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Capacity Bounds Via Duality With Applications to
Multiple-Antenna Systems on Flat-Fading Channels
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Abstract—A technique is proposed for the derivation of upper in the sense that their difference from capacity approaches zero at
bounds on channel capacity. It is based on a dual expression for high SNR, and their ratio to capacity approaches one at low SNR.
channel capacity where the maximization (of mutual information)
over distributions on the channel input alphabet is replaced with a fa
minimization (of average relative entropy) over distributions on the
channel output alphabet. We also propose a technique for the anal-
ysis of the asymptotic capacity of cost-constrained channels. The
technique is based on the observation that under fairly mild con-
ditions capacity achieving input distributions “escape to infinity.”

The above techniques are applied to multiple-antenna
flat-fading channels with memory where the realization of the HE purpose of this paper is twofold: to propose a general
fading process is unknown at the transmitter and unknown (or technique for deriving upper bounds on channel capacity,

only partially known) at the receiver. It is demonstrated that, for . . . .
hig% F;ignal-){o-noise) ratio (SNR), the capacity of such channels and to use this technique in order to study multiple-antenna sys-

typically grows only double-logarithmically in the SNR. To better {€ms on flat-fading channels. To motivate the proposed tech-
understand this phenomenon and the rates at which it occurs, nique consider the classical expression for the cap@ciof a
we introduce the fading number as the second-order term in the discrete memoryless channel (DMC) of |a¥(y|x) over the

high-SNR asymptotic expansion of capacity, and derive estimates fjpite input and output alphabefs andy
on its value for various systems. It is suggested that at rates that

are significantly higher than the fading number, communication C= max I(Q; W) 1)
becomes extremely power inefficient, thus posing a practical limit QeP(X) ’
on practically achievable rates.

Upper and lower bounds on the fading number are also pre- whereP(X’) denotes the set of all probability measuresXn

sented. For single-input-single-output (SISO) systems the bounds and wherel (Q; ) denotes the mutual information between

coincide, thus yielding a complete characterization of the fading e channel terminals when the input is distributed according to
number for general stationary and ergodic fading processes. We the law(). That is

also demonstrate that for memoryless multiple-input single-output
(MISO) channels, the fading number is achievable using beam- W (y|z)

forming, and we derive an expression for the optimal beam direc- nQ;w)= Z Q)W (y|z)log ———~ (2)
tion. This direction depends on the fading law and is, in general, (@QW)(y)

not the direction that maximizes the SNR on the induced SISO

channel. Using a new closed-form expression for the expectation where(QW) denotes the output distribution corresponding to
of the logarithm of a noncentral chi-square distributed random  the jnput lawQ, i.e.,

variable we provide some closed-form expressions for the fading

Index Terms—Channel capacity, duality, fading channels, flat
ding, high signal-to-noise ratio (SNR), multiple-antenna fading
number, noncentral chi-square, Rayleigh fading, Ricean fading,
upper bounds.

. INTRODUCTION

z,y

number of some systems with Gaussian fading, including SISO sys- _ / /
tems with circularly symmetric stationary and ergodic Gaussian (Q@W)(y) = Z Q)W (yl2"), yey. ®)
fading. The fading number of the latter is determined by the fading vEeX

mean, fading variance, and the mean squared error in predicting ) . ) o ]

the present fading from its past; it is not directly related to the While the optimization over input distributions complicates

Doppler spread. the exact computation of’, (1) leads to very natural lower
For the Rayleigh, Ricean, and multiple-antenna Rayleigh-fading ounds orC. Indeed, any input distributioff € P(X) leads to

channels we also present firm (honasymptotic) upper and lower a lower bound

bounds on channel capacity. These bounds are asymptotically tight

C>1(Q; W). (4)

Manuscript received October 2, 2002; revised June 14, 2003. This reseafcigood choice forQ in the above would be a distribution that
was conducted in part while A. Lapidoth was a resident at the Rockefeller Foyg-c|ose to a capacity-achieving input distribution and that leads
dation Bellagio Study and Conference Center. The work of S. M. Moser was .
supported in part by the Swiss Federal Institute of Technology under Grf@ta tractable expression fé(Q; W).

TH-23 02-2. The material in this paper was presented in part at the 2001 IEEEThis latter issue of tractability may not be so critical for

International Symposium on Information Theory, Washington, DC; the 20G3\MCs. but it is quite important for channels over continuous
Workshop on Information Theory, Cairns, Australia; and the 2002 |IEEE Inter-, ’

national Symposium on Information Theory, Lausanne, Switzerland. alphabets. For such channels, the mutual information can be

The authors are with the Department of Information Technology and Eleexpanded in terms of differential entropies in two ways
trical Engineering, Swiss Federal Institute of Technology in Zurich (ETHZ),

CH-8092 Zurich, Switzerland. 1(O: W) =h(X)=h(X|Y 5
Communicated by B. Hassibi, Associate Editor for Communications. (Q’ ) ( ) ( | ) ( )
Digital Object Identifier 10.1109/TIT.2003.817449 =h(Y) — h(Y|X). (6)

0018-9448/03$17.00 © 2003 IEEE



LAPIDOTH AND MOSER: CAPACITY BOUNDS VIA DUALITY 2427

To understand the difficulty in evaluating(@; W) note that ~ We shall apply the proposed approach to the study of the ca-
channels are typically modeled so that the output ¥&\{|=) pacity of multiple-antenna flat-fading channels where the trans-
corresponding to each inpute X be a “nice” function, but that mitter and receiver—while cognizant of the fading probability
for a given input distributio) € P(X)—even if “nice"—the law—have no knowledge (or, in the receiver case, only partial
posterior law onX givenY will typically be complicated to knowledge) of the realization of the fading matrix. Other chan-
compute, let aloné.(X|Y"). Thus, while a “nice” choice for nels to which the proposed approach has been successfully ap-
@ will typically allow for an analytic calculation of(.X), the plied include finite-state channels with intersymbol interference
calculation ofh(X|Y) will typically be complicated and (5) memory [3], phase noise channels [4], and the Poisson channel
might not be tractable. Alternatively, if one tries to computfs]. For an extension of this technique to the analysis of error
(6) then the nice law of¥/(-|z) and a nice choice fof) will exponents see [6].

typically allow one to computé(Y|X), but the computation = The fading model we address is described in Section Il after
of h(Y"), which is required for (6), might be difficult becausea brief word about notation in Section Il. The rest of the paper is
the output law corresponding to a nice input and a nice chaneyanized as follows. In Section IV, we present our main results

need not be nice. concerning the capacity of multiple-antenna fading channels.
A dual expression for channel capacity is [1] Subsequent sections are more technical. In Section V, we prove
the extension of (11) to continuous alphabet channels. In Section
C = Rénpi?y) gneaicD (W(2)||R(-)) (7) VI, we provide some of the mathematical background that will

be useful in the study of the capacity of the fading channel. This
section can be glanced over in a first reading and referred to
later as needed. Section VII concludes the paper with a brief
W (y|z) summary and a discussion of some of the results.

Ry @

whereD(:||-) denotes relative entropy so that

D (W(|2)I[R(-)) =Y W(yle)log

yey

Every choice of a distributiod(-) on the outpufy thus leads Il. Notarion

to an upper bound on channel capacity We try to use upper case letters for random quantities and

lower case letters for their realizations. This rule, however, is

C<maxD (W(l2)IR()) - ©) broken when dealing with deterministic matrices and some con-
stants. To better differentiate between scalars, vectors, and ma-
In fact, by considering the identity [2] trices we have resorted to using different fonts for the different
quantities. Upper case letters suctXaare used to denote scalar
> Q(x)D (W(-|2)||R(-)) random variables taking value in the reRi®r in the complex
reX planeC. Their realizations are typically written in lower case,

=1(Q; W)+ D((QW)()IIR(-)) (10) e.g.,z. For random vectors we use bold face capitals, &g.,
_ ) _ ) ~and bold lower case for their realization, e Deterministic

and by noting that relative entropy is nonnegative, we obtain theytrices are denoted by upper case letters but of a special font,
bound e.g.,H. For random matrices we use yet another font, élg.,
Scalars are typically denoted using Greek letters, but the energy
1(Q; W) <) Qx)D (W(|x)|R(), ReP) (11) Per symbol is denoted b..

z€X The entries of matrices are denoted using superscripts so that
H(*) denotes the (random) component of the random matrix
H that lies in row-r and columné. Note that our generic row

As noted above, any choice of a distributii) € P()) on index is.r anq the generiq column indexﬁsbecagse we think
the output alphabet leads to an upper bound on channel capa@ftj &S indexing the receive antennas and ab indexing the
via (9). One should typically chooge(-) to be close to the ca- transmit antennas. Consequently, the number of rows in the ma-
pacity-achieving output distribution and so as to guarantee tfx Will be often denoted by.r and the number of columns by
(9) be tractable. This latter condition need not be so difficult a7+ Subscripts will be typically reserved for time indexes. Thus,
satisfy. Indeed, since the channel I8(-|z) is often modeled the fading matrix at timé will be denoted byH;..
using a “nice” law, and since we are at liberty to chodie) Wg use|| - || to denote the Eucl'|dean norm of vectors or the
to be nice, there is hope thB( W (-|z)||R(-)) may be tractable Euclidean operator norm of matrices. That is,
and be a reasonable functionmothat can be then maximized.
While this latter maximization is unavoidable, it is at least over

which implies (9).

input symbols and not over distributions. lz|| = zeC'r (12)
In this paper we shall extend (11), and hence also (9), to gen-
eral alphabets and also demonstrate how to account for input Al = (13)

constraints. Such constraints can be accounted for by modifying
(9) by introducing Lagrange multipliers, as in [1], or by working
with (11), as we have chosen to do. Thus, ||A|| is the maximal singular value of the matx
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The Frobenius norm of matrices is denoted|by||r and is (i.i.d.) N¢c(0, o2l) for somes? > 0. Here | denotes the
given by the square root of the sum of the squared magnitudésntity matrix. Similarly, we shall assume throughout that the

of the elements of the matrix, i.e., matrix-valued fading procesfH} is stationary and ergodic
and independent of the vector-valued additive noise process
|Allr = /tr (ATA). (14) {Z}. We shall also assume a finite-energy fading gain, i.e.,
Here tr(-) denotes the trace of a matrik,)" denotes Hermi- E [IIH[I7] < oo an

tian conjugation, and we shall u¢' to denote the transpose

(without conjugation) of a matrix. Note that for any matfix where||Hy||r denotes the Frobenius norm of the matix,

see (14).
Al < [IAlle We denote the capacity of this channel with average péwer
- by C(SNR), where SNR= &,/0? denotes the signal-to-noise

as can be verified by upper-bounding the squared magnitU@éo. Thus,

of each of the components éfw using the Cauchy—Schwarz 1
inequa”ty. C(SNR) = lim sup — I(Xl7 vey Xna Y17 vy Yn) (18)

e : n—oo n
All rates specified in this paper are in nats per channel use. ) S )

log™ () to denote its positive part, i.e., vectorsXy, ..., X, under which
log™ (€) = max{0, log(¢)}. (15) 1 STENIXK?] < & (19)
n
k=1

