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Capacity Bounds Via Duality With Applications to
Multiple-Antenna Systems on Flat-Fading Channels

Amos Lapidoth, Senior Member, IEEE,and Stefan M. Moser, Student Member, IEEE

Abstract—A technique is proposed for the derivation of upper
bounds on channel capacity. It is based on a dual expression for
channel capacity where the maximization (of mutual information)
over distributions on the channel input alphabet is replaced with a
minimization (of average relative entropy) over distributions on the
channel output alphabet. We also propose a technique for the anal-
ysis of the asymptotic capacity of cost-constrained channels. The
technique is based on the observation that under fairly mild con-
ditions capacity achieving input distributions “escape to infinity.”

The above techniques are applied to multiple-antenna
flat-fading channels with memory where the realization of the
fading process is unknown at the transmitter and unknown (or
only partially known) at the receiver. It is demonstrated that, for
high signal-to-noise ratio (SNR), the capacity of such channels
typically grows only double-logarithmically in the SNR. To better
understand this phenomenon and the rates at which it occurs,
we introduce the fading number as the second-order term in the
high-SNR asymptotic expansion of capacity, and derive estimates
on its value for various systems. It is suggested that at rates that
are significantly higher than the fading number, communication
becomes extremely power inefficient, thus posing a practical limit
on practically achievable rates.

Upper and lower bounds on the fading number are also pre-
sented. For single-input–single-output (SISO) systems the bounds
coincide, thus yielding a complete characterization of the fading
number for general stationary and ergodic fading processes. We
also demonstrate that for memoryless multiple-input single-output
(MISO) channels, the fading number is achievable using beam-
forming, and we derive an expression for the optimal beam direc-
tion. This direction depends on the fading law and is, in general,
not the direction that maximizes the SNR on the induced SISO
channel. Using a new closed-form expression for the expectation
of the logarithm of a noncentral chi-square distributed random
variable we provide some closed-form expressions for the fading
number of some systems with Gaussian fading, including SISO sys-
tems with circularly symmetric stationary and ergodic Gaussian
fading. The fading number of the latter is determined by the fading
mean, fading variance, and the mean squared error in predicting
the present fading from its past; it is not directly related to the
Doppler spread.

For the Rayleigh, Ricean, and multiple-antenna Rayleigh-fading
channels we also present firm (nonasymptotic) upper and lower
bounds on channel capacity. These bounds are asymptotically tight
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in the sense that their difference from capacity approaches zero at
high SNR, and their ratio to capacity approaches one at low SNR.

Index Terms—Channel capacity, duality, fading channels, flat
fading, high signal-to-noise ratio (SNR), multiple-antenna fading
number, noncentral chi-square, Rayleigh fading, Ricean fading,
upper bounds.

I. INTRODUCTION

T HE purpose of this paper is twofold: to propose a general
technique for deriving upper bounds on channel capacity,

and to use this technique in order to study multiple-antenna sys-
tems on flat-fading channels. To motivate the proposed tech-
nique consider the classical expression for the capacityof a
discrete memoryless channel (DMC) of law over the
finite input and output alphabets and

(1)

where denotes the set of all probability measures on
and where denotes the mutual information between
the channel terminals when the input is distributed according to
the law . That is,

(2)

where denotes the output distribution corresponding to
the input law , i.e.,

(3)

While the optimization over input distributions complicates
the exact computation of , (1) leads to very natural lower
bounds on . Indeed, any input distribution leads to
a lower bound

(4)

A good choice for in the above would be a distribution that
is close to a capacity-achieving input distribution and that leads
to a tractable expression for .

This latter issue of tractability may not be so critical for
DMCs, but it is quite important for channels over continuous
alphabets. For such channels, the mutual information can be
expanded in terms of differential entropies in two ways

(5)

(6)
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To understand the difficulty in evaluating note that
channels are typically modeled so that the output law
corresponding to each input be a “nice” function, but that
for a given input distribution —even if “nice”—the
posterior law on given will typically be complicated to
compute, let alone . Thus, while a “nice” choice for

will typically allow for an analytic calculation of , the
calculation of will typically be complicated and (5)
might not be tractable. Alternatively, if one tries to compute
(6) then the nice law of and a nice choice for will
typically allow one to compute , but the computation
of , which is required for (6), might be difficult because
the output law corresponding to a nice input and a nice channel
need not be nice.

A dual expression for channel capacity is [1]

(7)

where denotes relative entropy so that

(8)

Every choice of a distribution on the output thus leads
to an upper bound on channel capacity

(9)

In fact, by considering the identity [2]

(10)

and by noting that relative entropy is nonnegative, we obtain the
bound

(11)

which implies (9).
As noted above, any choice of a distribution on

the output alphabet leads to an upper bound on channel capacity
via (9). One should typically choose to be close to the ca-
pacity-achieving output distribution and so as to guarantee that
(9) be tractable. This latter condition need not be so difficult to
satisfy. Indeed, since the channel law is often modeled
using a “nice” law, and since we are at liberty to choose
to be nice, there is hope that may be tractable
and be a reasonable function ofthat can be then maximized.
While this latter maximization is unavoidable, it is at least over
input symbols and not over distributions.

In this paper we shall extend (11), and hence also (9), to gen-
eral alphabets and also demonstrate how to account for input
constraints. Such constraints can be accounted for by modifying
(9) by introducing Lagrange multipliers, as in [1], or by working
with (11), as we have chosen to do.

We shall apply the proposed approach to the study of the ca-
pacity of multiple-antenna flat-fading channels where the trans-
mitter and receiver—while cognizant of the fading probability
law—have no knowledge (or, in the receiver case, only partial
knowledge) of the realization of the fading matrix. Other chan-
nels to which the proposed approach has been successfully ap-
plied include finite-state channels with intersymbol interference
memory [3], phase noise channels [4], and the Poisson channel
[5]. For an extension of this technique to the analysis of error
exponents see [6].

The fading model we address is described in Section III after
a brief word about notation in Section II. The rest of the paper is
organized as follows. In Section IV, we present our main results
concerning the capacity of multiple-antenna fading channels.
Subsequent sections are more technical. In Section V, we prove
the extension of (11) to continuous alphabet channels. In Section
VI, we provide some of the mathematical background that will
be useful in the study of the capacity of the fading channel. This
section can be glanced over in a first reading and referred to
later as needed. Section VII concludes the paper with a brief
summary and a discussion of some of the results.

II. NOTATION

We try to use upper case letters for random quantities and
lower case letters for their realizations. This rule, however, is
broken when dealing with deterministic matrices and some con-
stants. To better differentiate between scalars, vectors, and ma-
trices we have resorted to using different fonts for the different
quantities. Upper case letters such asare used to denote scalar
random variables taking value in the realsor in the complex
plane . Their realizations are typically written in lower case,
e.g., . For random vectors we use bold face capitals, e.g.,
and bold lower case for their realization, e.g.,. Deterministic
matrices are denoted by upper case letters but of a special font,
e.g., . For random matrices we use yet another font, e.g.,.
Scalars are typically denoted using Greek letters, but the energy
per symbol is denoted by .

The entries of matrices are denoted using superscripts so that
denotes the (random) component of the random matrix

that lies in row- and column-. Note that our generic row
index is and the generic column index isbecause we think
of as indexing the receive antennas and ofas indexing the
transmit antennas. Consequently, the number of rows in the ma-
trix will be often denoted by and the number of columns by

. Subscripts will be typically reserved for time indexes. Thus,
the fading matrix at time will be denoted by .

We use to denote the Euclidean norm of vectors or the
Euclidean operator norm of matrices. That is,

(12)

(13)

Thus, is the maximal singular value of the matrix.
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The Frobenius norm of matrices is denoted by and is
given by the square root of the sum of the squared magnitudes
of the elements of the matrix, i.e.,

(14)

Here denotes the trace of a matrix, denotes Hermi-
tian conjugation, and we shall use to denote the transpose
(without conjugation) of a matrix. Note that for any matrix

as can be verified by upper-bounding the squared magnitude
of each of the components of using the Cauchy–Schwarz
inequality.

