)
− 1

)
Ĩυ(Qυ) − Qυ(K)

Qυ(Kc)

(
Dmax + log

1

Qυ(K)

)

≥
(

1

Qυ(Kc)
− 1

)
Ĩυ(Qυ) − 1

Qυ(Kc)
Dmax +Qυ(K) logQυ(K)

≥
(

1

Qυ(Kc)
− 1

)
Ĩυ(Qυ) − 1

Qυ(Kc)
Dmax − 1/e

=
Qυ(K)

Qυ(Kc)

(
Ĩυ(Qυ) −Dmax

)−Dmax − 1/e. (368)

Here the first equality follows by the direct computation of the directional derivative
of mutual information; the subsequent equality by (364); the subsequent equality
by expressing mutual information as an integral of relative entropies as in (355); the
subsequent equality by a simple algebraic manipulation; the following inequality by
the non-negativity of g(·); the next inequality follows very much like (87) by lower
bounding (QW )(y) by

∫
x∈KW (y|x) dQ and then using the convexity of relative

entropy; the next inequality follows because Qυ(K) ≤ 1; the subsequent inequality
by ξ log ξ ≥ −1/e for all ξ ≥ 0; and the final equality by simple algebra.

Using the inequality Qυ(Kc) ≤ 1 we obtain from (368)

Qυ(K) ≤ Dmax + 1/e

Ĩυ(Qυ) −Dmax

(369)

from which (358) follows by (366) and (359).

G A Proof of Theorem 4.12

Proof. In view of Theorem 4.6, any upper bound on the capacity of the channel

x 7→ Hx (370)

subject to the constraints

E
[‖X‖2

] ≤ Es, Pr
(‖X‖2 ≥ E0

)
= 1 (371)
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will give rise to an upper bound on the fading number of the channel x 7→ Hx + Z.
The upper bound of our choice is the one that is based on (25). Our proof will
thus be based on an asymptotic analysis of the bound (25) applied to the channel
x 7→ Hx.

Let {E (n)
s }∞n=1 be monotonically increasing to infinity, and let {Q(n)} be a corre-

sponding sequence of input distribution satisfying

EQ(n)

[‖X‖2
] ≤ E (n)

s , Q(n)
(‖X‖2 ≥ E0

)
= 1 (372)

and

lim
n→∞

{
I(Q(n); W̃ ) − log log

E (n)
s

E0

}
= χ

where W̃ denotes the channel x 7→ Hx.
Fix some β, δ > 0, and 0 < α < 1 and define

εδ,A = sup
‖x‖2≥E0

{
E
[
log
(‖AHx‖2 + δ

)]− E
[
log ‖AHx‖2

]}
(373)

so that the restriction 0 < α < 1 implies

(1 − α)E
[
log
(‖AHx‖2 + δ

)] ≤ (1 − α)E
[
log ‖AHx‖2

]
+ εδ,A, ‖x‖2 ≥ E0.

Consequently, by (24),

D
(
W (·|x)‖R(·)) ≤ εδ,A + δ/β

+ log πnR − log Γ(nR) − log | det A|2
+ log βα + log Γ(α, δ/β)

+ (nR − α)E
[
log ‖AHx‖2

]
+

1

β
E
[‖AHx‖2

]
−h(Hx), ‖x‖2 ≥ E0.

It thus follows from Theorem 5.1 that for any input distribution Q satisfying

‖X‖2 ≥ E0, Q-a.s. (374)

the mutual information I(Q; W̃ ) can be bounded as:

I(Q; W̃ ) ≤ εδ,A + δ/β

+ log πnR − log Γ(nR) − log | det A|2
+ sup

‖x‖2≥E0

{
nRE

[
log ‖AHx‖2

]− h(Hx)
}

+ log Γ(α, δ/β) +
1

β
EQ

[‖AHX‖2
]

+α
(
log β − EQ

[
log ‖AHX‖2

])
. (375)

The rest of the proof is dedicated to the study of the asymptotic behavior of the
various terms in the above inequality. We begin by arguing using Lemma 6.8 that
for any non-singular matrix A,

lim
δ↓0

εδ,A = 0. (376)

82



To that end, we first note that by the behavior of logarithms under scaling it suffices
to show

lim
δ↓0

sup
‖x̂‖2=1

{
E
[
log
(‖AHx̂‖2 + δ

)]− E
[
log ‖AHx̂‖2

]}
= 0. (377)

Let ε > 0 be arbitrary. By Lemma 6.8 (applied to the matrix AH) there exists some
0 < δ′ < 1/2 such that

E[log ‖AHx̂‖] ≥
∫
‖AHx̂‖2>δ′

log ‖AHx̂‖ dPH(H) − ε, ‖x̂‖ = 1. (378)

Also,

E
[
log(‖AHx̂‖2 + δ)

] ≤ ∫
‖AHx̂‖2>δ′

log(‖AHx̂‖2 + δ) dPH(H), δ + δ′ < 1, x̂ ∈ C
nT .