We shall denote the indicator function by statemenit. It
takes on the valué if the statement is true, and the valogf  and wherel(-; -) denotes the mutual information functional.
the statement is false. We shall often focus omemoryless fadinghere the random
We shall denote the mean-variances? univariate real matrices{H;} are i.i.d. In this case, we shall drop the time-
Gaussian distribution byVg(zz, 0%). Similarly, the mean: dependence index and write
covariancek multivariate real Gaussian distribution will be

denoted\Vg (i, K). Analogously, a complex random variable Y=Hz+2Z= Zm(”H(” +Z. (20)
X will be said to have aV(u, o2) distribution if X — y is =1

a circularly symmetric Gaussian random variable of variance , i
E[|[X|?] = o2, i.e., if the real and imaginary parts &f — Note that memoryless fading still allows for dependence among

are independent/ (0, 02/2) random variables. Similarly, we the components of the fading matrix at a given instanthus,

shall writeX ~ Ne(p, K) if X — g is a circularly symmetric in (20) the components dfl need not be independent of each
zero-mean Gaussian random vector of covariance matfl

ther.
E[XX'] = K. The notation\ (s, K), without the subscript Since mutual information is concave in the input distribution,
to indicate whether the distribution is complex or real, willof memoryless fading we can replace (19) with the stricter con-

indicate that the stated result holds in both cases. straint
In dealing with sequences of random variables we shall use E [XTX] <&, (21)
a combination of superscripts and lower scripts to address con- -
secutive subsets. Thus X, X», ..., isasequence of random A special case of memoryless fadingriemoryless Gaussian
variables, therX}* will designate the sequencé;, ..., X,,.  fading In this case, the matri can be written as
ll. THE CHANNEL MODEL H=D+H (22)

We consider a channel withy transmit antennas anek  here the mean matri® is a deterministiozg x nr complex
receive antennas whose timesutputY',, € C"* is given by matrix, and where ther - ng components 79}, , of H

are zero-mean jointly circularly symmetric and jointly Gaussian

nr
Y, =Huz, + Z), = Z +"H" 1 7). (16) complex random variables. To be even more explicit, we shall
=1 ' sometimes refer to memoryless fading of a law that is not nec-
) essarily Gaussian aeneral memoryless fading
Here,z;, = (:p; )7 cey x,ﬁ”T))T € C™ denotes the timé- Some special cases of memoryless Gaussian fading include
input vector; the random matrid, € C"=**"* denotes the the following.
time-k fading matrix of columnsHS), Hfﬂ"”; and the . . .
n i o . » Rayleigh fadingwhereng = nt = 1, the mean matrix
random vectolZ,, € C"r denotes the timé- additive noise . v . . .
vector D is zero, andH is a zero-mean unit-variance circularly

Unless otherwise specified, we shall assume throughout symmetric complex Gaussian.

that the random vector§Z,} are spatially and temporally  « Multiple-antenna Rayleigh fadingvhereD = 0 and the
white zero-mean circularly symmetric complex Gaussians, ng-nt components dfl are independent zero-mean unit-
i.e., that {Z,} are independent and identically distributed variance circularly symmetric complex Gaussians.
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* Ricean fadingwhereng = nt = 1, the mean ma- so that by the basic inequality (11), (186) we obtain a general
trix—which is now a scalarl called the “specular com- upper bound on the the mutual information for a channel whose
ponent’—is not necessarily zero, aitfl is a zero-mean output takes value it™®
unit-variance circularly symmetric complex Gaussian.

I(Q; W)
IV. CAPACITY RESULTS < —hq(Y|X) + log 7"® + log
+log (e, §/83) — logI'(nr) — log | det A|?
Apart from Section IV-A, which presents some results that + (ngr — 1)Eq [log ||AY||2]

are applicable to general channels of output alph@bet, the )
results in this section are focused on fading channels. In Section + (1 -a)Eq [10g(||AY|| + 5)]
IV-A, we use the continuous-alphabet version of (11), namely, 1

P e+ L Eq[IAY2 +¢]

(186) of Theorem 5.1, in conjunction with the family of output + 3

Iaws_ (204) to derive general upper bounds on the mutual infor- a, B>0,6>0,det(A) £ 0
mation between the terminals of a channel of output alphabe

C"r, In Section IV-B, we use these inequalities to demonstrate

the inefficiency of high-SNR signaling on fading channels. MoYnereiq (Y| X) = J WYX = z)dQ(z) denotes the average
tivated by these results, we define in Section IV-C the fadirfgpnditional differential entropy whek is distributed according
number, which is the second-order term of the high-SNR expdf-n€ 1aw. Notice thatin (25) we have denoted a generic input
sion of channel capacity and which gives some indication of tifg the channel byX because we have in mind that the input to

(25)

?

rates above which channel capacity increases only double-I3 channel is a complex vector, but the result is more general.
arithmically with the SNR. Section IV-D is devoted to the cal- '€ (typically suboptimal) choice of

culation of the fading number of memoryless fading and Sec- Eq [|AY]]?]

i : i - 5=0 = 26

tion IV-E to the calculation of the fading number for fading = g = - 4 (26)

with memory. This section is concluded in Section IV-F witriln (25) yields the simpler upper bound
a nonasymptotic capacity analysis of some specific memory-
less Gaussian fading channels including the Rayleigh, Rice, add®@; W) < log7"* —log I'(ng) — log | det A|*

multiple-antenna Rayleigh fading channels. + nrEq [log [|AY||?] = ho(Y|X)
+a (1 +logEq [[AY]*] - Eq [log [|AY[]?])
A. A Specific Bound on Mutual Information +logT(a) — aloga, a >0, det(A) # 0.

Once we extend the basic inequality (11) to general alphabets @7)
in Theorem 5.1 of Section V, we can apply it to channels whoJis upper bound is tight enough to obtain the first term in the
output alphabet i€ by considering the output distributionshigh-SNR capacity expansion, but not quite tight enough for the
R(-) whose densities (with respect to the Lebesgue measurefiper analysis of the second term (which will be defined later as
C™r) are given by the fading number).

Note 4.1: It is interesting to note that for low-SNR fading
D(ng)|det AP (1Ag] + 6) (a—1) channels, the crude bound (27) is tight. Indeed, if we further
m& BT (e, 6/) Y simplify it with the choice ofo = ng andA satisfyingATA =
‘||Ay||2(1—nR)e—(HAy||2+5)/ﬁ7 yeCm  (23) (E[[YY'])~! then (27) reduces to the max-entropy bound

1(Q; W) < log ((7r )™ det E [YYT]) ~WY|X) (28)

Whe_re_a, f>0,620,and whe_reA is any nonsingular d?ter' which is tight enough to obtain the slope of the capacity—energy
ministicng x ng complex matrix. (See (204) and the discus- ; .
. s . . : . .~curve at zero SNR. See Appendix | for detalils.
sion preceding it in Section VI-A for a discussion of this family
of densities.) Her&'(-) denotes the Gamma function (197) and To use (25) to obtain upper bounds on channel capacity, one
I'(-, -) denotes the incomplete Gamma function (200). needs to upper bound the right-hand side (RHS) of (25) over
With this choice ofR(-) we have all admissible input distributions. For some examples on how
this may be carried out, please see Section IV-F. The analysis
typically requires one to derive upper bounds on expressions of

D(W(-|z)|R(-)) the formEg[g(X)] for some real functiog(-) and for some un-

=—h(Y|X =z) + logm"® + log 8 known (capacity achieving) input distribution that is only known
+1log (e, §/3) —logD(ng) — log | det A|? to satisfy some inp_ut constraint,_e.@Q[|)_(|2] < &. This is
+ (ng — 1)E [log IAY|2|X = m] often performed using Jensen’s inequality({f) is concave),
+(1-a)E [log (||AY||2 + 5) |X = m] IThe fact that this choice reduces to the max-entropy bound is not surprising.
1 Indeed, the choice: = ny reduces the Gamma distribution (199) to a central
- 2 _ x? distribution, thus reducing (203) to an i.i.d. multivariate Gaussian distribu-
+ 8 E [”AY” + 6|X - x] (24) tion so that (204) becomes a general multivariate Gaussian distribution.
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or using the trivial upper boungdip, g(¢), when all else fails. with some receiver side information (possibly nui), where
Under additional support constraints (peak power) and/or adtlie fading proces$H;} and receiver side informatiof\Sy }
tional moments constraints one may resort to results on Chebye jointly stationary and ergodic, and independent of the sta-
shev Systems, see, e.g., [7]. Another ueful approach, which ti@nary and ergodic additive noise proces%;, }. Assume fur-
demonstrate in Section IV-F, is the use of ideas related to sther that the joint law of {Hy}, {Sx}, {Z},}) does not depend
chastic ordering of distributions [8]; see also Section VI-B. on the input sequencge }. Let C(&,) denote the capacity of
We may also apply (11) to channé#g(¢|s) whose outpufl” this channel under an average power const&imn the input,
takes value in the set of nonnegative rétifs We can choose the so that
output distributionR(-) to be a regularized Gamma distribution

(199), so that C(&) = lim —supl(Xy; Yy, 57) (34)
DWW (:|s)[|R(-)) where the supremum is over all input distributionsXh satis-
= —h(T|S = 5) + log B + logT'(«, 6/1) fying
1
+ (1 — a)E[log(T + 6)|S = s] + < E[T + 6|S = s]. 1
B =S E[IXk?] <& (35)
(29) "=
Using the basic inequality (186), we obtain the general uppassume that botfH, } and{Z},} are of finite differential en-
bound on channels whose output takes valugfn tropy rate
1(Q; W) h({H}), h({Z}}) > —oo; (36)
< —h(T[S) +log B* + IOgF(loé» 6/8) 30) that both have finite second moments
+ (1 — a)Eq[log(T" + 6)] + 7 EQ[T"+ 4], E[IHE] . EIZ4I?] < oo @37
o B>0,6>0. iagd that the mutual information rafé{H;}; {Sx}) is finite,
This inequality has proven useful in [4], in the analysis of chan- lim 1 I (H7; 87) < . (38)
nels with phase noise, and in [5], in the study of the capacity n—oo 1 b
of the discrete-time Poisson channel. In both cases, it was usegn
with the (typically suboptimal) choice of L
lim {C(&) — loglog&s} < oc. (39)
EqT £ —oo
§=0, fB= EolT] (31)
) ) . @ Proof: The proof of this theorem for memoryless fading,
which yields the simpler upper bound memoryless additive noise, and in the absence of receiver side
1(Q; W) < —ho(T|S) + Eg[log T] + log I'(a) info:mgtiop ihs gt;ven |(;1 é[;per_;jnixril. Itis bass;l onan %sym_ptotic
+ (1 +log Eo[T] — Egllog T]) — alog a, ﬁqnazir)i/;'|so the bound (27) with chosen as theg x ng identity
a>0. (32)  The more general case follows from the simpler case by

In the Poisson case, where the output is discrete, it was apph&dnma 4.5 ahead. .

to an information lossless smoothed version of the output.  tjs interesting to note that under the assumptions of Theorem
4.2, Gaussian input signals are highly suboptimal. In fact, such
input signals achieve a mutual information thabsundedin

We now turn to some asymptotic analysis of channel capacitye power€,. This result was recently proved by Lapidoth and
at high SNR. Our first result here is that at high SNR capacithamai [9, Proposition 6.3.1] for single-anterfng = nt =
grows only double-logarithmically in the SNR, and in fact]) and Gaussian inputs. Here we generalize it to the MIMO case
the difference between channel capacity aoglog SNR is and any scale family of input distributions.

bounded as the SNR tends to infinity. We shall state this result_l_h 4.3 Let the fadi d additi .
in a fairly general setting that also allows for the availabilit eorem 4.3:Letthe fading procesgH. } and additive noise

/ . . . .
of some side information at the receiver (but not at the tral roces{Z; } sa_t|sfy the assumptl_ons of Theorem 4'2’."6" be in-
pendent stationary and ergodic processes satisfying (36) and

mitter). To demonstrate the robustness of this result, we sh ﬂ7 Let!X .\ b ot d dent of th
state it without requiring that the additive noise be spatial ) et{ Xy} 0€ some stationary prgcess (independent of the
ading and additive noise) with[|| X «||*] = 1 and

and temporally white Gaussian. We shall only require that it
stationary and ergodic, of finite energy, and of finite entropy Eflog || X &[] > —oc. (40)
rate. Then

1
Theorem 4.2:Consider a multiple-input multiple-output sup nli_{go—[ (\/55X17 o VEX
(MIMO) fading channel £:>0 "

Y = Hyzy + 2, (33) VEMX1+ 21, JERX, + Z,) < 0. (41)

B. Communication at High SNR Is Power Inefficient
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Proof: For a proof in the memoryless case see Appendiar every additional bit per channel use. In this sense, the fading
lll. The more general case (even with some receiver side inferamber can be viewed as an indication of the practical limiting
mation) follows from Lemma 4.5 ahead. O rate for power-efficient communication over the channel.
The following somewhat unintuitive observation is a conse-

Note 4.4: Condition (40) is satisfied whenevéf;, is a non- uence of the behavior of theg log(-) function under scaling

deterministic Gaussian vector. In fact, it is satisfied Whenev%

some subset of the componentsXof has a finite joint differen- 13, {loglog(aSNR) — loglog SNR} = 0, 0<acR.
tial entropy; see Lemma 6.7. (For deterministic inputs the claifi¥®T>° (46)

Is trivial.) It may simplify the computation of the fading number, espe-
To better understand the role played by the channel memaiglly for multiple-input single-output (MISO) and single-input
and by the side information, the following lemma can be usefuhultiple-output (SIMO) systems where the fading is spatially

Lemma 4.5:Let zy, Y}, Hy, Sk, andZ), be as in Theorem correlated.