All rates specified in this paper are in nats per channel use.
We use to denote the natural logarithmic function, and set

to denote its positive part, i.e.,

(15)

We shall denote the indicator function bystatement. It
takes on the value if the statement is true, and the valueif
the statement is false.

We shall denote the mean-variance- univariate real
Gaussian distribution by . Similarly, the mean-
covariance- multivariate real Gaussian distribution will be
denoted . Analogously, a complex random variable

will be said to have a distribution if is
a circularly symmetric Gaussian random variable of variance

, i.e., if the real and imaginary parts of
are independent random variables. Similarly, we
shall write if is a circularly symmetric
zero-mean Gaussian random vector of covariance matrix

. The notation , without the subscript
to indicate whether the distribution is complex or real, will
indicate that the stated result holds in both cases.

In dealing with sequences of random variables we shall use
a combination of superscripts and lower scripts to address con-
secutive subsets. Thus, if is a sequence of random
variables, then will designate the sequence .

III. T HE CHANNEL MODEL

We consider a channel with transmit antennas and
receive antennas whose time-output is given by

(16)

Here, denotes the time-
input vector; the random matrix denotes the
time- fading matrix of columns ; and the
random vector denotes the time- additive noise
vector.

Unless otherwise specified, we shall assume throughout
that the random vectors are spatially and temporally
white zero-mean circularly symmetric complex Gaussians,
i.e., that are independent and identically distributed

(i.i.d.) for some . Here denotes the
identity matrix. Similarly, we shall assume throughout that the
matrix-valued fading process is stationary and ergodic
and independent of the vector-valued additive noise process

. We shall also assume a finite-energy fading gain, i.e.,

(17)

where denotes the Frobenius norm of the matrix,
see (14).

We denote the capacity of this channel with average power
by SNR , where SNR denotes the signal-to-noise
ratio. Thus,

SNR (18)

where the supremum is over all joint distributions on the input
vectors under which

(19)

and where denotes the mutual information functional.
We shall often focus onmemoryless fadingwhere the random

matrices are i.i.d. In this case, we shall drop the time-
dependence index and write

(20)

Note that memoryless fading still allows for dependence among
the components of the fading matrix at a given instant. Thus,
in (20) the components of need not be independent of each
other.

Since mutual information is concave in the input distribution,
for memoryless fading we can replace (19) with the stricter con-
straint

(21)

A special case of memoryless fading ismemoryless Gaussian
fading. In this case, the matrix can be written as

(22)

where the mean matrix is a deterministic complex
matrix, and where the components of
are zero-mean jointly circularly symmetric and jointly Gaussian
complex random variables. To be even more explicit, we shall
sometimes refer to memoryless fading of a law that is not nec-
essarily Gaussian asgeneral memoryless fading.

Some special cases of memoryless Gaussian fading include
the following.

• Rayleigh fading, where , the mean matrix
is zero, and is a zero-mean unit-variance circularly

symmetric complex Gaussian.

• Multiple-antenna Rayleigh fading, where and the
components of are independent zero-mean unit-

variance circularly symmetric complex Gaussians.
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• Ricean fading, where , the mean ma-
trix—which is now a scalar called the “specular com-
ponent”—is not necessarily zero, and is a zero-mean
unit-variance circularly symmetric complex Gaussian.

IV. CAPACITY RESULTS

Apart from Section IV-A, which presents some results that
are applicable to general channels of output alphabet, the
results in this section are focused on fading channels. In Section
IV-A, we use the continuous-alphabet version of (11), namely,
(186) of Theorem 5.1, in conjunction with the family of output
laws (204) to derive general upper bounds on the mutual infor-
mation between the terminals of a channel of output alphabet

. In Section IV-B, we use these inequalities to demonstrate
the inefficiency of high-SNR signaling on fading channels. Mo-
tivated by these results, we define in Section IV-C the fading
number, which is the second-order term of the high-SNR expan-
sion of channel capacity and which gives some indication of the
rates above which channel capacity increases only double-log-
arithmically with the SNR. Section IV-D is devoted to the cal-
culation of the fading number of memoryless fading and Sec-
tion IV-E to the calculation of the fading number for fading
with memory. This section is concluded in Section IV-F with
a nonasymptotic capacity analysis of some specific memory-
less Gaussian fading channels including the Rayleigh, Rice, and
multiple-antenna Rayleigh fading channels.

A. A Specific Bound on Mutual Information

Once we extend the basic inequality (11) to general alphabets
in Theorem 5.1 of Section V, we can apply it to channels whose
output alphabet is by considering the output distributions

whose densities (with respect to the Lebesgue measure on
) are given by

(23)

where , , and where is any nonsingular deter-
ministic complex matrix. (See (204) and the discus-
sion preceding it in Section VI-A for a discussion of this family
of densities.) Here denotes the Gamma function (197) and

denotes the incomplete Gamma function (200).
With this choice of we have

(24)

so that by the basic inequality (11), (186) we obtain a general
upper bound on the the mutual information for a channel whose
output takes value in

(25)

where denotes the average
conditional differential entropy when is distributed according
to the law . Notice that in (25) we have denoted a generic input
to the channel by because we have in mind that the input to
the channel is a complex vector, but the result is more general.

The (typically suboptimal) choice of

(26)

in (25) yields the simpler upper bound

(27)

This upper bound is tight enough to obtain the first term in the
high-SNR capacity expansion, but not quite tight enough for the
finer analysis of the second term (which will be defined later as
the fading number).

Note 4.1: It is interesting to note that for low-SNR fading
channels, the crude bound (27) is tight. Indeed, if we further
simplify it with the choice of and satisfying

then (27) reduces to the max-entropy bound1

(28)

which is tight enough to obtain the slope of the capacity–energy
curve at zero SNR. See Appendix I for details.

To use (25) to obtain upper bounds on channel capacity, one
needs to upper bound the right-hand side (RHS) of (25) over
all admissible input distributions. For some examples on how
this may be carried out, please see Section IV-F. The analysis
typically requires one to derive upper bounds on expressions of
the form for some real function and for some un-
known (capacity achieving) input distribution that is only known
to satisfy some input constraint, e.g., . This is
often performed using Jensen’s inequality (if is concave),

1The fact that this choice reduces to the max-entropy bound is not surprising.
Indeed, the choice� = n reduces the Gamma distribution (199) to a central
� distribution, thus reducing (203) to an i.i.d. multivariate Gaussian distribu-
tion so that (204) becomes a general multivariate Gaussian distribution.



2430 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

or using the trivial upper bound , when all else fails.
Under additional support constraints (peak power) and/or addi-
tional moments constraints one may resort to results on Cheby-
shev Systems, see, e.g., [7]. Another ueful approach, which we
demonstrate in Section IV-F, is the use of ideas related to sto-
chastic ordering of distributions [8]; see also Section VI-B.

We may also apply (11) to channels whose output
takes value in the set of nonnegative reals. We can choose the
output distribution to be a regularized Gamma distribution
(199), so that

(29)

Using the basic inequality (186), we obtain the general upper
bound on channels whose output takes value in

(30)

This inequality has proven useful in [4], in the analysis of chan-
nels with phase noise, and in [5], in the study of the capacity
of the discrete-time Poisson channel. In both cases, it was used
with the (typically suboptimal) choice of

(31)

which yields the simpler upper bound

(32)

In the Poisson case, where the output is discrete, it was applied
to an information lossless smoothed version of the output.

B. Communication at High SNR Is Power Inefficient

We now turn to some asymptotic analysis of channel capacity
at high SNR. Our first result here is that at high SNR capacity
grows only double-logarithmically in the SNR, and in fact,
the difference between channel capacity and SNR is
bounded as the SNR tends to infinity. We shall state this result
in a fairly general setting that also allows for the availability
of some side information at the receiver (but not at the trans-
mitter). To demonstrate the robustness of this result, we shall
state it without requiring that the additive noise be spatially
and temporally white Gaussian. We shall only require that it be
stationary and ergodic, of finite energy, and of finite entropy
rate.