(379)
Consequently, for all δ < 1/2,

sup
‖x̂‖=1

E

[
log

‖AHx̂‖2 + δ

‖AHx̂‖2

]
≤ sup

‖x̂‖=1

∫
‖AHx̂‖2>δ′

log
‖AHx̂‖2 + δ

‖AHx̂‖2
dPH(H) + ε

≤ sup
‖x̂‖=1

∫
‖AHx̂‖2>δ′

log
δ′ + δ

δ′
dPH(H) + ε

≤ log

(
1 +

δ

δ′

)
+ ε

δ↓0−→ ε

from which (377) follows because ε > 0 was arbitrary.
The next term in (375) to be studied is the term EQ[log ‖AHX‖2]. For distribu-

tions Q satisfying (374) this term can be lower bounded as

EQ

[
log ‖AHX‖2

] ≥ inf
‖x‖2≥E0

E
[
log ‖AHx‖2

]
= log E0 + inf

‖x̂‖=1
E
[
log ‖AHx̂‖2

]
= log E0 + η(A) (380)

where the last equality should be taken as a definition for η(A).
Notice that

−∞ < η(A) <∞ (381)

as can be argued as follows. The lower bound on η(A) in (381) can be argued using
Lemma 6.7 Part (f) applied to the matrix AH. The upper bound on η(A) in (381)
can be verified using the concavity of the logarithm function and Jensen’s inequality.

Having established (381) we continue with the proof of the theorem. Combining
(375) and (380) we obtain:

I(Q; W̃ ) ≤ εδ,A + δ/β

+ log πnR − log Γ(nR) − log | det A|2
+ sup

‖x̂‖=1

{
nRE

[
log ‖AHx‖2

]− h(Hx)
}

83



+ log Γ(α, δ/β) +
1

β
EQ

[‖AHX‖2
]

+α
(
log β − log E0 − η(A)

)
. (382)

It now follows from (382) and (376) that in order to conclude the proof of the
theorem it will suffice to establish that there exist parameters α(n) and β(n) such
that

lim
n↑∞

{
δ

β(n)
+

(
log Γ(α(n), δ/β(n)) − log

1

α(n)

)
+

α(n)
(
log β(n) − log E0 − η(A)

)
+

1

β(n)
EQ(n)

[‖AHX‖2
]
+

log
1

α(n)
− log log

E (n)
s

E0

}
< o(δ). (383)

This inequality is trivial if EQ(n) [‖AHX‖2] is bounded, because in that case the LHS

tends to −∞ for any fixed values of α(n) and β(n). Therefore, by possibly passing
to a sub-sequence, it suffice to treat the case where

lim
n→∞

EQ(n)

[‖AHX‖2
]

= ∞. (384)

A choice of the parameters α(n) and β(n) that will demonstrate (383) is:

α(n) =
δ

log EQ(n) [‖AHX‖2]
(385)

β(n) =
1

α(n)
· eδ/α(n)

. (386)

With this choice of the parameters we have for the various terms in (383):

lim
n→∞

δ

β(n)
= 0. (387)

lim
n→∞

{
log Γ(α(n), δ/β(n)) − log

1

α(n)

}
= log

(
1 − e−δ

)
(388)

(see Appendix K);

lim
n→∞

α(n)
(
log β(n) − log E0 − η(A)

)
= δ; (389)

1

β(n)
EQ(n)

[‖AHX‖2
]

= α(n) → 0; (390)

log
1

α(n)
− log log

E (n)
s

E0

= log log EQ(n)

[‖AHX‖2
]− log δ − log log

E (n)
s

E0

≤ log log
(
‖A‖2E

[‖H‖2
] E (n)

s

)
− log δ − log log

E (n)
s

E0

→ − log δ. (391)

Expressions (387)–(391) prove (383) and thus conclude the proof the theorem.
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H A proof of Proposition 4.17

Proof. Let Y = HX + Z. To derive an upper bound on the fading number in the
presence of receiver side information we invoke Lemma 4.3 (in the memoryless case)
to obtain

I(X;Y, S) ≤ I(X;Y ) + I(H;S) (392)

and then upper bound I(X;Y ) by invoking Theorem 4.13.
We now proceed with a lower bound. To that end, we choose X to be circularly

symmetric with log |X|2 being uniformly distributed over the interval (log x2
min, log Es).