4.2. Then for any positive integer Lemma 4.7:Consider a stationary and ergodic fading
process{H,} with nr transmit antennas andgr receive

%I(X?; Y, 87) < %I(X?; YY)+ %I(H?; S7)  (42) antennas. Let theer x nr deterministic matrixF and the
<I(X1; Y1)+ I(Hy: H’f*) ngr X ngr deterministic matrixG be both nonsingular. Then
P12 20+ Ly sy, @9) X ((GHRFY) = x ({F]). )
Proof: See Appendix IV. 0 . Proof: The proof of thi; Iemmq is given in Appendix V.
It is based on the following intuitive ideas. The first is that the
C. The Fading Number channel of fadind{;. F can be mimicked on the channel of fading

) ] ) Hy by replacing the inpuX with the inputFX. In doing so, we
Motivated by Theorem 4.2 we next define the fading numbghight be boosting the input power and thus possibly violating
Henceforth we shall always assume that the additive id3  the input constraint, but we note that the power boost is at most
is sp_atially and temporally white Gaussian noise of Covaria”ﬁﬁjltiplicative (by||F||2) and is thus insignificant on a double-
matrix o1, logarithmic scale. Similarly, the channel of fadiiy. can be

Definition 4.6: The fading numbex({H; }|{S%}) of a sta- mimicked on th_e channel of fadiridy, F by multiplying the_in_put_
tionary and ergodic matrix valued fading process} in the X by F~!'—again, at a power boost that is at most multiplicative
presence of receiver side informati¢8;.} is defined as (by [[F~H]%).

The invariance with respect to multiplication on the left®y
x ({He}{Sk}) = Iim {O(gs) —loglog 5_;} ] (44) canbe argued in a similar way by post-multiplying the channel
&sToo o output. This causes noise coloring and noise boosting, but this
Thus, whenevey, is finite and the limit in (44) exists phenomenon can be shown to be insignificant otbglog

< scale. O
C(&) = log (1 + eXlog <1 + F)) +o(1) (45)

where theo(1) term tends to zero a& tends to infinity. Note
that as in (45) and hereafter we omit the argument afhen it
is clear from the context.

D. On the Fading Number for Memoryless Fading

1) Trading Additive Noise for Input Constraintshe fol-
lowing theorem gives an equivalent expression for the fading
number of memoryless fading channels. In this expression, the

The fading number is thus the second term in the high-SN#lditive Gaussian noise is not present, but its place is taken by
expansion of channel Capacity_ Since an exact expression ql@radditional constraint on the input, namely, that all inpUtS must
channel capacity seems intractable, the approximation (44) nkg/bounded away from zero.
be useful for the understanding of the behavior of channel caTheorem 4.8:Consider the general memoryless fading

pacity at high SNR. = channel (20) of fading matrid and assume < E[||H||2] < oo
The fading number serves, however, an additional purposg,y h(H) > —oo. Then the channel fading numbgtH) is
The design of communication systems that operate in the reg'@{)en by

where capacity grows only double-logarithmically in the SNR is
extremely power inefficient. Thus, one would expect that system

designers will try to avoid this region and design the systems for, 1.1y — 77y 7(x: ux) - loel & 48
lower rates (e.g., by using more bandwidth). The fading numbe% ) ﬁf}o HXSHI;I;SO ( k ) 0808 0 (48)
may give an indication of roughly how high need the rate be be- E[IX|1%]<E.

fore one enters this high-SNR region. At rates that significantl

. re&, denotes any fixed nonzero energy, e.g., one unit of
exceed the fading number, one should expect to square the Senergyio y 9y, €.9
20ne should remember that for some channels (e.g., the i.i.d. Rayleigh fading
channel—see (85) ahead), the fading number may be negative. Since zero bits
can always be transmitted with zero power, we use the term “significantly ex-3The symbol, can be replaced everywhere withbut we have chosen not
ceed” rather than simply “exceed.” to do so in order to better keep track of units.
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Moreover, the fading numbaercan be achieved by input dis-Inequality (53) follows from (52) by limiting the supremum
tributions Q¢, that are bounded away from the origin in theof I(X; HX + Z) to random vectorsX that are of the form
sense that X = /p- X for someX satisfyingPr(||X||* > &) = 1 and

E[||X]]2] = &/p as follows:

QES ( |X|| > xmin) =1 (49) sup I(X, HX + Z)
where E[IXI*1<é&s
> sup I(\/ﬁ-jf; \/ﬁ-[H]j(—I—Z) (55)

lim Zmin = oo. (50) [1X[|* > €0

EToo ElIXI"1<E/p
This theorem is proved in two steps. In the first step, we show > _sup I (X; HX)
that the RHS of (48) is a lower bound{¢H), and in the second I111” igo
step we show that it is also an upper bound. The first step is ElIXIFI<e/p
the easier one. It is an immediate consequence of the following — sup {h(H:i: + z ) _ h(lH]:i:)} (56)
lemma. &) =1 Vp&o

where the second inequality follows by (52) because veXors
of this form satisfyPr(|| X||> > p&) = 1.

To prove (54), we shall use (53) withgrowing with& in a
Pr(|X|? > 22;,) = 1 (51) controlled way. Definingt, = &/p we have

min

Lemma 4.9: Let the random vectaX take value inC™T and
satisfy

— Es
for somez,, > 0. LetH be a randomg x nr matrix satis-  X(H) = Jm {E sup_ I(X; HX + Z) — loglog p}
fying h(H) > —oco andE[|H|2] < cc. LetZ ~ N (0, o21) X #1<Es

and assume thaX, H, andZ are independent. Then .

I(X;HX + Z) > lim sup I (5(, [H]X) — loglogé
’ 7 Emoo | X228, €
> I(X; HX) — sup {h <[H]:i: + ) — h([H]:i:)} . (52) E[IX %<
[|l&]|=1 Tmin L £ g,
Consequently, for any fixed positive energy - Sslgﬂoo { loglog —3 —loglog 5—0}
sup {I(X;HX + Z)} _ VA
ElIX12]<és - glim \ﬂ\lp {h(lH]:i: + \//F> - h([H]:i:)} .
- ~ s 700 ||z||=1 0
z HXS\EI;E {I (X5 HX)} To prove (54) it thus follows that it suffices to require thaend
E[Hx‘lz]ggz/p to infinity so that by Lemma 6.11 the third term on the RHS of

7 the inequality will tend to zero, and to additionally require that
— sup {h(l]—ﬂﬁ: + ) - h(H:i-)} , p>0 log p/ log &, tend to zero, so that the second term on the RHS

llll=1 Vo of the inequality will tend to zero. An example of a choice that
(53) meets these two requirements is

Es
and p =log —. (57)
&o
— S & O
x(H) > ShTm Sup {I (X; HX)} — loglog % (- We next continue with the second step in the proof of The-
sioe ) IX]° =€

orem 4.8. In this step, we show that the RHS of (48) is an upper
(54) bound tox (H). We show that by trying to make light of the con-
straint|| X ||? > &,. More specifically, we shall show thateven in
Proof: Inequality (52) follows from the basic properties othe presence of noise—let alone in its absence—this constraint
differential entropy as follows: does not preclude one from achieving the fading number.
We thus next show that even in the presence of additive tem-

E[lIX1*)<Ex

I(X; HX + Z) X ; . . .

porally and spatially white Gaussian noise, the fading number

= h(HX + Z) — h(HX + Z|X) x(H) can be achieved using input distributions that satisfy the

> h(HX) — h(HX + Z|X) constrain{| X||2 > &. The technique we use to prove this claim

= I(X; HX) — (h(HX + Z|X) — h(HX|X)) may be of independent interest, and we, therefore, present this
> I(X; HX) proof in a somewhat general setting. The proof hinges on the
- ' fact that the capacity of our channel can be achieved by input
- |\=||S;1£n;,,{h(HX +2|X = z) - h(HX|X = z)} distributions that assign to any fixed compact set a probability

B 7 that tends to zero as the SNR tends to infinity. This property
=I(X; HX) — sup {h(ﬂ—ﬂﬁ; + )— h(lH]:i:)} , turns out to hold for many cost constrained channels of inter-
lll=1 L min ests, and we therefore define it in a fairly general setting. We

Pr (| X||*> > 22;,) = 1. need, however, the following preliminary standard definition.

min
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Definition 4.10: Given a channeWW(-|-) over the input al-  Let{Y,} 1 co and{Q,,} C P(X) satisfy
phabetX and the output alphabgt and given some nonneg- Eo, [9(X)] < T, (64)

ative cost functiory: X — RT, we define the capacity—cost . . _ e _
functionC: R — R* by Jim {1(Qn; W) —d(Tn)} = %ITHOL{C(T) d(Y)} (65)

c(Y)= sup I(Q:W), Y>>0 (58 and
Eqlg(X)I<T )
We say thatC(Y) is achieved if the supremum in (58) is Tim Qn(K) = 0. (66)
achieved.

By (66) it follows that for all sufficiently large: the proba-
We are now ready for the definition of capacity-achievingility @,,(K<) of the set-complemeri* of K is strictly larger
input distributions that escape to infinity. For an intuitive unthan zero and we can, therefore, define the conditionaldaw
derstanding of the following definition and some of its conseso that for any Borel seft ¢ X and any sufficiently large
guences, it is best to focus on the example where the channel ~ Qn(ANK®)
inputs are vectors in Euclidean space and where the cost func- @nlA) = Qn(Ke) (©7)

tion g(-) is the squared Euclidean norm. Thus, under the prio€),,, the probability measuré,, corre-

Definition 4.11: Let C(-) denote the capacity—cost functiorsponds to the posterioridistribution on the input conditional
of a channell¥(-|-) over the input alphabet’ and the output onz ¢ K.
alphabet) with the nonnegative cost function X — R*. Note that by the nonnegativity of the cost function it follows
AssumeC(T) < oo, for any fixedY. We shall say that the ca- that the cost associated wigh, is not appreciably larger than
pacity of this channel can be achievedut distributions that the one associated with),,. Indeed, if we define

escape to infinityif for any Ty > 0 there exist input distribu- - T, (68)
tions {Q~ } > satisfyingEq. [¢(X)] < T such that " Qa(Ke)
lim {C(Y) - I(Qy; W)} =0 (59) then the cost associated wifh, satisfies
E- X)) <—E X
and 1. o ) 21900 < 555 Ea, oY)
TI&QT(!J( ) < Yo) =0. (60) < T,
Qn(K°)

Intuition suggests that if capacity can be achieved using input _5 ’ (69)
distributions that assign an ever decreasing probability to a set o o _
K, then at high SNR the capacity should not suffer appreciablyL-€t X be distributed according t@,,, and let the binary-
from constraining the inputs to lie outsidealmost surely. This Valued random variabl&' be defined by
intuition is made precise in the following theorem. = { 0, IfXeK (70)

1, if X ¢ K.