Theorem 4.2:Consider a multiple-input multiple-output
(MIMO) fading channel

(33)

with some receiver side information (possibly null), where
the fading process and receiver side information
are jointly stationary and ergodic, and independent of the sta-
tionary and ergodic additive noise process . Assume fur-
ther that the joint law of does not depend
on the input sequence . Let denote the capacity of
this channel under an average power constrainton the input,
so that

(34)

where the supremum is over all input distributions on satis-
fying

(35)

Assume that both and are of finite differential en-
tropy rate

(36)

that both have finite second moments

(37)

and that the mutual information rate is finite,
i.e.,

(38)

Then

(39)

Proof: The proof of this theorem for memoryless fading,
memoryless additive noise, and in the absence of receiver side
information is given in Appendix II. It is based on an asymptotic
analysis of the bound (27) withchosen as the identity
matrix.

The more general case follows from the simpler case by
Lemma 4.5 ahead.

It is interesting to note that under the assumptions of Theorem
4.2, Gaussian input signals are highly suboptimal. In fact, such
input signals achieve a mutual information that isboundedin
the power . This result was recently proved by Lapidoth and
Shamai [9, Proposition 6.3.1] for single-antenna

and Gaussian inputs. Here we generalize it to the MIMO case
and any scale family of input distributions.

Theorem 4.3:Let the fading process and additive noise
process satisfy the assumptions of Theorem 4.2, i.e., be in-
dependent stationary and ergodic processes satisfying (36) and
(37). Let be some stationary process (independent of the
fading and additive noise) with and

(40)

Then

(41)
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Proof: For a proof in the memoryless case see Appendix
III. The more general case (even with some receiver side infor-
mation) follows from Lemma 4.5 ahead.

Note 4.4: Condition (40) is satisfied whenever is a non-
deterministic Gaussian vector. In fact, it is satisfied whenever
some subset of the components of has a finite joint differen-
tial entropy; see Lemma 6.7. (For deterministic inputs the claim
is trivial.)

To better understand the role played by the channel memory
and by the side information, the following lemma can be useful.

Lemma 4.5:Let , , , , and be as in Theorem
4.2. Then for any positive integer

(42)

(43)

Proof: See Appendix IV.

C. The Fading Number

Motivated by Theorem 4.2 we next define the fading number.
Henceforth we shall always assume that the additive noise
is spatially and temporally white Gaussian noise of covariance
matrix .

Definition 4.6: The fading number of a sta-
tionary and ergodic matrix valued fading process in the
presence of receiver side information is defined as

(44)

Thus, whenever is finite and the limit in (44) exists

(45)

where the term tends to zero as tends to infinity. Note
that as in (45) and hereafter we omit the argument ofwhen it
is clear from the context.

The fading number is thus the second term in the high-SNR
expansion of channel capacity. Since an exact expression for
channel capacity seems intractable, the approximation (44) may
be useful for the understanding of the behavior of channel ca-
pacity at high SNR.

The fading number serves, however, an additional purpose.
The design of communication systems that operate in the region
where capacity grows only double-logarithmically in the SNR is
extremely power inefficient. Thus, one would expect that system
designers will try to avoid this region and design the systems for
lower rates (e.g., by using more bandwidth). The fading number
may give an indication of roughly how high need the rate be be-
fore one enters this high-SNR region. At rates that significantly2

exceed the fading number, one should expect to square the SNR

2One should remember that for some channels (e.g., the i.i.d. Rayleigh fading
channel—see (85) ahead), the fading number may be negative. Since zero bits
can always be transmitted with zero power, we use the term “significantly ex-
ceed” rather than simply “exceed.”

for every additional bit per channel use. In this sense, the fading
number can be viewed as an indication of the practical limiting
rate for power-efficient communication over the channel.

The following somewhat unintuitive observation is a conse-
quence of the behavior of the function under scaling

SNR SNR

(46)
It may simplify the computation of the fading number, espe-

cially for multiple-input single-output (MISO) and single-input
multiple-output (SIMO) systems where the fading is spatially
correlated.

Lemma 4.7:Consider a stationary and ergodic fading
process with transmit antennas and receive
antennas. Let the deterministic matrix and the

deterministic matrix be both nonsingular. Then

(47)

Proof: The proof of this lemma is given in Appendix V.
It is based on the following intuitive ideas. The first is that the
channel of fading can be mimicked on the channel of fading

by replacing the input with the input . In doing so, we
might be boosting the input power and thus possibly violating
the input constraint, but we note that the power boost is at most
multiplicative (by ) and is thus insignificant on a double-
logarithmic scale. Similarly, the channel of fading can be
mimicked on the channel of fading by multiplying the input

by —again, at a power boost that is at most multiplicative
(by ).

The invariance with respect to multiplication on the left by
can be argued in a similar way by post-multiplying the channel
output. This causes noise coloring and noise boosting, but this
phenomenon can be shown to be insignificant on a
scale.

D. On the Fading Number for Memoryless Fading

1) Trading Additive Noise for Input Constraints:The fol-
lowing theorem gives an equivalent expression for the fading
number of memoryless fading channels. In this expression, the
additive Gaussian noise is not present, but its place is taken by
an additional constraint on the input, namely, that all inputs must
be bounded away from zero.

Theorem 4.8:Consider the general memoryless fading
channel (20) of fading matrix and assume
and . Then the channel fading number is
given by

(48)

where denotes any fixed nonzero energy, e.g., one unit of
energy.3

3The symbolE can be replaced everywhere with1, but we have chosen not
to do so in order to better keep track of units.
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Moreover, the fading numbercan be achieved by input dis-
tributions that are bounded away from the origin in the
sense that

(49)

where

(50)

This theorem is proved in two steps. In the first step, we show
that the RHS of (48) is a lower bound to , and in the second
step we show that it is also an upper bound. The first step is
the easier one. It is an immediate consequence of the following
lemma.

Lemma 4.9:Let the random vector take value in and
satisfy

(51)

for some . Let be a random matrix satis-
fying and . Let
and assume that , , and are independent. Then

(52)

Consequently, for any fixed positive energy

(53)

and

(54)

Proof: Inequality (52) follows from the basic properties of
differential entropy as follows:

Inequality (53) follows from (52) by limiting the supremum
of to random vectors that are of the form

for some satisfying and
as follows:

(55)

(56)

where the second inequality follows by (52) because vectors
of this form satisfy .

To prove (54), we shall use (53) withgrowing with in a
controlled way. Defining we have

To prove (54) it thus follows that it suffices to require thattend
to infinity so that by Lemma 6.11 the third term on the RHS of
the inequality will tend to zero, and to additionally require that

tend to zero, so that the second term on the RHS
of the inequality will tend to zero. An example of a choice that
meets these two requirements is

(57)

We next continue with the second step in the proof of The-
orem 4.8. In this step, we show that the RHS of (48) is an upper
bound to . We show that by trying to make light of the con-
straint . More specifically, we shall show that even in
the presence of noise—let alone in its absence—this constraint
does not preclude one from achieving the fading number.

We thus next show that even in the presence of additive tem-
porally and spatially white Gaussian noise, the fading number

can be achieved using input distributions that satisfy the
constraint . The technique we use to prove this claim
may be of independent interest, and we, therefore, present this
proof in a somewhat general setting. The proof hinges on the
fact that the capacity of our channel can be achieved by input
distributions that assign to any fixed compact set a probability
that tends to zero as the SNR tends to infinity. This property
turns out to hold for many cost constrained channels of inter-
ests, and we therefore define it in a fairly general setting. We
need, however, the following preliminary standard definition.
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Definition 4.10: Given a channel over the input al-
phabet and the output alphabet and given some nonneg-
ative cost function : , we define the capacity–cost
function : by

(58)

We say that is achieved if the supremum in (58) is
achieved.