Using Lemma 4.7 we have

I(X;HX + Z|S = s) ≥ I(X;HX|S = s) −
(
h

(
H +

Z

xmin

∣∣∣∣S = s

)
− h(H|S = s)

)

≥ log log
Es

x2
min

+ log π + E
[
log |H|2|S = s

]− h(H|S = s)

−
(
h

(
H +

Z

xmin

∣∣∣∣S = s

)
− h(H|S = s)

)

≡ Cl(Es, xmin, s)

where the second inequality follows from (95). We next note that for a fixed s, the
term

h

(
H +

Z

xmin

∣∣∣∣S = s

)
− h(H|S = s) (393)

is monotonically decreasing in xmin. Choose now

x2
min = log Es

so that x2
min is monotonically increasing in Es; it tends to infinity as Es ↑ ∞; and

log log Es− log log(Es/x
2
min) approaches zero as Es ↑ ∞. With this choice the function

Cl(Es, xmin, s) − log log
Es

x2
min

− log π − E
[
log |H|2|S = s

]
+ h(H|S = s)

= −
(
h

(
H +

Z

xmin

∣∣∣∣S = s

)
− h(H|S = s)

)
(394)

is for every s monotonically increasing (in Es) to zero. In addition, the RHS of
(394) is integrable as a function of s. The desired lower bound now follows by the
Monotone Convergence Theorem.

I A proof of Theorem 4.30

The proof of this theorem was outlined in the text. There was technical matter
omitted, namely, that ε, defined in (142), tends to zero as the SNR tends to infinity.
This is what we prove in this appendix.

Rewriting ε we have

ε = I
(
Xk;H

k−1
k−κ

∣∣Yk, Y
k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ

)
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≤ h
(
Hk−1

k−κ

∣∣Y k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ

)− h
(
Hk−1

k−κ

∣∣Y k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ, Xk, Yk

)
≤ h

(
Hk−1

k−κ

∣∣Y k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ

)− h
(
Hk−1

k−κ

∣∣Y k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ, Hk

)
= I
(
Hk;H

k−1
k−κ

∣∣Y k−1
k−κ , X

k−1
k−κ,S

k+κ
k−κ

)
≤ h

(
Hk

∣∣∣∣ Yk−1

Xk−1

, . . . ,
Yk−κ

Xk−κ

,Sk+κ
k−κ

)
− h
(
Hk

∣∣Hk−1
k−κ,S

k+κ
k−κ

)
≤ max

‖xk−1‖≥xmin,...,‖xk−κ‖≥xmin

h

(
Hk

∣∣∣∣Yk−1

xk−1

, . . . ,
Yk−κ

xk−κ

,Sk+κ
k−κ

)
− h
(
Hk

∣∣Hk−1
k−κ,S

k+κ
k−κ

)
= h

(
Hk

∣∣∣∣Hk−1 +
σ

xmin

W1, . . . , Hk−κ +
σ

xmin

Wκ ,S
k+κ
k−κ

)
− h
(
Hk

∣∣Hk−1
k−κ,S

k+κ
k−κ

)
≤ h

(
Hk, Hk−1 +

σ

xmin

W1, . . . , Hk−κ +
σ

xmin

Wκ

∣∣∣∣Sk+κ
k−κ

)
− h
(
Hk, H

k−1
k−κ

∣∣Sk+κ
k−κ

)
where W1, . . . ,Wκ are IID NC(0, 1).

We thus conclude from Lemma 6.11 that for any realization of Sk+κ
k−κ the condi-

tional law of ε converges monotonically in xmin to zero. Choosing log x2
min = log log Es

gives the desired convergence in the SNR. The result now follows by averaging over
Sk+κ

k−κ using the Monotone Convergence Theorem.

J Expected-Log of a Non-Central χ2

Lemma J.1. Let the random variable W have a non-central χ2 distribution with an
even number of degrees of freedom, i.e.,

W =
m∑

j=1

∣∣Xj + µj

∣∣2 (395)

where {Xj}m
j=1 are IID NC(0, 1), and {µj}m

j=1 are deterministic complex constants.
Then

E[logW ] = gm(s2) (396)

= log(s2) − Ei(−s2)

+
m−1∑
j=1

(−1)j

[
e−s2

(j − 1)! − (m− 1)!

j(m− 1 − j)!

](
1

s2

)j

(397)

where

s2 =
m∑

j=1

|µj|2. (398)

Moreover, the functions gm(·) are monotonically increasing and concave in the in-
terval [0,∞).