Note that the probability thal takes on the value is Q,, (),
which by (66) tends to zero with. We now have

I(Qn; W) =1(X;Y)

Theorem 4.12:Consider a channel of law/(-|-) over the
input alphabett and the output alphabgt. Let g: X — Rt
be some nonnegative cost function, and d&t) denote the
capacity—cost function associated witly(-|-) and g. As-

sumeC(Y) < oo, for any fixedY. Fix someY, > 0 and let =I(X, E;Y)
K ={x € X:g(x) < To}.LetC.(T) denote the capacity—cost =I1(E;Y)+I(X;Y|E)
funcFion when the inputs are adt_iitionally constrai_neq to lie <H(E)+ Q. (K)I(X; Y|E = 0)
outsideX. Letd(Y) be some mappind: RT — R satisfying ) CON(X: VIE = 1
Tim T (1 +€)T) — d(¥)| = 0 (61) (1= Qu(K)IX; YIE = 1)
€l0 YTToo =H,(Q.(K)) + Q.(K)I(X; Y|E =0)
for example ~
d() = log(1 + log(1 + 1)) (1) = 2 log(1+ 1) (1= Qul (@ W)
= log(1l + log(l + , or = —log(l+ 1).
BT 2% ) < Hy(Qn(K) + Qu(K)I(X; Y|E = 0)
Ce (Tn 71
Assume that, as the cg¥ttends to infinity, capacity-achieving + ( ) ) o (1)
input distributions escape to infinity. Then whereHy,(-) denotes the binary entropy function, i.e.,

T (C.(Y) — (D)} = T {C(T) ~d(D)}. (63 (@) =log g +(1-Qlog -7, 0<¢< 1 (72

Proof: Placing additional input constraints cannot ingy subtractingi(Y,,) from both sides of (71) we obtain
crease capacity. Hence, I(Qn; W) — d(Th)

C:(1) < AAT) | < Hy(Qu(K) + Qu(K)I(X; Y|E = 0)
so that the left-hand side (LHS) of (63) cannot exceed its RHS. - - -
We now proceed to prove the reverse inequality. + (d (Yn> - d(Yn)) + (Cc (Tn) —d (Tn)) - (713)
4In this paper, we shall only be interested in the case wii€fe = log(1+ We now consider the |Im|tlng behavior (as - oo) of both

log(1 4 1)) but the other example can be useful in other applications. See, éi,des of the ir_‘equa”ty(_73)' Beginning with the LHS, we note
example, [4], [5]. that, by (65), it tends tm{C(Y) — d(Y)}.
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We now consider the RHS of (73). By inspecting the be- To conclude the proof of Theorem 4.8 it now only remains to
havior of the binary entropy functiof;,(-) about zero, it fol- check that the assumptions of Theorem 4.8 imply that the fading
lows from (66) that the first term tends to zero. Similarly, sincehannel satisfies the conditions of Theorem 4.13.

I(X; Y|E = 0) is bounded inY (because the capacity under The conditionE[||H||Z] > 0 implies that channel capacity is
the sole constraint that the input must liekhis bounded by unbounded. Indeed, this condition guarantees that by spacing
C(Ty) < o0), it follows again from (66) that the second termany finite number of symbols sufficiently apart, we can achieve
alsotends to zero. The third term converges to zero by (61), (68, arbitrarily small uncoded probability of error. See [11, Sec-
and (66). The only remaining term is the last one, which givéi®n IV.B] for the details.

us the inequality The conditiorE[||H||2] < oo guarantees that the capacity can
— . - - only grow sublinearly in the power. Indeed, the sublinear growth
%ITI&{C(T) —d(T)} < ﬁlrlrli {Cc (T> —d (T)} (74) is guaranteed even if the receiver has knowledge of the fading

. matrix, because this condition guarantees that the powéXin
thus concluding the proof of the theorem. ~grows at most linearly i, so that the presence of the additive
Itis interesting to note that an expansion dual to (71) is al$jise guarantees that capacity can grow at most logarithmically
useful in the study of the redundancy—capacity theorem of UR- ¢ (The additional conditiorh(H) > —oco guarantees, of
versal source coding. See (without costs) [10, Proof of Thggyrse, an even slower increase in capacity, namely, a double-
orem 1J. U logarithmic one.)

For our multiple-antenna fading channel, the capacity costFinally, the technical condition regarding the directional
function is clearly finite (if the noise variance is positive). Inderivatives (76) can be verified as in [11, Appendix I1.B (63)].
deed, this is even the case when the receiver knows the realizal/e will now briefly summarize the proof of Theorem 4.8:
tion of the fading matrix. Thus, by Theorem 4.12, if we could  prgof: We proved Theorem 4.8 in two steps. In the first,
show that the capacity of our channel is attained by input dist§ae | emma 4.9, we proved that by restricting the minimum norm
butions that escape to infinity, we would also deduce that—evg{yt the channel inputs may have, we can mimic the limiting

in the presence of noise—the constra|idf||> > & does not pehavior of a channel without noise. That is,
preclude one from achieving the fading number.

The proof of Theorem 4.8 will thus be concluded once we .
show that for our fading channel, capacity can be achieved using((H> > Tim sup I (j(; Hj() —loglog & . (77)
input distributions that escape to infinity. We next derive some Eteo | 1X|12>& &o
general conditions that guarantee this property. Again, since E[IX %<&,

such conditions may be useful in other contexts, we state them the second step we showed that, even in the presence of
conditions in fairly general terms. noise—let alone in its absence—the fading number can be

Theorem 4.13:Let the input alphabet’ and the output al- achieved with inputs that are additionally constrained to lie
phabet) of a channelW (-|-) be separable metric spaces, an@utside a fixed energy ball. This was shown by demonstrating
assume that for any Borel S8tc ), the mapping: — W (B|z) that the capacity of the fading channel can be achieved by
from X to [0, 1] is Borel measurable. Let the nonnegative co#tput distributions that escape to infinity, and by showing that
functiong: X — R be measurable, and I€t(-) be the ca- for such channels, the high-SNR capacity asymptotics can be
pacity—cost function for the channBl'(-|-) and the cost func- achieved even subject to an additional minimum cost constraint.
tion g(-). Assume: The former claim was proved by proving general conditions for

« For any fixed cosfr the constrained capacity is ﬁnite,capacity-achieving input distributions to escape to infinity (see

but as the cost tends to infinity, the capacity increases '[georem 4.13) and by verifying that the fading channel satisfies
infinity sublinearly these conditions (see the discussion following the proof of

Theorem 4.13). The latter claim about the capacity asymptotics
lim C(T) = oo, lim T) -0 (75 of gh_ar_mel with capac_ity-achieving input distributions escaping
Tloo Tio T to infinity was proved in Theorem 4.12. O

 For any two input distributions of finite cost the directional 2) An Upper Bound ory for Memoryless Fading:Having
derivative of the mutual information exists and is giveh byasiaplished Theorem 4.8 we can now upper-bol{lfd- [H]X)
in (48) using the bound (25). In this way, we can obtain the

.1 following upper bound on the fading number of memoryless
lim = ( I(A 1-X0)Q; W) —1(Q; W
L0 /\( (A +( JQ1; W) = I(Q; )) fading channels.

/D(W(-|g;)||(Q1W)(-)) dQq(z) — I(Q1; W), Theorem 4.14:Consider a memorylgss fading channel (20)
of fading matrixH satisfying0 < E[||H||z] < co andh(H) >
EQ.[9(X)], Baulg(X)] <00 (76)  _ . "Then the fading numbeg(H) is upper-bounded by.,,

Then, capacity-achieving input distributions escape to infinityVhere
Proof: See Appendix VI. O Xu = log 7™ — log [(ng)

St suffices that this hold for all probability measurég, for which +inf sup {nRE [10g||A|H].'i7||2] . h(AIH]:i)} (78)
Eo, [9(X)] is sufficiently large. A z)=1
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and where the infimum is over all nonsingulgt x ng complex

matricesA.
Proof: See Appendix VII. O

Note 4.15: Using Jensen'’s inequality applied to the concave

functionlog(-) one can further upper-bound (78) by

Xu < log 7™ —log '(ng)
+iIA1f sup {nglogE [||AHZ||*] — h(AHzZ)}. (79)
ll2]=1

2435

= E [log |H ) +h (X) - E [log | X ] - hH)

— log 27 + h(’X‘ ~ E[log ‘XH + E[log | H|] - h(H)
= log 27 + h (log ‘XD +E [log|H|?] — h(H)

—h <1og ]Xf) +logm +E [log|H|?] — h(H)  (82)

= loglogg—; + log 7w + E [log |H|2] — h(H). (83)

This bound is generally not tight, but it is often much simpler tplere, the first equality follows from the definition of mutual

compute than (78).

information; the subsequent equality from the behavior under

3) Memoryless Single-Input Single-Output (SISO) S

tems: A lower bound to the fading number can be obtained. X . . :
from Theorem 4.8 by Iower-boundinlj(f(; HX) using spe- ifferential entropy; the following equality by (319) for the dif-

cific input distributions. For example, in the SISO case, we Céﬁrential entropy of acircularly symmetric random variables; the

obtain a lower bound from Theorem 4.8 by considering an inp]?l't'bseql:jent equ.alkljtly by rﬁlatmfg thle d|ﬂ¢rr]ent|al gnlt_ropy of %plos_'
X that is circularly symmetric withog | X |* being uniformly ltive random variable to that of its logarithm as in Lemma 6.15;

distributed betweerog &, and log&,. It turns out that the the followirjg equality by the beh_avior of differe_ntial entro_py
resulting lower bound ony coincides with the upper bounOI_under scaling of aeal random variable; and the final equality

Thus, for SISO channels we have a complete characterizat@ﬁ_l?r:’aluaﬂng thf ﬂiﬁgrenti?jl_enfcgopy rlljginﬁ (81)'h' I
of the fading number. In fact, we can show that the fadin e nature of the input distributiont that achievex (/)

number can be achieved even if the average power constr IPWS from (81) and Lemma 4.9. -
E[[X]?] < & is replaced with the peak power constraint Note 4.17: It is interesting to note that the fading number is

caling of the differential entropy @bmplexandom variables;
y@\e following inequality because conditioning cannot increase

X2 < €&,

Theorem 4.16:Consider a SISO memoryless fading chann

with a complex fading variablé/. Assume thaE[|H|?] < oo

andh(H) > —oo. Then the limsup in (44) is also a liminf (i.e.,

the limit exists) and the fading numbg(H) is given by

x(H) =logm + E [log |H|*] — h(H). (80)

achievable by input distributions of a law that does not depend

an the fading law. This observation can be useful in the analysis

of fading channels with some side information available at the
receiver and/or the transmitter; see Proposition 4.23.

Note 4.18: Note also that the achievability of the fading
number with the above input distributions demonstrates that for
SISO channels, the fading number does not depend on whether

Moreover, this fading number is achievable by circularly synfverage or peak power constraints are imposed.

metric inputsX whose log magnitudieyg | X | is uniformly dis-
tributed over the intervdlog z,in, 1/21og & for anyz ,in (&)
satisfying
lim zpmin =00
Es— 00
and
1m IOgZL’min =
Es—00 10g (C/‘S

Proof: The fact that the RHS of (80) is an upper bound on

x(H) follows from Theorem 4.14 by choosing the mathxn
(78) as thel x 1 identity matrix (i.e., the scalal).

Corollary 4.19: For Ricean fading, i.e., memoryless SISO
Gaussian fading, the fading number is given (in nats) by

X (Ne(d, 1)) = =1 +log |d|* — Ei(-|d]*) ~ (84)

whereEi(-) denotes the exponential integral function defined in
(211). In the special case whete-= 0, i.e., Rayleigh fading, the
fading number is thus given by

X (Ne(0, 1)) = =1 -~

wherey = 0.577 denotes Euler’s constant.
Proof: Follows directly from Theorem 4.16 by evaluating

(85)

To derive a lower bound oR(H), we use Theorem 4.8 with the differential entropy of a complex Gaussian random variable
the choice ofX being a circularly symmetric random variableand by evaluating the expectation of the logarithm of a noncen-

such that
12
log ’X‘ ~ Uniform[log &y, log &]. (81)
Indeed, for this choice ok we have

I (X HX)

tral chi-square random variable (209). O

With the aid of Lemma 4.9 we can also obtain an asymp-
totically tight firm lower bound to the capacity of the Ricean
channel.