We are now ready for the definition of capacity-achieving
input distributions that escape to infinity. For an intuitive un-
derstanding of the following definition and some of its conse-
quences, it is best to focus on the example where the channel
inputs are vectors in Euclidean space and where the cost func-
tion is the squared Euclidean norm.

Definition 4.11: Let denote the capacity–cost function
of a channel over the input alphabet and the output
alphabet with the nonnegative cost function: .
Assume , for any fixed . We shall say that the ca-
pacity of this channel can be achieved byinput distributions that
escape to infinity, if for any there exist input distribu-
tions satisfying such that

(59)

and

(60)

Intuition suggests that if capacity can be achieved using input
distributions that assign an ever decreasing probability to a set

, then at high SNR the capacity should not suffer appreciably
from constraining the inputs to lie outsidealmost surely. This
intuition is made precise in the following theorem.

Theorem 4.12:Consider a channel of law over the
input alphabet and the output alphabet. Let :
be some nonnegative cost function, and let denote the
capacity–cost function associated with and . As-
sume , for any fixed . Fix some and let

: . Let denote the capacity–cost
function when the inputs are additionally constrained to lie
outside . Let be some mapping: satisfying

(61)

for example4

or

(62)

Assume that, as the costtends to infinity, capacity-achieving
input distributions escape to infinity. Then

(63)

Proof: Placing additional input constraints cannot in-
crease capacity. Hence,

so that the left-hand side (LHS) of (63) cannot exceed its RHS.
We now proceed to prove the reverse inequality.

4In this paper, we shall only be interested in the case whered(�) = log(1+
log(1+�)) but the other example can be useful in other applications. See, for
example, [4], [5].

Let and satisfy

(64)

(65)

and

(66)

By (66) it follows that for all sufficiently large the proba-
bility of the set-complement of is strictly larger
than zero and we can, therefore, define the conditional law
so that for any Borel set and any sufficiently large

(67)

Thus, under the prior , the probability measure corre-
sponds to thea posterioridistribution on the input conditional
on .

Note that by the nonnegativity of the cost function it follows
that the cost associated with is not appreciably larger than
the one associated with . Indeed, if we define

(68)

then the cost associated with satisfies

(69)

Let be distributed according to , and let the binary-
valued random variable be defined by

if
if

(70)

Note that the probability that takes on the value is ,
which by (66) tends to zero with. We now have

(71)

where denotes the binary entropy function, i.e.,

(72)

By subtracting from both sides of (71) we obtain

(73)

We now consider the limiting behavior (as ) of both
sides of the inequality (73). Beginning with the LHS, we note
that, by (65), it tends to .
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We now consider the RHS of (73). By inspecting the be-
havior of the binary entropy function about zero, it fol-
lows from (66) that the first term tends to zero. Similarly, since

is bounded in (because the capacity under
the sole constraint that the input must lie inis bounded by

), it follows again from (66) that the second term
also tends to zero. The third term converges to zero by (61), (68),
and (66). The only remaining term is the last one, which gives
us the inequality

(74)

thus concluding the proof of the theorem.
It is interesting to note that an expansion dual to (71) is also

useful in the study of the redundancy–capacity theorem of uni-
versal source coding. See (without costs) [10, Proof of The-
orem 1].

For our multiple-antenna fading channel, the capacity cost
function is clearly finite (if the noise variance is positive). In-
deed, this is even the case when the receiver knows the realiza-
tion of the fading matrix. Thus, by Theorem 4.12, if we could
show that the capacity of our channel is attained by input distri-
butions that escape to infinity, we would also deduce that—even
in the presence of noise—the constraint does not
preclude one from achieving the fading number.

The proof of Theorem 4.8 will thus be concluded once we
show that for our fading channel, capacity can be achieved using
input distributions that escape to infinity. We next derive some
general conditions that guarantee this property. Again, since
such conditions may be useful in other contexts, we state the
conditions in fairly general terms.

Theorem 4.13:Let the input alphabet and the output al-
phabet of a channel be separable metric spaces, and
assume that for any Borel set , the mapping
from to is Borel measurable. Let the nonnegative cost
function : be measurable, and let be the ca-
pacity–cost function for the channel and the cost func-
tion . Assume:

• For any fixed cost the constrained capacity is finite,
but as the cost tends to infinity, the capacity increases to
infinity sublinearly

(75)

• For any two input distributions of finite cost the directional
derivative of the mutual information exists and is given by5

(76)

Then, capacity-achieving input distributions escape to infinity.
Proof: See Appendix VI.

5It suffices that this hold for all probability measuresQ for which
[g(X)] is sufficiently large.

To conclude the proof of Theorem 4.8 it now only remains to
check that the assumptions of Theorem 4.8 imply that the fading
channel satisfies the conditions of Theorem 4.13.

The condition implies that channel capacity is
unbounded. Indeed, this condition guarantees that by spacing
any finite number of symbols sufficiently apart, we can achieve
an arbitrarily small uncoded probability of error. See [11, Sec-
tion IV.B] for the details.

The condition guarantees that the capacity can
only grow sublinearly in the power. Indeed, the sublinear growth
is guaranteed even if the receiver has knowledge of the fading
matrix, because this condition guarantees that the power in
grows at most linearly in , so that the presence of the additive
noise guarantees that capacity can grow at most logarithmically
in . (The additional condition guarantees, of
course, an even slower increase in capacity, namely, a double-
logarithmic one.)

Finally, the technical condition regarding the directional
derivatives (76) can be verified as in [11, Appendix II.B (63)].

We will now briefly summarize the proof of Theorem 4.8:

Proof: We proved Theorem 4.8 in two steps. In the first,
see Lemma 4.9, we proved that by restricting the minimum norm
that the channel inputs may have, we can mimic the limiting
behavior of a channel without noise. That is,

(77)

In the second step we showed that, even in the presence of
noise—let alone in its absence—the fading number can be
achieved with inputs that are additionally constrained to lie
outside a fixed energy ball. This was shown by demonstrating
that the capacity of the fading channel can be achieved by
input distributions that escape to infinity, and by showing that
for such channels, the high-SNR capacity asymptotics can be
achieved even subject to an additional minimum cost constraint.
The former claim was proved by proving general conditions for
capacity-achieving input distributions to escape to infinity (see
Theorem 4.13) and by verifying that the fading channel satisfies
these conditions (see the discussion following the proof of
Theorem 4.13). The latter claim about the capacity asymptotics
of channel with capacity-achieving input distributions escaping
to infinity was proved in Theorem 4.12.

2) An Upper Bound on for Memoryless Fading:Having
established Theorem 4.8 we can now upper-bound
in (48) using the bound (25). In this way, we can obtain the
following upper bound on the fading number of memoryless
fading channels.

Theorem 4.14:Consider a memoryless fading channel (20)
of fading matrix satisfying and

. Then the fading number is upper-bounded by ,
where

(78)
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and where the infimum is over all nonsingular complex
matrices .

Proof: See Appendix VII.

Note 4.15: Using Jensen’s inequality applied to the concave
function one can further upper-bound (78) by

(79)

This bound is generally not tight, but it is often much simpler to
compute than (78).

3) Memoryless Single-Input Single-Output (SISO) Sys-
tems: A lower bound to the fading number can be obtained
from Theorem 4.8 by lower-bounding using spe-
cific input distributions. For example, in the SISO case, we can
obtain a lower bound from Theorem 4.8 by considering an input

that is circularly symmetric with being uniformly
distributed between and . It turns out that the
resulting lower bound on coincides with the upper bound.
Thus, for SISO channels we have a complete characterization
of the fading number. In fact, we can show that the fading
number can be achieved even if the average power constraint

is replaced with the peak power constraint
.