Proof. The density fW (w) of W is given by [23, Ch. 29]

fW (w) =
(w
s2

)m−1
2
e−w−s2

Im−1

(
2s
√
w
)
, w ≥ 0 (399)
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where Im−1(·) denotes the modified Bessel function of the first kind of order m− 1.
Thus, the required expectation can be written as

E[logW ] =

∫ ∞

0

logw · pW (w) dw

=

∫ ∞

0

logw ·
(w
s2

)m−1
2
e−w−s2

Im−1(2s
√
w) dw. (400)

Expressing Im−1(·) as a power series

Im−1(z) =
∞∑

k=0

1

k!Γ(m+ k)

(z
2

)m−1+2k

(401)

we obtain from [14, 4.352 (1)]

E[logW ] =
1

sm−1
e−s2

∞∑
k=0

1

k!Γ(m+ k)
s2k+m−1

∫ ∞

0

wk+m−1e−w logw dw (402)

=
1

sm−1
e−s2

∞∑
k=0

1

k!Γ(m+ k)
s2k+m−1Γ(m+ k)ψ(k +m) (403)

= e−s2
∞∑

k=0

1

k!
(s2)k

[
−γ +

k+m−1∑
i=1

1

i

]
(404)

= −γ + e−s2
∞∑

k=0

1

k!
(s2)k

k+m−1∑
j=1

1

j
(405)

= g̃m(s2) (406)

where ψ(·) denotes Euler’s psi function (219) and where we define the function g̃m(z)
as

g̃m(z) = −γ + e−z

∞∑
k=0

1

k!
zk

k+m−1∑
j=1

1

j
(407)

with derivatives

g̃′m(z) = e−z

∞∑
k=0

1

k!
· 1

k +m
· zk (408)

g̃′′m(z) = −e−z

∞∑
k=0

1

k!
· 1

(k +m)(k +m+ 1)
· zk. (409)

To conclude the proof of (396) it is now required to show that g̃m(·) is identical
to gm(·). We shall begin by studying the derivative g̃′m and show that it can be
expressed as:

g̃′m(z) =
(−1)mΓ(m)

zm

(
e−z −

m−1∑
j=0

(−1)j

j!
zj

)
. (410)
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Indeed,

g̃′m(z) =
(−1)mΓ(m)

zm
e−z

(
1 − ez

m−1∑
j=0

(−1)j

j!
zj

)

=
(−1)mΓ(m)

zm
e−z

(
1 −

∞∑
k=0

m−1∑
j=0

(−1)j

j!k!
zk+j

)

=
(−1)mΓ(m)

zm
e−z

(
1 − 1 − z · 0 − z2 · 0 − . . .

− zm−1 · 0 −
∞∑

i=m

m−1∑
j=0

(−1)j

j!(i− j)!
zi

)

= −(−1)mΓ(m)

zm
e−z

∞∑
i=m

zi

m−1∑
j=0

(−1)j

j!(i− j)!

= −(−1)mΓ(m)

zm
e−z

∞∑
i=m

zi (−1)m−1(i− 1)!

i!(m− 1)!(i−m)!

= e−z

∞∑
k=0

1

k!
· 1

k +m
· zk.

Integrating this series term by term we obtain

g̃m(z) = log z − Ei(−z)

+

m−1∑
j=1

(−1)j

(
e−z(j − 1)! − (m− 1)!

j(m− 1 − j)!

)
z−j + cm (411)

for some constant cm. By evaluating the RHS of (411) at z = 0 and comparing with
the evaluation at z = 0 of the RHS of (407) we conclude that cm = 0. With this
value of cm it is readily seen that the RHS of (411) is identical to gm(z), and we
thus conclude that g̃m(z) = gm(z). Since g̃m is identical to gm, the monotonicity
and concavity of gm(z) follow from those of g̃m, which can be verified from (408)
and (409).

K A Limit of the Incomplete Gamma Function

Lemma K.1. Let the sequences {ξ(n)} and {α(n)} take value in the open interval
(0, 1). Assume:

lim
n→∞

ξ(n) = 0 (412)

lim
n→∞

α(n) = 0 (413)

lim
n→∞

(ξ(n))α(n)

= ζ (414)

for some 0 ≤ ζ < 1. Then

lim
n→∞

{
log Γ(α(n), ξ(n)

)− log
1

α(n)

}
= log(1 − ζ). (415)
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Proof. Integrating (206) by parts we obtain

Γ(α, ξ) =

∫ ∞

ξ

tα−1e−t dt

= −e−ξ · ξ
α

α
+

1

α
Γ(α+ 1, ξ)

thus establishing

log Γ(α, ξ) = log
1

α
+ log

(
Γ(α+ 1, ξ) − e−ξξα

)
.

The claim now follows from the continuity of Γ(α+ 1, ξ) around (α, ξ) = (0, 0).
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