Corollary 4.20: LetC(&,/0?) denote the capacity of a mem-
oryless SISO Ricean fading channel of fading J&w(d, 1), av-
erage powe€,, and additive Gaussian noise variande Then

C(£5/07) 2 hmax(Es/Emin) + x (Ne(d, 1))

2
_10g<1+€0' ) 0< Emin < & (86)
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where hpax(Es/Emin) 1S the maximum differential entropy aalso be used to obtain a useful relationship for real channels.

real random variabl&’ can have if it is to satisfy This relation will be useful in the analysis of SIMO channels.
W > log€min and E[e"] < &, (87) Corollary 4.22: Let |A| be a nonnegative real random vari-
able satisfyingE[| A|?] < oo andh(|A]) > —oc. Then
namely
. &s .
hmax(gs/gmin) = log(_El(_C)) +¢ Ein (88) lim sup I(‘X’ A - ‘XD —loglog é
h is th luti h H &sToo |5(|2250 50
where( is the solution to the equation E[1X|°] <.
e ¢ Es = E[log |A|] = h(]A]) — log2. (95)
“Ei(—0) . (89) .
mim Proof: This follows by Theorem 4.8 and Theorem 4.16
. ) . ‘o o
Note 4.21: A looser but simpler lower bound follows from applied to .the fadlr)gll_ = |Ale? Where® IS mdependent_ of
the bound |A| and uniformly distributed over the intengtr, ). For this
circularly symmetric law ofH no information can be passed
hrnax(Es/Emin) > log log Es (90) via the phase so that the limits in (95) and (48) agree. They are
- min consequently both given by Theorem 4.16 as

which can be verified by considering the differential entropy, 2 _ i )

h(W) of arandom variabl&/ that is uniformly distributed over log -+ Elog | "]~ h(H) = Ellog ||| -A(|A]) ~log2 (96)

the interval[log Emin, log &] and that thus satisfies the conwhere the relationship(H) = log 2x+h(|A|)+E[log |A[] fol-
straints (87). lows from Lemma 6.16, which relates the differential entropy of
a complex random variable (in our cade to the joint differen-
tial entropy of its magnitude and phase (in our ca$eand©,
which are independent); see (319)—(320). O

Proof: Fix somel < Enin < & and consider a circularly
symmetric random variabl& such that
2
|X|2 2 Emin (92) An alternative proof, which does not require embedding the
E[|X]7] =& (92)  real channelin a complex one, can be based on choosing inputs
h(log | X |?) = hmax(Es/Emin)- (93) of energies with logarithms that are uniformly distributed on the
Then interval[log &y, log &] and then invoking Lemma 6.10.
4) Memoryless SISO Systems With Side-Informatibine-
I(X; HX + 7) orem 4.16 extends to situations where the receiver (but not trans-
. _ _ ) mitter) has some side information regarding the realization of
2 I(X; HX) ‘z;ﬁ? {h(He +7) = h(Hz)} the fading. This setting will be explored in greater detail in The-
= I(X; HX) — (log (te(Emin + 02)) — log(TeEumin)) orem4.41 butwe send forward thefollowing simple case, which
turns out to be instrumental to the analysis of the more general

2
= I(X; HX)—IOg(l—f—ga ) case.
- o2 Proposition 4.23: Let H be some complex random variable
> h(log |X[?) + x(Ne(d, 1)) = log (1 + ) satisfyingE[|H|?] < co. Assume that the paiiH, S) is inde-
ey pendent of the additive nois¢ ~ N¢ (0, o2) and that the joint
= hmax(Es/Emin) + X(Ne(d, 1)) — log (1 +Z > . law of (H, S, Z) does not depend on the channel inutFur-
min ther assumé(H|S) > —oo. Then
Here, the first inequality follows from Lemma 4.9; the sub-
sequent equality follows by the explicit evaluation of the dif- ;,, { sup  I(X; HX + Z, S) — loglog 5_;}
ferential entropy of the Gaussian distribution; the subsequéhfts®T> | g[|x|2]<¢, o

equality by direct calculation; the following inequality by lower —logm +E [log |H|2] — W(H|S) (97)
boundingh(H X) by h(H X |H) as in the steps leading to (82);
and the final equality by our choice tfg|X|? as having the i.e.,
max-entropy distribution.

The expression foli,,.. (£, /Emin) follows by noting that the x(H|S) = logm + E [log |H|*] — h(H|S). (98)
density that achieveb,,.x(Es/Emin) is of the form [12, The-

orem 11.1.1] This fading number is achievable by input distributions of the

form given in Theorem 4.16.

1 — 8IL’
P A w > log Ein- (94) Note 4.24: Under fairly general conditions, (98) continues to

be valid even if the state is also known to the transmitter. This

Theorem 4.16 gives an exact expression for the RHS of (4|§) for example, the case ff takes value in a finite set.

for SISO channels and demonstrates that the limsup is in fact d&Note 4.25: It is interesting to compare the fading numbers in
limit. While the theorem is stated for complex channels, it cahe presence of receiver side information (98) and in its absence



LAPIDOTH AND MOSER: CAPACITY BOUNDS VIA DUALITY 2437

(80). The side information increases the fading number by thad a circularly symmetric scalar complex random variable of a
mutual information/ (H; S). law specified in Theorem 4.16.

Proof: If the channel input is of the fornX -  wherez

Proof: The proof relies heavily on the fact that the fadings a deterministic unit vector antl is a scalar complex random
number of a SISO system can be achieved by input distributions. P

o 9 .
that do not depend on the fading law. The proof of this prop(\)@n"’lble sat|sfy|ngE_[|X| ] < &, thenthe channel outpiitis a
e : . . -Scalar random variable that can be expressed as
sition is given in Appendix VIII. Here we merely give a plausi- N
bility argument. Y=Hz)X+Z
ChooseX to be distributed according to the law specifiede | as the output of a SISO fading channel of fadiifz and

Theorem 4.16 (applied to fading lal#l|.S = s) that at high SNR

I(X; HX + Z,8 = s5) - _ .
Sincez can be arbitrary, this demonstrates that the RHS of (103)
=I(X; HX + Z|$ = 5) (99) s a lower bound tog(H"). A priori, it is not clear that this
~ log log 5_52 +log + E [log |H|?|S = s] — h(H|S = s) bound is tight, since there could ostensibly be other inputs that
o are not of the formX - z and that give rise to higher mutual
(100) informations and perhaps also to higher fading numbers. This,
from which the result follows by taking expectations with rehoWever, is ruled out by the upper bound on the fading number
spect toS. x(H ") of Theorem 4.14 (applied to the fading makx= H
The technical problem with this argument is in interchangingith the matrixA chosen as thé x 1 identity matrix), which
the order of taking the expectation with respectStovith the coincides with the RHS of (103). u

taking of the limit ast;/o* tends to infinity. L) Corollary 4.28: Consider a memoryless Gaussian MISO

Corollary 4.26: Assume thatf ~ N¢(d, 1) and that the fading channel where the fading matrix is a row vectl,
pair (H, S) are jointly Gaussian and jointly circularly sym-WhereH ~ N¢(d, K), det K # 0, H € C"*. Then the fading
metric. Lete2, > 0 denote the mean squared error in estimatidmber is given by

est

x(H'z) =logm + E [log |HT:Z‘|2} — h(H&).

H from S. Then, the fading number in the presence at the re- X(HT) = —1+logd? — Ei(—d?) (104)
ceiver of the side informatiof is given by
where
|d]?

x(H|S) = =1 +log —— — Ei(—|d|?). (101)

Tq~
d, = max [E[H Jz]

62 I —_— .
=1=2 [Var(H %)

est

(105)

Proof: Follows directly from Proposition 4.23 and Corol-
lary 4.19 by noting that Proof: Follows directly from Theorem 4.27 and Corol-

1 lary 4.19 because for any (deterministic) beam directipthe
I(H; S) = log 2. (102)  concatenation of the beam-forming mappld® =z — z -z €
~ - C"r and the fading channel results in the mapping H' (z -

— )+ Z, which corresponds to a SISO Ricean channel. O
5) Memoryless MISO Systems and Beam FormiAg:

different extension of Theorem 4.16 is to MISO fading chan- Note 4.29:In the above corollary, if the mean vectdris
nels. With the aid of Theorem 4.16 and the upper bound &¢ro, theni.. of (105) is zero, and the fading number is that of a
Theorem 4.14 we can now also compute the fading numberRayleigh-fading channel, i.es1 — . Itis achievable by beam
memoryless MISO fading channels. As a by-product we sh&Irming with an arbitrarily chosen direction.

infer that—in the sense that it allows one to ac.hieve the fadingG) Memoryless SIMO FadingFor memoryless SIMO
number—beam forming is asymptotically optimal. By beamyging the capacity-achieving input distribution is circu-
forming we refer here to choosing some fixed deterministig\y symmetric. Indeed, since mutual information over such

unit vectorz and limiting the inputs to vectors i"" that channels is invariant under deterministic rotation of the input

are colinear with it. Such an approach can greatly reduce $gripution, the concavity of mutual information implies that
complexity of the code/decoder. there is no loss in optimality in considering only circularly

Theorem 4.27:Consider a MISO memoryless fading chansymmetric input distributions. This is true also in the presence
nel with row fading vectotH ', where H is random column Of side information. Consequently we have the following.

vector inC"* satisfying0 < E[||H_||2] < oo andh(H) > —oo. Proposition 4.30: Consider a memoryless fading system
Thenthe limsup in (44) is also a liminf (i.e., the limit exists) ang,yere the fading vectoH takes value inC"® and satisfies

. TN - .
the fading numbex(H ") is given by h(H) > —oo andE[||H||?] < oco. Assume that the additive

T T2 . noise vectoZ has anV¢ (0, o?1) distribution. Then, the fading
X(H')= sup {10g7r+E {log‘H :z:’ ]—h(H x)} (103) numbery (H) is given by

ll2||=1
— 1O H.© ir.i©
Moreover, this fading number is achievable by inputs that cahH) =1(6; He'®)+ Ellog | H]|| - h(HH“ | He! )_ log 2
be expressed as the product of a deterministic unit vectofn (106)
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where© is independent ol and uniformly distributed over thus demonstrating that the increase in the fading number may
the interval—, ), andH = H/||H||. Alternatively, it can be be smaller thad (H; S).

expressed as . .
P Corollary 4.32: Consider a zero-mean memoryless Gaussian

x(H) = hy (f;ej@)_ h(H)+ngE [log HHHZ] “log2 (107) tS_IMS f_ading channel of a nonsingulag x nr covariance ma-
rix K, i.e.,
whereh, is the differential entropy on the sphere, see (323). H~ 0. K det K £ 0 109
Proof: Let X = |X|e’® have a circularly symmetric dis- Ne(0, K), etK #0. (109)
tribution so tha{ X | and® are independent artl is uniformly ~ Then the fading numbey(N¢(0, K)) is given by

distributed OVGI[—W, 7(). Then X (NC(07 K)) — an(nR) —ng — logl—‘(nR)7 det K ;é 0.