Theorem 4.16:Consider a SISO memoryless fading channel
with a complex fading variable . Assume that
and . Then the limsup in (44) is also a liminf (i.e.,
the limit exists) and the fading number is given by

(80)

Moreover, this fading number is achievable by circularly sym-
metric inputs whose log magnitude is uniformly dis-
tributed over the interval for any
satisfying

and

Proof: The fact that the RHS of (80) is an upper bound on
follows from Theorem 4.14 by choosing the matrixin

(78) as the identity matrix (i.e., the scalar).
To derive a lower bound on , we use Theorem 4.8 with

the choice of being a circularly symmetric random variable
such that

Uniform (81)

Indeed, for this choice of we have

(82)

(83)

Here, the first equality follows from the definition of mutual
information; the subsequent equality from the behavior under
scaling of the differential entropy ofcomplexrandom variables;
the following inequality because conditioning cannot increase
differential entropy; the following equality by (319) for the dif-
ferential entropy of a circularly symmetric random variables; the
subsequent equality by relating the differential entropy of a pos-
itive random variable to that of its logarithm as in Lemma 6.15;
the following equality by the behavior of differential entropy
under scaling of areal random variable; and the final equality
by evaluating the differential entropy using (81).

The nature of the input distributions that achieve
follows from (81) and Lemma 4.9.

Note 4.17: It is interesting to note that the fading number is
achievable by input distributions of a law that does not depend
on the fading law. This observation can be useful in the analysis
of fading channels with some side information available at the
receiver and/or the transmitter; see Proposition 4.23.

Note 4.18: Note also that the achievability of the fading
number with the above input distributions demonstrates that for
SISO channels, the fading number does not depend on whether
average or peak power constraints are imposed.

Corollary 4.19: For Ricean fading, i.e., memoryless SISO
Gaussian fading, the fading number is given (in nats) by

(84)

where denotes the exponential integral function defined in
(211). In the special case where , i.e., Rayleigh fading, the
fading number is thus given by

(85)

where denotes Euler’s constant.
Proof: Follows directly from Theorem 4.16 by evaluating

the differential entropy of a complex Gaussian random variable
and by evaluating the expectation of the logarithm of a noncen-
tral chi-square random variable (209).

With the aid of Lemma 4.9 we can also obtain an asymp-
totically tight firm lower bound to the capacity of the Ricean
channel.

Corollary 4.20: Let denote the capacity of a mem-
oryless SISO Ricean fading channel of fading law , av-
erage power , and additive Gaussian noise variance. Then

(86)
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where is the maximum differential entropy a
real random variable can have if it is to satisfy

(87)

namely

(88)

where is the solution to the equation

(89)

Note 4.21: A looser but simpler lower bound follows from
the bound

(90)

which can be verified by considering the differential entropy
of a random variable that is uniformly distributed over

the interval and that thus satisfies the con-
straints (87).

Proof: Fix some and consider a circularly
symmetric random variable such that

(91)

(92)

(93)

Then

Here, the first inequality follows from Lemma 4.9; the sub-
sequent equality follows by the explicit evaluation of the dif-
ferential entropy of the Gaussian distribution; the subsequent
equality by direct calculation; the following inequality by lower
bounding by as in the steps leading to (82);
and the final equality by our choice of as having the
max-entropy distribution.

The expression for follows by noting that the
density that achieves is of the form [12, The-
orem 11.1.1]

(94)

Theorem 4.16 gives an exact expression for the RHS of (48)
for SISO channels and demonstrates that the limsup is in fact a
limit. While the theorem is stated for complex channels, it can

also be used to obtain a useful relationship for real channels.
This relation will be useful in the analysis of SIMO channels.

Corollary 4.22: Let be a nonnegative real random vari-
able satisfying and . Then

(95)

Proof: This follows by Theorem 4.8 and Theorem 4.16
applied to the fading where is independent of

and uniformly distributed over the interval . For this
circularly symmetric law of no information can be passed
via the phase so that the limits in (95) and (48) agree. They are
consequently both given by Theorem 4.16 as

(96)

where the relationship fol-
lows from Lemma 6.16, which relates the differential entropy of
a complex random variable (in our case) to the joint differen-
tial entropy of its magnitude and phase (in our caseand ,
which are independent); see (319)–(320).

An alternative proof, which does not require embedding the
real channel in a complex one, can be based on choosing inputs
of energies with logarithms that are uniformly distributed on the
interval and then invoking Lemma 6.10.

4) Memoryless SISO Systems With Side-Information:The-
orem 4.16 extends to situations where the receiver (but not trans-
mitter) has some side information regarding the realization of
the fading. This setting will be explored in greater detail in The-
orem 4.41 but we send forward the following simple case, which
turns out to be instrumental to the analysis of the more general
case.

Proposition 4.23: Let be some complex random variable
satisfying . Assume that the pair is inde-
pendent of the additive noise and that the joint
law of does not depend on the channel input. Fur-
ther assume . Then

(97)

i.e.,

(98)

This fading number is achievable by input distributions of the
form given in Theorem 4.16.

Note 4.24: Under fairly general conditions, (98) continues to
be valid even if the state is also known to the transmitter. This
is, for example, the case if takes value in a finite set.

Note 4.25: It is interesting to compare the fading numbers in
the presence of receiver side information (98) and in its absence
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(80). The side information increases the fading number by the
mutual information .

Proof: The proof relies heavily on the fact that the fading
number of a SISO system can be achieved by input distributions
that do not depend on the fading law. The proof of this propo-
sition is given in Appendix VIII. Here we merely give a plausi-
bility argument.

Choose to be distributed according to the law specified
in Theorem 4.16. Then, for any realization , we have by
Theorem 4.16 (applied to fading law ) that at high SNR

(99)

(100)

from which the result follows by taking expectations with re-
spect to .

The technical problem with this argument is in interchanging
the order of taking the expectation with respect towith the
taking of the limit as tends to infinity.

Corollary 4.26: Assume that and that the
pair are jointly Gaussian and jointly circularly sym-
metric. Let denote the mean squared error in estimation

from . Then, the fading number in the presence at the re-
ceiver of the side information is given by

(101)

Proof: Follows directly from Proposition 4.23 and Corol-
lary 4.19 by noting that

(102)

5) Memoryless MISO Systems and Beam Forming:A
different extension of Theorem 4.16 is to MISO fading chan-
nels. With the aid of Theorem 4.16 and the upper bound of
Theorem 4.14 we can now also compute the fading number of
memoryless MISO fading channels. As a by-product we shall
infer that—in the sense that it allows one to achieve the fading
number—beam forming is asymptotically optimal. By beam
forming we refer here to choosing some fixed deterministic
unit vector and limiting the inputs to vectors in that
are colinear with it. Such an approach can greatly reduce the
complexity of the code/decoder.

Theorem 4.27:Consider a MISO memoryless fading chan-
nel with row fading vector , where is random column
vector in satisfying and .
Then the limsup in (44) is also a liminf (i.e., the limit exists) and
the fading number is given by

(103)

Moreover, this fading number is achievable by inputs that can
be expressed as the product of a deterministic unit vector in

and a circularly symmetric scalar complex random variable of a
law specified in Theorem 4.16.

Proof: If the channel input is of the form where
is a deterministic unit vector and is a scalar complex random
variable satisfying , then the channel output is a
scalar random variable that can be expressed as

i.e., as the output of a SISO fading channel of fading and
hence (by Theorem 4.16) of fading number

Since can be arbitrary, this demonstrates that the RHS of (103)
is a lower bound to . A priori, it is not clear that this
bound is tight, since there could ostensibly be other inputs that
are not of the form and that give rise to higher mutual
informations and perhaps also to higher fading numbers. This,
however, is ruled out by the upper bound on the fading number

of Theorem 4.14 (applied to the fading marix
with the matrix chosen as the identity matrix), which
coincides with the RHS of (103).

Corollary 4.28: Consider a memoryless Gaussian MISO
fading channel where the fading matrix is a row vector,
where , , . Then the fading
number is given by

(104)

where

(105)

Proof: Follows directly from Theorem 4.27 and Corol-
lary 4.19 because for any (deterministic) beam direction, the
concatenation of the beam-forming mapping

and the fading channel results in the mapping
, which corresponds to a SISO Ricean channel.

Note 4.29: In the above corollary, if the mean vectoris
zero, then of (105) is zero, and the fading number is that of a
Rayleigh-fading channel, i.e., . It is achievable by beam
forming with an arbitrarily chosen direction.

6) Memoryless SIMO Fading:For memoryless SIMO
fading, the capacity-achieving input distribution is circu-
larly symmetric. Indeed, since mutual information over such
channels is invariant under deterministic rotation of the input
distribution, the concavity of mutual information implies that
there is no loss in optimality in considering only circularly
symmetric input distributions. This is true also in the presence
of side information. Consequently we have the following.

Proposition 4.30: Consider a memoryless fading system
where the fading vector takes value in and satisfies

and . Assume that the additive
noise vector has an distribution. Then, the fading
number is given by

(106)
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where is independent of and uniformly distributed over
the interval , and . Alternatively, it can be
expressed as

(107)

where is the differential entropy on the sphere, see (323).
Proof: Let have a circularly symmetric dis-

tribution so that and are independent and is uniformly
distributed over . Then

The result (106) now follows by analyzing the asymptotics
of the second term on the right using a conditional version of
Corollary 4.22, which follows from Proposition 4.23 in much
the same way that Corollary 4.22 follows from Theorem 4.16.

To derive (107) from (106)

where we use Lemma 6.17 for the required change of
coordinates.

Note 4.31: This result extends immediately to the case where
the receiver has some side informationsuch that are
independent of the input and additive noise. In that case, (107)
should be replaced with

(108)

thus demonstrating that the increase in the fading number may
be smaller than .

Corollary 4.32: Consider a zero-mean memoryless Gaussian
SIMO fading channel of a nonsingular covariance ma-
trix , i.e.,

(109)

Then the fading number is given by

(110)

where denotes Euler’s psi-function (213).
Proof: By Lemma 4.7, the fading number is unchanged

when is pre-multiplied by a nonsingular matrix, so that we
might as well consider the case where the covariance matrix
is the identity, and the components of are, therefore, i.i.d.

. In this case, , and is isotropically
distributed6 so that . Denoting by

the surface area of the -dimensional
sphere in we have from (106)

Here, the second equality follows by Lemma 6.17 because
is isotropically distributed, the subsequent equality by

evaluating , and the final equality by the expression for
the expected logarithm of a central chi-square random variable
(209)–(212).

Note 4.33: Using the approximation

(111)

one can show that

(112)

which can be compared to the results of Sengupta and Mitra
[13] who studied this scenario for being the identity matrix
and under the approximation . The approximation they
got using the Laplace integration method for is

SNR (113)

But for the constant , the expressions (113) and (112) agree
as .

7) Memoryless MIMO Rotation Commutative Fading:A
different extension of Theorem 4.16 is to MIMO fading ma-
trices that are of a law with a particular kind of symmetry that
we call “rotation commutative.”

6For a definition of isotropic distributions see Definition 6.19.
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Definition 4.34: We shall say that the law of a random
matrix is rotation commutativeif for any deterministic unitary

matrix the law of is identical to the law of .

For such laws we can extend Theorem 4.16 as follows.

Proposition 4.35: Consider a memoryless fading channel
where the number of receive antennas and transmit antennas
are equal and where the fading matrix is
rotation commutative. Further assume that and

. Then the limsup in (44) is also a liminf (i.e., the
limit exists) and the fading number is given by

(114)

where is any deterministic unit vector in and
is the surface area of a unit sphere in . More-

over, this fading number is achievable by inputs that can be ex-
pressed as the product of a uniformly distributed random vector
on the unit -sphere multiplied by an independent circularly
symmetric scalar random variable of a law specified in The-
orem 4.16.

Proof: This result can be viewed as a special case of an
analogous result for channels that are “rotation commutative
in the generalized sense,” namely, Theorem 4.39. The proof is
therefore omitted.

Corollary 4.36: Consider memoryless Gaussian fading of
the form where , the matrix denotes
the identity matrix, is deterministic, and the components
of are i.i.d. . Then the fading number is given by

(115)

where the function is defined in (210).
Proof: Follows from (114) by direct computation of

the differential entropy of the multivariate Gaussian distribu-
tion and of the expectation of the logarithm of a noncentral
chi-square distributed random variable with degrees of
freedom (209).

Definition 4.37: We shall say that the random ma-
trix is rotation commutative in the generalized senseif the
following two conditions hold:

• for any deterministic unitary matrix , there
exists an deterministic unitary matrix such
that

(116)

where stands for “equal in law”;

• for any deterministic unitary matrix , there
exists a deterministic unitary matrix such that
(116) holds.

The following lemma lists some of the properties that will be
useful for the analysis of the fading number of such matrices.

Lemma 4.38:Let be rotation commutative in the general-
ized sense. Then the following two statements hold:

• if is an isotropically distributed random vector
that is independent of , then is isotropically
distributed;

• if are two deterministic unit vectors, then

(117)

(118)

Proof: We shall prove the first part of the lemma by
showing that for any deterministic matrix the law
of is identical to the law of . To this end, let be
such that . Then

where the second equality in law follows becauseis isotrop-
ically distributed.

To prove the second claim, let be some deterministic
unitary matrix satisfying . Let be a deterministic

unitary matrix such that . Thus,

The lemma now follows by noting that both the norm of
a random vector and its differential entropy are invariant with
respect to deterministic unitary matrix multiplication.

We are now ready to generalize Proposition 4.35 to fading
matrices that are rotation commutative in the generalized sense.

Theorem 4.39:Consider a memoryless fading channel where
the fading matrix is rotation commutative in the generalized
sense. Further assume and . Then
the limsup in (44) is also a liminf (i.e., the limit exists) and the
fading number is given by

(119)

where is any deterministic unit vector in and
is the surface area of a unit sphere in . More-

over, this fading number is achievable by inputs that can be ex-
pressed as the product of a uniformly distributed random vector
on the unit -sphere multiplied by an independent circularly
symmetric scalar random variable of a law specified in The-
orem 4.16.

Proof: The fact that the RHS of (119) is an upper bound to
follows directly from Theorem 4.14 applied withchosen

as the identity matrix.
To derive a lower bound, let be isotropi-

cally distributed with uniformly distributed over the
interval and independent of the Haar distributed
unit vector . Let be an arbitrary unit vector in

. Using the chain rule we now have

(120)
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The term can be written as .
But is independent of and isotropically distributed,
so that

(121)

where the last equality follows by Corollary 4.22.
We now turn to the second term on the RHS of (120)

(122)

where the last equality follows by Lemma 6.17 because is
isotropically distributed and because .

The theorem now follows from (120)–(122).

8) Memoryless Gaussian MIMO Fading With Mean:We
next briefly discuss the fading number of an
random matrix that is of the form

(123)

where is a deterministic matrix and is a random
matrix of i.i.d. components. Note that by

Lemma 4.7 and the singular value decomposition (SVD) it fol-
lows that for the purposes of computing the fading number
we may assume without loss of generality thatis “diagonal”
(in the sense that is zero whenever ) and that the
terms on the diagonal correspond to the singular values of the
mean matrix.

The case corresponds to SISO Ricean fading
with the corresponding fading number given in Corollary 4.19.
The case , corresponds to MISO fading and
is addressed in Corollary 4.28. And the case with

being a scalar matrix is addressed in Corollary 4.36.
For this general model we were unable to obtain an exact

expression for the fading number. A trivial lower bound

(124)

where denotes the matrix norm as defined in (13) and the
function is defined in (210), can be derived by considering
a beamforming transmission strategy with linear combining at
the receiver.

The upper bound

(125)

follows from Theorem 4.14 applied with being the identity
matrix.