I(X; HX) =1 (X; I?Iei@) 41 (X; IH| - | X| |I?IeJ@) (110)
— . g9 . HoI© where)(-) denotes Euler’s psi-function (213).
=1 (6’ He ) u (|X|’ He |®) Proof: By Lemma 4.7, the fading number is unchanged
+7 (|X|; |H|| -|X| |ﬁej®) when H is pre-multiplied by a nonsingular matrix, so that we
o might as well consider the case where the covariance mitrix
+1 (@; |H|| - |X]| |Hej®, |X|) is the identity, and the components Hf are, therefore, i.i.d.
L L Ne(0, 1). Inthis case] (©; Hel®) = 0, andH is isotropically
— . © . © A, N -
—1(9, He )+I(|X|, IH|| - | X]|| He? ) distributed so thath(||H||| He’®) = h(||H||). Denoting by
. e cny = 27™% /T'(ng) the surface area of theg-dimensional
+1 (6’ 1| IHe ) sphere inC"® we have from (106)
— . Jje . . [ -0 ©
=1(03 He'®) + 1 (|X; 18] -1X|| HeP®). Ellog ||H ) - (| H|)) — log 2
Cng
The result (106) now follows by analyzing the asymptotics = Ellog |[H||] — (R(|[H||) + log cpny ) + log —

. . ., . 2
of the second term on the right using a conditional version of

_ 2 En
Corollary 4.22, which follows from Proposition 4.23 in much = niE [log|[H|]’] — h(H) + log 2R
the same way that Corollary 4.22 follows from Theorem 4.16. — nnE Moo LHII2

= nrE [log | H|?]

Cn
— 1 1 . R
To derive (107) from (106) ng log me + log —

2
o o =nry(ng) — nr — log'(ng).
X _1(6’ He )_ h(HH” |He >+ Eflog || H][] - log 2 Here, the second equality follows by Lemma 6.17 because
=1(0; |H]) +[(@; Hei® | ||H||)— h(||H|| |erJ@) H is isotropically distributed, the subsequent equality by
evaluatingh(H), and the final equality by the expression for
+ E[}Og IH|]] - log2 . the expected logarithm of a central chi-square random variable
=ha (Heﬂ9 | ||H||) — hy (Heje e, ||H||) (209)(212). O

— h(||H|| |f;ej®) + E[log || H]|] - log 2 Note 4.33: Using the approximation
V2rntae TR < pl < V2rntre T (111)

= (He® | |1H|)~ n(1H] | H®) — hy (B | |1H]) ——
one can snow tha

+ Eflog ||H||] — log 2

=ha(He®) = h(I1H|) — b (H | 1H]|) x(Ne(0, K)) =2R¢(nR)—rlzR—1ng(nR) 1
+ Eflog ||H||] — log 2 =Clog R~ 4O (— ), detK#£0
2 R 2 2r 2 6nRr ny
=ha(He®) = h(|IH|, H) + Ellog | H|] - log 2 (112)
=hy (ﬂei@) — h(H) + (2ng — 1)E[log || H||] which can be compared to the results of Sengupta and Mitra

[13] who studied this scenario faf being the identity matrix

+ Elog [|H|] — log 2 and under the approximatiory > 1. The approximation they

=hy (erje) — h(H) + ngE[log ||H||*] - log 2 got using the Laplace integration method far > 1 is
1
where we use Lemma 6.17 for the required change of C~ 3 logZ—R + loglog SNR (113)
coordinates. O ™

But for the constant /2, the expressions (113) and (112) agree
Note 4.31: This result extends immediately to the case wheegs ,; — oo.

the receiver has some side informatigrsuch that H, S) are

independent of the input and additive noise. In that case, (107,%7) Memoryless MIMO Rotation Commutative Fading:
should be replaced with different extension of Theorem 4.16 is to MIMO fading ma-

trices that are of a law with a particular kind of symmetry that
x(H) = hy (I—Iej@ | S) — h(H|S) + nRE[log ||H||2] —log2 we call “rotation commutative.”

(108) SFor a definition of isotropic distributions see Definition 6.19.
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Definition 4.34: We shall say that the law of a randomnx n «if X e C"isan isotropically distributed random vector
matrixH is rotation commutativé for any deterministic unitary that is independent &, thenHX € C"® is isotropically
n X n matrix V the law of VH is identical to the law oHV. distributed;

For such laws we can extend Theorem 4.16 as follows. * if e, & € C"" are two deterministic unit vectors, then

Proposition 4.35: Consider a memoryless fading channel || He|| £ || He'| el = 1] = 1 (117)
where the number of receive antennas and transmit antennas 7

?

h(He) = h(HE'), el =l¢|l=1.  (118)

are equal(ng = mnr) and where the fading matri is
rotation commutative. Further assume thgH) > —oo and

E[||H||2] < oc. Then the limsup in (44) is also a liminf (i.e., the ~ Proof: We shall prove the first part of the lemma by
limit exists) and the fading numbei(H) is given by showing that for any deterministicz x ng matrixV, the law
of V,HX is identical to the law oHX. To this end, le/; be

L
2R R . +H= .
x(H) = log % “log 2+ nrE[log [He|?] — h(He) (114) Such thalvrH = HV:. Then
nr R R
V,HX £ HV, X
wheree is any deterministic unit vector i€"™ andc,, = £ X
27™® /T'(ngR) is the surface area of a unit spheredifr. More-

over, this fading number is achievable by inputs that can be €¥rere the second equality in law follows becad&is isotrop-
pressed as the product of a uniformly distributed random vec‘eény distributed.

on the ur_litnT-sphere multiplie_d by an independen'F cir<_:u|arly To prove the second claim, I&t,_., be some deterministic
symmetric scalar random variable of a law specified in Th%’nitary matrix satisfying/,..,.é = &'. Let U be a deterministic

orem 4.16. . . c
Proof: This result can be viewed as a special case of af T unitary matrix such thaH = HV;, .. Thus,
analogous result for channels that are “rotation commutative He = HV,. ..é
in the generalized sense,” namely, Theorem 4.39. The proof is s
therefore omitted. O = UHe.

Corollary 4.36: Consider memoryless Gauss_ian fading ofhe lemma now follows by noting that both tie norm of
the formH = dI+Hwhereng = nt = m, the matrix denotes a random vector and its differential entropy are invariant with

the identity matrixd € C is deterministic, and the componentgespect to deterministic unitary matrix multiplication. O

of H are i.i.d.Ng(0, 1). Then the fading number is given by ) . )
We are now ready to generalize Proposition 4.35 to fading

x = mgm(|d|2) —m — logT(m) (115) matrices that are rotation commutative in the generalized sense.

_ ) _ ) Theorem 4.39:Consider a memoryless fading channel where
where the functiow,,, (z) is defined in (210). _ the fading matrixH is rotation commutative in the generalized
Proof: Follows from (114) by direct computation ofsense. Further assuméH) > —oo andE[||H||2] < oc. Then

the differential entropy of the multivariate Gaussian distribie imsup in (44) is also a liminf (i.e., the limit exists) and the
tion and of the expectation of the logarithm of a noncentrgdding numbery(H) is given by

chi-square distributed random variable withn degrees of

nr
freedom (209). O (H) = log 2 _log 2+ nrEflog [He|[2] — h(He) (119)

Definition 4.37: We shall say that ther x nt random ma- I(nr)
trix H is rotation commutative in the generalized seffsthe \yheree is any deterministic unit vector i€"* andc,, =

following two conditions hold: 27" /T(ng) is the surface area of a unit sphereCifr. More-

« for any deterministic unitary,t x nr matrix V¢, there over, this fading number is achievable by inputs that can be ex-
exists anmg x ng deterministic unitary matri¥/,. such pressed as the product of a uniformly distributed random vector
that on the unitnr-sphere multiplied by an independent circularly

symmetric scalar random variable of a law specified in The-
V,H £ HV, (116) orem 4.16.
Proof: The fact thatthe RHS of (119) is an upper bound to
x(H) follows directly from Theorem 4.14 applied withchosen
as the identity matrix. R
. d L SV hth To derive a lower bound, IeX = X - ||X|| be isotropi-
elegss Igtermmlstlc unitaryr x e matrixV; such that cally distributed withlog || X||? uniformly distributed over the
(116) holds. interval [log§0, log &] and independent of the Haar distributed

useful for the analysis of the fading number of such matricescnr | sing the chain rule we now have

whereZ stands for “equal in law”;
« for any deterministic unitarysg x ng matrix V.., there

Lemma 4.38:Let H be rotation commutative in the general- .
ized sense. Then the following two statements hold: I(X; HX) = I(||X]]; HX) + 1 (X; HX | ||X||) . (120)
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The term/(|| X ||; HX') can be written a$(|| X [|; (HX)-||X|)). using Jensen’s inequality, which leads to (79). For the case at
But (HX) is independent of X || and isotropically distributed, hand we obtain

so that Yo < —nmt — log T(ni)
I(IX |l HX) = I([|X[]; [[He]l - | X1 +nglog  inf {||AD||2 + tr (AAT)} . (126)
&, R det(AAT)=1
= loglog ot Ellog ||He][] While the minimization over the matri can be performed ana-
— h(||He||) —log2 + o(1) (121) Iytically in accordance with the singular values of the mean ma-
) trix (e.g., by choosing\ diagonal with some of its diagonal ele-
where the last equality follows by Corollary 4.22. ments being proportional to the reciprocal of the corresponding
We now turn to the second term on the RHS of (120) singular values and the rest being constant), we present here a

suboptimal choice that will lead to a bound that depends only on

1 (X? HX| ||X||) =1 (X3 HX - x| | HX”) the maximal singular value. This choice will suffice to capture

—7 (X; IH]X) the dependence of the fading number on the number of receiver
A . antennasir and the number of transmitter antenmas

=h(HX)—-h(HX|X) The suboptimal choice A is a simple one. We choose it

= h(||Hé||) +1og cny, diagonal, with the diagonal elements taking on one of two values

according to whether the corresponding singular value of the
mean matrix is zero or not. Optimizing on the choice of the

isotropically distributed and becauﬁ;[é]f(” £ |Hel|. bound
The theorem now follows from (120)—(122). O (H) < np log (1 . |dmax|2>

8) Memoryless Gaussian MIMO Fading With Meawe "'
next briefly discuss the fading numbgfH) of anng x nr
random matrixH that is of the form wherenp denotes the rank d andd,,,. the maximal singular
value ofD. Recalling that the maximal singular value is the op-
erator norm of the matrix and upper-bounding the rank dfy
min{ng, nt} we obtain

+(2nr —1)E[log ||He||] - h(He) (122)

+nglogng — ng —logT'(ng) (127)

H=D+H (123)

whereD is a deterministiaig x nt matrix andH is a random
nr X nr matrix of i.i.d. Nc(0, 1) components. Note that by , ID|I?

Lemma 4.7 and the singular value decomposition (SVD) it fok(H) < min{ng, nr}log <1 + min{ng, nT}>

lows that for the purposes of computing the fading numygéf) +nglogng — ng — logT(ng). (128)
we may assume without loss of generality tBais “diagonal”

. ) ]

(in the sense thai(™* is zero whenever # t) and that the _ On the Fading Number of Fading With Memory

terms on the diagonal correspond to the singular values of the
mean matrix. From Lemma 4.5 we obtain immediately the following upper

The casewg = nt = 1 corresponds to SISO Ricean fadind?ound on the fading number.
with the corresponding fading number given in Corollary 4.19. thaorem 4.40:Let the side information(S;} and fading

The caserp > 1, ng = 1 corresponds to MISO fading andocess(H, } satisfy the assumptions of Theorem 4.2, and let

is addressed in Corollary 4.28. And the cage = nr With 6 aqditive noise be spatially and temporally Gaussian. Then
D = d - | being a scalar matrix is addressed in Corollary 4.36.

For this general model we were unable to obtain an exact X({Hx}|{Sk}) < x({Hx}) + I({Hx}; {Sk}) (129)
expression for the fading number. A trivial lower bound <xiid.(Hy) + h(Hy) — h({HL H{Sk})
x(H) 2 g1 (D) -1 (124) (130)

wherey; ;.a.(H1) denotes the fading number in the memoryless

where||D]| denotes the matrix norm as defined in (13) and tIﬁ\%ding case with equal marginal and no side information, and
function g, is defined in (210), can be derived by considering,here

a beamforming transmission strategy with linear combining at 1
the receiver. T({H}; {SK}) 2 lim = I(HP; S™) (131)
The upper bound nfeo

X(H) < ng - gny, (|IDI?) — nr — logN(ng) (125)

follows from Theorem 4.14 applied witA being the identity
matrix. Theorem 4.41:Consider a SISO system where the side infor-
The upper bound, however, can be improved in many imation{S}.} and fading proces§H}} satisfy the assumptions
stances by optimizing over theg x ng matrix A. This opti- of Theorem 4.2, and let the additive noise be spatially and tem-
mization is greatly simplified (albeit with some loss in tightnesg)orally Gaussian noise. Then the limsup in (44) is also a liminf

MRS 2 Tim RIS, (132)

For SISO systems, this bound is tight.
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(i.e., the limit exists) and the fading numbef{ Hx }|{Sk}) is Returning to the RHS of (135) we can now view the term
given by

X({H}{Sk}) = logm + E[log | H1|*] = A({Hi}[{Sk}).
(133) as the mutual information across a memoryless fading channel

in the presence of the side information
Moreover, this fading number is achievable by i.i.d. input dis-

tributions of marginals of the form specified in Theorem 4.16. (Hf, Sf"“) .
Proof: Inview of Theorem 4.40, it suffices to demonstrate
that the proposed fading number is achievable. Here we shH)US; Using Proposition 4.23, we obtain that the fading number
present the main ingredients of the proof and leave some of the log E loe |H: 121 — A Hr. g2+l
technical details for Appendix IX. ogm + E [log | "] ( w1 [HY 83 )
Let {X}} be i.i.d. circularly symmetric random variabless achievable. The proof will now be concluded by showing that
with

I (XK+1; Yn+1|Hf7 S%H—i_l)

lim h (Hopd|HE, 82571 < h ({H{S:)}). (137
el gy m (Hes|HE, S71) < h({H S . (137)
o ) ~ (There is, in fact, equality in the above, but we only need the
Our proof will hinge on the fact that tbg =2, grows sublin- inequality.) This follows from the inequality

early inlog & to infinity, then this input distribution achieves

the fading number of any memoryless SISO channel with an 1 | ak 1 ¢ k=1 ar
side inforgmation, and onythe fact %at this input distribution aI-y P (HF|87) = > b (HilH™, 85)
lows us to “identify” the channel, in the sense that from past 2t
inputs and past outputs one can ever more accurately estimate >h (Hn+1|H1 . 51 ) (138)
past fading levels. The details follow.

Fix some (large) positive integerand use the chain rule and
the nonnegativity of mutual information to obtain

log | X%|* ~ Uniform[log z2

min’

k=1

which holds by stationarity and because conditioning cannot in-
crease differential entropy

h(Hy|HE Y, SY) = h( Hopr|HE 0, S205
—I(X" Y, 8" = ZI (Xi; Y™, 8" |X* ) (el 55) ( w1 Hi ks k+2)

et 2h(HK+1|Hf', S%““), 0<k<r+l

1 n—k
> Z I(Xp; Y™, 8| Xk O
LSt Corollary 4.42: Consider a SISO fading proce§H}.} such

. ) that for some specular componehte C the proces{ H; —
drﬁ . n n k—1
We shall now obtain aflrm bound diX; ¥, §7|.X"~) for ._d} is a zero-mean unit-variance circularly symmetric stationary
k+1 <k < n—k.Bylettingn — oo we shall deduce that this

. . L nd ergodic complex Gaussian process whose spectrum is of
firm lower bound is also a lower bound on the limiting mutu

i / —1/2< A< 1/2.
information. Consider then some+ 1 < k£ < n — k. Then ontinuous part” (), /25 A< 1/2.Then
becausd X, } are i.i.d. x ({H}|{Sk}) = log |d|* — Ei(—|d|*) -

I(Xp; Y™, 8"|XF) +log —— + I({He}; {Sk}) (139)
=I(Xp; Y™, 8", XF)
> I( Xy Yi, VAL, XP21 Sk+”)

\ISE

wheree3;sp > 0 denotes the minimum mean squared error in
predicting the present fading from its past (assumed positive)

= 1(Xus i, YS! XPZL HEZL ST ) - e 1/2

2isp = exp{ / log F’()\)d)\} (140)
= 1(Xus Vi, HEZ) 81T ) = e 172
( and where the mutual information rate is assumed finite.
Proof: Follows from Theorem 4.41 by evaluating the ex-
[( w1 Yir1|HY 5?““) —, pectation of the logarithm of a noncentral chi-square random
variable as in (209) and by expressing the entropy rate of a

Gaussian process in terms of the minimum mean squared error
where the equality before last follows from stationarity angh estimating its present value from its past. O

wheree, which is given by
F. Nonasymptotic Bounds

k—1 k— 1 k— 1 k+k
¢ :I(Xk; Yi, Vio0 X HiZp, 8il ) 1) Rayleigh-Fading Channel: The memoryless SISO
_7 (Xk; Y, Vi~ 1/ Xkl Sk+”) (136) Rayleigh-fading channel corresponds to the general memory-
less fading model (20) in the special case where the random
will be shown in Appendix IX to tend to zero ag,; 1 oo. matrixH is a scalat\c (0, 1) random variable. The capacity
In fact, that is where we use the fact that the proposed inmftthis channel was studied in [14] and [11]. Taricco and Elia
distribution allows us to “identify” the channel. [14] derived a lower bound on capacity and also argued that

26+1
= I{ Xxq1; Yeqr, HY, 31K )_6

E+1<k<n—=k (135)
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at high SNR, capacity grows double-logarithmically in the Bounds on Channel Capac1ty f°1' Raylelgh Fading
SNR. Abou-Faycalet al. showed that for any given SNR, 2 !
capacity is achieved by an input distribution of a finite number
of mass points, and they were thus able to express capacity a 8 2l
a finite-dimensional (nonconcave) optimization problem over & ]
the locations and weights of the mass points. This allowed for 2 ‘ i
an exact calculation of channel capacity at low SNR, but not at & &
high SNR, where the number of mass points becomes large ani %
the optimization problem, while finite dimensional, becomes ¢
intractable.

Here we shall use (25) in order to obtain the upper bound

Capa

-
T

Bounds o

——uppetboundf or &
Do — opnmlzed upper bmmd (141)

. - lower hmde%M]
Xximation (45

T a,3'>062>0 o4

L+&/fo* o
T +/3'+(1 )

! &' : /
: (1085 o —e - E1(—6 )) } : (141) Fig. 1. Bounds on the capacity of a Rayleigh-fading channel. Depicted are the
upper bound of (141)); the upper bound that results from the suboptimal €hoice

To this end, we first note that conditional on the inplit= z, of 8 = 0; the lower bound of Taricco and Elia [14]; the exact expression
the channel output’ has an/\/c (0 |$|2 + 02) distribution. so from [11]; t_he approximation of (45), (85); and the capaditg(1 + SNR)
P . e 2 ! 9 of a Gaussian channel of equal SNR.
that |Y'|* has an exponential distribution of mear{* + o°.
Consequently

!
C < inf inf{ 1+a10g[3'+10gf( 6)

SNR [dB]

) ) Fig. 1 depicts the upper bound (141) on channel capacity. For
MY |X = x) = log (re(|z|* + 7)) (142) reference we also plot the cruder but simpler upper bauhelt
E[[Y|?|X = 2] = |z|? + o2 (143) results from choosing’ = 0; the asymptotic approximation
9 L —t— (45), (85); the lower bound of [14]; the exact expression of [11]

Ellog(JY[" + 0)|X = o] = logé — el in the region where it is amenable to numerical calculation; and
i <_%> (144) the capacityog(1 + SNR) of an additive white Gaussian noise
|| channel of equal SNR.
where the last equality follows from [15, 4.337 (2)]. It thus fol- It is interesting to note the dramatic difference between the
lows from (25) that high-SNR behavior of channel capacity in the absence of side

5) E 40246 information (85)
+ = -

I(Q; W) < —1+alog?+1ogl“< 3 3 <
£ £ C =loglog =% —1— 5+ o(1) (149)
g

6 FqLme=]
+E [log X2 +o2 (1 —a)elx and in its presence (when perfect) [16]
) b &s
Ié; ) E+o2+6 2) Multiple-Antenna Rayleigh-Fading ChannedNext, we
S-l+alogy 5 +logl'{ a, "B + B consider a Rayleigh-fading channel withy transmit and
. ng receive antennas, i.e., the channel (20) specialized to the
+ Slip{log TE4o? (1 —a)el=r+e case wherdd is a complexng x np random matrix of i.i.d.
N s Nc(0, 1) components. We shall derive an upper bound on the
. Ei(—ﬁ> } (146) capacityC whose difference from capacity will shrink to zero
j#]* + o ) as SNRT oo and whose ratio to capacity will tend to one as
=—1+alog= p + 1ng< 5)_1_ Eto +4 _SNRL 0. It is based on an application of (25) with= | and
6 " B is given by
) I 0
+ log 2 (1 —a)e=? - Ei <_ﬁ> ’ C< i/l’ilf 0(Sin>f0 {—nR + nry(nr) — log'(nR)
a, /> /_
a, 3>0,6>0 (147) (14 SNR)

/ v . nR

where the final equality follows because for every> 0 the +alog ' +logT'(a, 8'/6") —arp(nr) +
function s 11—
Rt 3w logw — (1 — a)e” - Ei(—w) +ﬁ+

is monotonically increasing im. The inequality (141) now fol- where SNR is defined & /o?.

lows from (147) upon substitutin
( ) P 9 "The bound resulting from this suboptimal choice coincides with the upper
6 I} 148 bound of Taricco and Elia. Note that this bound is not asymptotically tight at
"9 ( ) high SNR. It is off by 1 nat per channel use.

B
5' Ha< 1}} ng>1  (151)
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To derive (151) from (25) we begin by considering the terrr
(1 - a)Eq [log(lY]1* + 8)] = (1 — a)Eq [log[Y]?]
6
+1—aE[log<1+ )] (152)
S v

For0 < «a < 1, we upper-bound the second term on the RH
of (152) as follows:

(1—a)Eq [log (1 + ﬁ)}

)
< -k | (7))
) 1
= -0 o g ]
<(-o) :
S<l—-—«a nR—1n13X||.’B||2+0'2
(1 —a)
= <1,
T 0<a<l,ng>1 (153)
and fora. > 1, we upper-bound it by
(1-a)Eqg [log (1 + HY(?HQ)} <0, a>1 (154)

conditional on the inpuX = z, the channel outplt” has a
Ne(0, (J|z]|> + o2)I) distribution and||Y||? is central ch|
square distributed. Consequently

WY |X = z) =nglogm + ng + nr log(||lz|* + o°)

(155)
ENY IIP1X = 2] =ng(|lz]* + 0°) (156)
Eflog [[Y]]*|X = 2] = log(||z]|* + 0%) + ¢ (nr) (157)
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Fig. 2. The proposed upper bound (151) on the capacity of MIMO
Rayleigh-fading channel for various numbers of receive antenpas 1. The
upper bound for:g = 1 is taken from (141). For reference, a generalizdtion
of the lower bound of [14] is also depicted.

reglme the optimal choice far tends tong and the optimal

avaIue ofé tends to zero. Therefore, also in the low-SNR regime

we get the correct asymptotic behavior. See also Note 4.1.
The bound (151) now follows from (159) upon substituting

o ﬂ
§ = 5 g =L (160)
Note that when further substltutmg
5/
n= ﬁ (161)

where the last expression follows from the general expressior can express the optimal value@fin terms ofa andn

(209) for the expected logarithm of a noncentral chi-square dis-
tribution in the special case where the noncentrality parameter

is zero.
Using (152)—(157) and with our choide = | we now get
from (25) that
1(Q: W) < —nr — nrEq [log(||X|* + )]
—log'(nr) + alog B + logI'(«, 6/)
+ (nr — a)(Eq[log(||X||* + 0*)] + ¥(nr))

nr(E+ %) 6
+ 5 +3
5
+(1 -« E[log <1—|——>} (158)
(= ik
< —ngr + nryY(ng) — logT'(ng)
+ alog f+1logT(a, §/3) — alog o?
nr(& +0%) 6
—ayp(nr) + ———— + 5
P(nr) 3 3
6(1 —a)
<
T p— -H{a <1}, ng > 1 (159)
where for the second inequality we upper-bounded
—aEq [log(| X||* + 0)] < —alogo?, a > 0.