The upper bound, however, can be improved in many in-
stances by optimizing over the matrix . This opti-
mization is greatly simplified (albeit with some loss in tightness)

using Jensen’s inequality, which leads to (79). For the case at
hand we obtain

(126)

While the minimization over the matrixcan be performed ana-
lytically in accordance with the singular values of the mean ma-
trix (e.g., by choosing diagonal with some of its diagonal ele-
ments being proportional to the reciprocal of the corresponding
singular values and the rest being constant), we present here a
suboptimal choice that will lead to a bound that depends only on
the maximal singular value. This choice will suffice to capture
the dependence of the fading number on the number of receiver
antennas and the number of transmitter antennas.

The suboptimal choice of is a simple one. We choose it
diagonal, with the diagonal elements taking on one of two values
according to whether the corresponding singular value of the
mean matrix is zero or not. Optimizing on the choice of the
values that the diagonal elements ofmay take we obtain the
bound

(127)

where denotes the rank of and the maximal singular
value of . Recalling that the maximal singular value is the op-
erator norm of the matrix and upper-bounding the rank ofby

we obtain

(128)

E. On the Fading Number of Fading With Memory

From Lemma 4.5 we obtain immediately the following upper
bound on the fading number.

Theorem 4.40:Let the side information and fading
process satisfy the assumptions of Theorem 4.2, and let
the additive noise be spatially and temporally Gaussian. Then

(129)

(130)

where denotes the fading number in the memoryless
fading case with equal marginal and no side information, and
where

(131)

(132)

For SISO systems, this bound is tight.

Theorem 4.41:Consider a SISO system where the side infor-
mation and fading process satisfy the assumptions
of Theorem 4.2, and let the additive noise be spatially and tem-
porally Gaussian noise. Then the limsup in (44) is also a liminf
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(i.e., the limit exists) and the fading number is
given by

(133)

Moreover, this fading number is achievable by i.i.d. input dis-
tributions of marginals of the form specified in Theorem 4.16.

Proof: In view of Theorem 4.40, it suffices to demonstrate
that the proposed fading number is achievable. Here we shall
present the main ingredients of the proof and leave some of the
technical details for Appendix IX.

Let be i.i.d. circularly symmetric random variables
with

Uniform (134)

Our proof will hinge on the fact that if grows sublin-
early in to infinity, then this input distribution achieves
the fading number of any memoryless SISO channel with any
side information, and on the fact that this input distribution al-
lows us to “identify” the channel, in the sense that from past
inputs and past outputs one can ever more accurately estimate
past fading levels. The details follow.

Fix some (large) positive integerand use the chain rule and
the nonnegativity of mutual information to obtain

We shall now obtain a firm bound on for
. By letting we shall deduce that this

firm lower bound is also a lower bound on the limiting mutual
information. Consider then some . Then
because are i.i.d.

(135)

where the equality before last follows from stationarity and
where , which is given by

(136)

will be shown in Appendix IX to tend to zero as .
In fact, that is where we use the fact that the proposed input
distribution allows us to “identify” the channel.

Returning to the RHS of (135) we can now view the term

as the mutual information across a memoryless fading channel
in the presence of the side information

Thus, using Proposition 4.23, we obtain that the fading number

is achievable. The proof will now be concluded by showing that

(137)

(There is, in fact, equality in the above, but we only need the
inequality.) This follows from the inequality

(138)

which holds by stationarity and because conditioning cannot in-
crease differential entropy

Corollary 4.42: Consider a SISO fading process such
that for some specular component the process

is a zero-mean unit-variance circularly symmetric stationary
and ergodic complex Gaussian process whose spectrum is of
continuous part . Then

(139)

where denotes the minimum mean squared error in
predicting the present fading from its past (assumed positive)

(140)

and where the mutual information rate is assumed finite.
Proof: Follows from Theorem 4.41 by evaluating the ex-

pectation of the logarithm of a noncentral chi-square random
variable as in (209) and by expressing the entropy rate of a
Gaussian process in terms of the minimum mean squared error
in estimating its present value from its past.

F. Nonasymptotic Bounds

1) Rayleigh-Fading Channel: The memoryless SISO
Rayleigh-fading channel corresponds to the general memory-
less fading model (20) in the special case where the random
matrix is a scalar random variable. The capacity
of this channel was studied in [14] and [11]. Taricco and Elia
[14] derived a lower bound on capacity and also argued that
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at high SNR, capacity grows double-logarithmically in the
SNR. Abou-Faycalet al. showed that for any given SNR,
capacity is achieved by an input distribution of a finite number
of mass points, and they were thus able to express capacity as
a finite-dimensional (nonconcave) optimization problem over
the locations and weights of the mass points. This allowed for
an exact calculation of channel capacity at low SNR, but not at
high SNR, where the number of mass points becomes large and
the optimization problem, while finite dimensional, becomes
intractable.

Here we shall use (25) in order to obtain the upper bound

(141)

To this end, we first note that conditional on the input ,
the channel output has an distribution, so
that has an exponential distribution of mean .
Consequently

(142)

(143)

(144)

where the last equality follows from [15, 4.337 (2)]. It thus fol-
lows from (25) that

(145)

(146)

(147)

where the final equality follows because for every the
function

is monotonically increasing in . The inequality (141) now fol-
lows from (147) upon substituting

(148)

Fig. 1. Bounds on the capacity of a Rayleigh-fading channel. Depicted are the
upper bound of (141)); the upper bound that results from the suboptimal choice
of � = 0; the lower bound of Taricco and Elia [14]; the exact expression
from [11]; the approximation of (45), (85); and the capacitylog(1 + SNR)
of a Gaussian channel of equal SNR.

Fig. 1 depicts the upper bound (141) on channel capacity. For
reference we also plot the cruder but simpler upper bound7 that
results from choosing ; the asymptotic approximation
(45), (85); the lower bound of [14]; the exact expression of [11]
in the region where it is amenable to numerical calculation; and
the capacity SNR of an additive white Gaussian noise
channel of equal SNR.

It is interesting to note the dramatic difference between the
high-SNR behavior of channel capacity in the absence of side
information (85)

(149)

and in its presence (when perfect) [16]

(150)

2) Multiple-Antenna Rayleigh-Fading Channel:Next, we
consider a Rayleigh-fading channel with transmit and

receive antennas, i.e., the channel (20) specialized to the
case where is a complex random matrix of i.i.d.

components. We shall derive an upper bound on the
capacity whose difference from capacity will shrink to zero
as SNR and whose ratio to capacity will tend to one as
SNR . It is based on an application of (25) with and
is given by

SNR

(151)

where SNR is defined as .

7The bound resulting from this suboptimal choice coincides with the upper
bound of Taricco and Elia. Note that this bound is not asymptotically tight at
high SNR. It is off by 1 nat per channel use.
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To derive (151) from (25) we begin by considering the term

(152)

For , we upper-bound the second term on the RHS
of (152) as follows:

(153)

and for , we upper-bound it by

(154)

We compute the remaining terms in (25) by noting that,
conditional on the input , the channel output has an

distribution and is central chi-
square distributed. Consequently

(155)

(156)

(157)

where the last expression follows from the general expression
(209) for the expected logarithm of a noncentral chi-square dis-
tribution in the special case where the noncentrality parameter
is zero.

Using (152)–(157) and with our choice we now get
from (25) that

(158)

(159)

where for the second inequality we upper-bounded

Note that, for high SNR, the optimal values ofand tend to
zero. Therefore, in spite of the rather crude bound (153), we will
get the correct asymptotic behavior. Similarly, in the low-SNR

Fig. 2. The proposed upper bound (151) on the capacity of MIMO
Rayleigh-fading channel for various numbers of receive antennasn > 1. The
upper bound forn = 1 is taken from (141). For reference, a generalization
of the lower bound of [14] is also depicted.

regime, the optimal choice for tends to and the optimal
value of tends to zero. Therefore, also in the low-SNR regime
we get the correct asymptotic behavior. See also Note 4.1.