Note that, for high SNR, the optimal valuesfndé tend to

zero. Therefore, in spite of the rather crude bound (153), we wilk

22ty ((/a?+4n 225 (1—a)(1 + SNR)—a),
f* = 0<a<l (162)
w_/ 1<« S nR.
(07

Fig. 2 depicts the upper bound (151) for various values of the
number of receive antennas;,. The upper bound fong = 1
is taken from Section IV-F-1, (141). For reference, we also plot
lower bounds that extend the bounds of Elié]the caser > 1.

Note that the number of transmit antennasdoes not influence
channel capacity.

Again, it is of interest to compare the channel capacity in the
absence of receiver side information to capacity in its presence.
The latter was computed by Telatar [17]. Here we only consider
the case wheret = 1 so thatH is a random vector, which we
denote byH, whoseni components are i.i.dV¢ (0, 1). For
this case, we have that the capacity in the presence of receiver
side information is given by

Cpsi(SNR) =E [log (1 + |H|? %)} (163)
= log SNR+ E [log || H||?] + o(1) (164)
= log SNR+ ¢(ng) + o(1), nr =1 (165)

8Taricco and Elia only consider single-antenna systems. The idea of consid-
ng point mass distributions of equal weights at a finite geometric series of

get the correct asymptotic behavior. Similarly, in the low-SNRcations can, however, be extended also to our scenario.
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where the function)(-) is defined in (213), thex(1) terms  Upper Bounds on Capacny for R1¢ean Fadmg Channel
tends to zero as the SNR tends to infinity, and the calculatio  "[r— .

of E[log ||H||?] is based on (209). s

3) Ricean Fading ChannelWe next address the memory-

less SISO Ricean fading channel, which corresponds to tr
channel (20) with the fading matrix being/éc(d, 1) scalar.
Here, the meanl € C is a deterministic constant that is *
often called the specular component. We shall upper-boun &
channel capacity using (25) and lower-bound it using Corollan®

@

|

RS
o

2

5}

8

4.20 and the generalized mutual information (GMI) [9]. The g ¢
former lower bound is useful at high SNR, whereas the latter i g 3}
preferable at low SNR. We begin with the upper bound g 2l
& &'
< : _ ol ) v v 1
C< 0<11a11;1 { 14+ alogp +10gF<a, [3’>+ﬂ' | | | :
3'>0,8>0 S ) 10 20 30 40 50 60
1 dI? Output SNR p [dB]
+ +,p +(1-a <10g||72p
Jé; p+1d?+1

Fig. 3. The upper bound (166) on the capacity of a Ricean fading channel

. d|? . for different values of the specular componéntThe dotted line depicts the
p
— L1 _—p |d|2 1 +logo —e 1(_ ) +7 capacity of a Gaussian channel of equal output SNR, nafeglf]l + p).

166
(166) scaling argument, the latter is stochastically larger than the dis-
wherey denotes Euler’s constant and where we introduced thgyytion [N (0, o2)|2. The second equality follows by a direct

output SNR calculation [15, 4.337 (2)].
Using (25) we thus obtain
_ (> + D&,
R @070 i wy

i.e., the ratio of received signal power to received noise power.< —1 + alog 3 + log (e, §/8) — aEq [log(|X|* + 0?)]
This bound is shown in Fig. 3 for different values of the specular (1+ |d]?)& + o2 5
_|_

component. 3 3
To derive this bound using (25) we note that conditional on Id| |X|2 |d| X2
X = z, the outputy’” has anN¢(d - =, |z|? + o) distribution + (1 - a)Eq [10g<|X|2 n ) El( X2+ )}
so that o 5 o
hY|X =z) = logm + 1+ log(|z|> + %) (168) +U—0Kb&——?”E< ;) > (172)
E[IY)?1X = 2] = |z|* + 0% + |d|*|z|%. (169) 3 s 1—|—|d| )Es
- . : -1+ alog 5 tloglla, - |+ ———F——
The additional term we need for the computation of (25) is "B 16}
E[log(]Y|? + 6)|X = z]. It can be upper-bounded by 5 , |d|2€, - |d|
_|_ —
Eflog(|Y [ + 6)|X = 4] Tt O‘>< < ) <5+ﬂ>
< Ellog [V I = o] + sup {Eflog (Y + )L X =] _H%i_gmm(_)+0
O'

— Eflog [Y]*|X = z]} O<a<1,B>068>0 (173)
=Eflog|Y|?|X = 2] +E [1Og< 2) ‘ X = 0} Here, the second inequality follows upon additionally restricting
Y a so thatl — « > 0; upon applying Jensen'’s inequality to the
— Eflog [Y 2| X = 1] +1Og% _ 8/o? Ei(—%>+w concave functiony (-) (see (210)); gnd upon upper-bounding
o o —log(|z|? + %) by — log(a?). The inequality (166) now fol-
(170) lows from (173) using the substitutions (148) and (167).
where, by (209) At the cost of some slackness at high SNR, the bound (166)
5 can be simplified by choosingf = 0 and3’ = (1+ p)/«. This
Eflog [Y[7]X =] leads to the simplified bound

|d|?||? (_ 1d)?=)? 2
=log <|$|2+O_2> —Ei ( e >+log(|$| +o?). (171) < 0<1nf {_1 +1logT(@) + a1 + log(1 + p)) — aloga
Here, the first equality follows by (215) because the function 1d|?p 1d|%p
& —log(1 + &) — log(¢) is monotonically decreasing and be- + (1-a) <log — 5 — Ei (—42)> } .
cause the distribution df conditional onX = z is stochasti- ptld®+1 ptld®+1
cally larger than the distribution &f conditional onX = 0. In- (174)
deed, by (219), the distributidW¢ (dz, |z|?>+02)? isstochas- ~ We now turn to lower-bound channel capacity. At low
tically larger than the distributiopV (0, |z|?>+02)|?, and, bya SNR, we consider the suboptimal signaling scheme where the
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input distribution isN¢ (0, &) and where the receiver perfoms Bounds on Channel Capacuy for Ricean Fading (d = 8)
nearest neighbor decoding. The generalized mutual informati 8 T T T T
(GMI) [9] is a lower bound on the achievable rates under thes : o
additional restrictions and is thus also a lower bound on tt
capacity without these restrictions. For the case at hand, t
GMI I\ is given by

o
T

o
T

|d[*E,
Tev =1 1 175
GMI og< + o2 1 €. (175)
|d*p )
=1 1+ —. 176 3f
o8 ( prldE+1 (176)

N
T

Here, the first equality follows from [9, Corollary 3.0.1] (by
substitutingRe’®+(1) = ), and the second equality follows
from our definition ofp as the output SNR; see (167).

Since the RHS of (175) is bounded in the SNR, itis appare oL : - = 2N
that this bound is quite useless at high SNR. This boundedne Output SNR p [dB]
has nothing to do with the structure of the decoder. It is a direct

consequence of using the suboptimél (0, &) input distribu- Fig. 4. Bounds on the capacity of a Ricean fading channel with specular
tion: see Theorem 4.3 component! = 8: the tighter upper bound is given in (166) and the simplified
T A . pper bound in (174); the lower bound is given in (179). For comparison, the
At high SNR_' a b_etter bound is the bo_und of Cprolla_ry 4'z@hannel capacity of a Gaussian channel is shown as dotted line. Note that on
This bound is tight in the sense that at high SNR it achieves tihe abscissa denotes the output SNR (167).

fading number of the Ricean channel. It can be rewritten as
‘ ) ‘ | +1 at rates that are significantly higher than the fading number,
{log( i(—ap)+p log<1+ "

- Gaussian channel Gppaci ity
— - upper bound for §° = 0 (174)
— upper bound (166)
...{ — combined lower bound (179)
—- lower bound (176)
— - lower bound (177)84

Bounds on Capacity [nats]

C>Cy = sup

0<a<l communication becomes extremely power inefficient.

4) Multiple-Antenna Gaussian Fading Channale finally

2 : 2
—1+log |d"=Ei(=d]") (177) yeat the more general case of a fading channel wittransmit

whereg is the solution to the equation andng receive antennas
efaﬁ
3 = 178 Y=H D Z
Jé —E1( B) (178) T + Dz +
These two lower bounds can be combined to yield whereH is anny x nt matrix with each entry i.i.d~ N¢ (0, 1),
C > max{Igwr, Ce}. (179) D is a constantg x n matrix, andZ ~ N¢(0, 02 - 1,,,.).

The upper bound is given as
As a matter of fact, by a time-sharing argument, one can show

that this lower bound can be improved to the convex hull of the i 62,axEs
maximum. U< 0<LngfnR —nk ~10gL(nr) + (MR = @)gnr E + o2
Again, the difference between the high-SNR channel capacity nr(Es+ 0?) + 82 &
in the absence of side information + a<1 + log : P S)
&
C =loglog — — 1 + log|d|* — Ei(—|d|? 1) (180
oglog 5 — 1+ log|d]” — Ei(~|d”) +o(1)  (180) 4_bgr@m._abga} 182
and in its presence is striking. The latter is given by
e —El 1+ |H|?E, whered . is the maximum singular value &f, and where the
PSI =& |08 o2 function g,,,(-) is defined in Appendix X.
\H|2E This bound is based on (27), using
= E[10g<—2s>} +0o(1)
) ) h(Y|X = z) =ng log (re(||z]|* + 0?)) (183)
R R TP i(=1d[") +o(1) E[IY[I*|X = z] =nr(|z]]* + o) + || Dz (184)

D 2
um)EWMYWX:ﬂZb&MW+wamQ££%?)
where the last equation follows from the expression for the ex- (185)
pected logarithm of a noncentral chi-square random variable

(209). Further note that
Fig. 4 shows the situation for a specular componggt 8.
It depicts the upper bound (166) and the lower bound (179). EQ*[ 2] =Eg- [tr ((DX)(DX)T)]
For reference, we also plot the cruder but simpler upper bound _ tr(DKXDT)
that results from choosing’ = 0, see (174); the capacity
log(1 + SNR) of an additive white Gaussian noise channel :tr(DTDKX)

of equal output SNR; and the fading number. It is seen that
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Eq- [IDX]?] <Eq- [IIDII2 I1X11%] e,
=EQ- [6max - 1X117] Rly)=0 = W(ylz)=0 Q-as. (189)
_ 52 . - . .
max * s The measurability assumption on the channel allows us to define
whered . is the maximum singular value &f. (QW)(y /W ylz) dQ(zx) (190)
V. THE BASIC INEQUALITY which, in view of (189), demonstrates that
In this section, we extend (11) to channels over infinite alpha- Rly) =0 = (QW)(y)=0. (191)

bets. As noted earlier, the finite-alphabet version of this bourdso, by (190)

follows directly from the identity (10), which can be found, for . . )

example, in[2]and [1, Sec. 2.3 (3.7)]. Infact, the inequality (11) <Q_W)(y> =0 = _V_V(y|x) =0 Q as. (192)
also appears in [18, Exercise 4.17], except that there the dis&ince) is now assumed finite, we can rewrite the RHS of (186)
bution 12(-) is required to correspond to some input distributiordS

i.e., to b_e of the fornR(-) = (QW)(-). This r_estric'gio_n compli- 1£D (W(2)|[R(-)) dQ(x)

cates things a great deal when dealing with infinite alphabefs,

but is fortunately superfluous. W(y|x)
It should be noted that identity (10) plays a key role in the / Z Wiylz)log R(y) dQ(w)

capacity-redundancy theorem of universal coding. See, for ex- vey
ample, [10] and references therein. For the related infinite-§¥n€re we define
phabet universal source coding problem see [19]. Olog 0_ 0, a>0 (193)

Theorem 5.1:Let the input alphabef’ and the output al- gnd all the terms in the sum afpa.s.