The bound (151) now follows from (159) upon substituting

(160)

Note that when further substituting

(161)

we can express the optimal value ofin terms of and

SNR

SNR
(162)

Fig. 2 depicts the upper bound (151) for various values of the
number of receive antennas . The upper bound for
is taken from Section IV-F-1, (141). For reference, we also plot
lower bounds that extend the bounds of [14]8 to the case .
Note that the number of transmit antennasdoes not influence
channel capacity.

Again, it is of interest to compare the channel capacity in the
absence of receiver side information to capacity in its presence.
The latter was computed by Telatar [17]. Here we only consider
the case where so that is a random vector, which we
denote by , whose components are i.i.d. . For
this case, we have that the capacity in the presence of receiver
side information is given by

SNR (163)

SNR (164)

SNR (165)

8Taricco and Elia only consider single-antenna systems. The idea of consid-
ering point mass distributions of equal weights at a finite geometric series of
locations can, however, be extended also to our scenario.
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where the function is defined in (213), the terms
tends to zero as the SNR tends to infinity, and the calculation
of is based on (209).

3) Ricean Fading Channel:We next address the memory-
less SISO Ricean fading channel, which corresponds to the
channel (20) with the fading matrix being a scalar.
Here, the mean is a deterministic constant that is
often called the specular component. We shall upper-bound
channel capacity using (25) and lower-bound it using Corollary
4.20 and the generalized mutual information (GMI) [9]. The
former lower bound is useful at high SNR, whereas the latter is
preferable at low SNR. We begin with the upper bound

(166)

where denotes Euler’s constant and where we introduced the
output SNR

(167)

i.e., the ratio of received signal power to received noise power.
This bound is shown in Fig. 3 for different values of the specular
component .

To derive this bound using (25) we note that conditional on
, the output has an distribution

so that

(168)

(169)

The additional term we need for the computation of (25) is
. It can be upper-bounded by

(170)

where, by (209)

(171)

Here, the first equality follows by (215) because the function
is monotonically decreasing and be-

cause the distribution of conditional on is stochasti-
cally larger than the distribution of conditional on . In-
deed, by (219), the distribution is stochas-
tically larger than the distribution , and, by a

Fig. 3. The upper bound (166) on the capacity of a Ricean fading channel
for different values of the specular componentd. The dotted line depicts the
capacity of a Gaussian channel of equal output SNR, namely,log(1 + �).

scaling argument, the latter is stochastically larger than the dis-
tribution . The second equality follows by a direct
calculation [15, 4.337 (2)].

Using (25) we thus obtain

(172)

(173)

Here, the second inequality follows upon additionally restricting
so that ; upon applying Jensen’s inequality to the

concave function (see (210)); and upon upper-bounding
by . The inequality (166) now fol-

lows from (173) using the substitutions (148) and (167).
At the cost of some slackness at high SNR, the bound (166)

can be simplified by choosing and . This
leads to the simplified bound

(174)

We now turn to lower-bound channel capacity. At low
SNR, we consider the suboptimal signaling scheme where the
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input distribution is and where the receiver perfoms
nearest neighbor decoding. The generalized mutual information
(GMI) [9] is a lower bound on the achievable rates under these
additional restrictions and is thus also a lower bound on the
capacity without these restrictions. For the case at hand, the
GMI is given by

(175)

(176)

Here, the first equality follows from [9, Corollary 3.0.1] (by
substituting ), and the second equality follows
from our definition of as the output SNR; see (167).

Since the RHS of (175) is bounded in the SNR, it is apparent
that this bound is quite useless at high SNR. This boundedness
has nothing to do with the structure of the decoder. It is a direct
consequence of using the suboptimal input distribu-
tion; see Theorem 4.3.

At high SNR, a better bound is the bound of Corollary 4.20.
This bound is tight in the sense that at high SNR it achieves the
fading number of the Ricean channel. It can be rewritten as

(177)

where is the solution to the equation

(178)

These two lower bounds can be combined to yield

(179)

As a matter of fact, by a time-sharing argument, one can show
that this lower bound can be improved to the convex hull of the
maximum.

Again, the difference between the high-SNR channel capacity
in the absence of side information

(180)

and in its presence is striking. The latter is given by

(181)

where the last equation follows from the expression for the ex-
pected logarithm of a noncentral chi-square random variable
(209).

Fig. 4 shows the situation for a specular component .
It depicts the upper bound (166) and the lower bound (179).
For reference, we also plot the cruder but simpler upper bound
that results from choosing , see (174); the capacity

SNR of an additive white Gaussian noise channel
of equal output SNR; and the fading number. It is seen that

Fig. 4. Bounds on the capacity of a Ricean fading channel with specular
componentd = 8: the tighter upper bound is given in (166) and the simplified
upper bound in (174); the lower bound is given in (179). For comparison, the
channel capacity of a Gaussian channel is shown as dotted line. Note that on
the abscissa� denotes the output SNR (167).

at rates that are significantly higher than the fading number,
communication becomes extremely power inefficient.

4) Multiple-Antenna Gaussian Fading Channel:We finally
treat the more general case of a fading channel withtransmit
and receive antennas

where is an matrix with each entry i.i.d. ,
is a constant matrix, and .
The upper bound is given as

(182)

where is the maximum singular value of, and where the
function is defined in Appendix X.

This bound is based on (27), using

(183)

(184)

(185)

Further note that

or



2446 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

where is the maximum singular value of.

V. THE BASIC INEQUALITY

In this section, we extend (11) to channels over infinite alpha-
bets. As noted earlier, the finite-alphabet version of this bound
follows directly from the identity (10), which can be found, for
example, in [2] and [1, Sec. 2.3 (3.7)]. In fact, the inequality (11)
also appears in [18, Exercise 4.17], except that there the distri-
bution is required to correspond to some input distribution,
i.e., to be of the form . This restriction compli-
cates things a great deal when dealing with infinite alphabets,
but is fortunately superfluous.

It should be noted that identity (10) plays a key role in the
capacity-redundancy theorem of universal coding. See, for ex-
ample, [10] and references therein. For the related infinite-al-
phabet universal source coding problem see [19].

Theorem 5.1:Let the input alphabet and the output al-
phabet of a channel be separable metric spaces, and
assume that for any Borel set the mapping
from to is Borel measurable. Let be any proba-
bility measure on , and any probability measure on.
Then, the mutual information can be bounded by

(186)

Here, for any , the term denotes the rel-
ative entropy between the measure on and the mea-
sure on , i.e.,

if

otherwise.
Proof: To prove the theorem it suffices to consider the case

where the output alphabet is finite. Indeed, we could treat
the more general case by a limiting argument applied to suc-
cessively finer output quantization. With successively finer se-
quence of partitions that generate the-algebra on , the mu-
tual information between the input and the quantized output will
converge to the unquantized mutual information, and the RHS
of (186) will converge by the monotonicity of the relative en-
tropy with respect to partition refinements and the Monotone
Convergence Theorem. See [20, Theorem (9.15) Part (i) on p.
261] for some of the needed supporting theorems. Henceforth,
we shall therefore assume that the output alphabetis finite,
i.e.,

(187)

If is not -a.s. finite, then, by the nonnega-
tivity of relative entropy, the RHS of (186) is and the claim
is proved. We shall thus consider now the case where

-a.s. (188)

i.e.,

-a.s. (189)

The measurability assumption on the channel allows us to define

(190)

which, in view of (189), demonstrates that

(191)

Also, by (190)

-a.s. (192)

Since is now assumed finite, we can rewrite the RHS of (186)
as

where we define

(193)

and all the terms in the sum are-a.s. finite by (189).
We now note that

-a.s.

This follows from (191)–(193) whenever (whence
all the terms are zero) and from the contrapositives of (189) and
(192) whenever . Consequently

(194)

By [21, p. 1728 (2.10)]

It remains to show that the integral of the additional terms on
the RHS of (194) is nonnegative. This follows because for each

so that
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VI. M ATHEMATICAL PRELIMINARIES

In this section, we present some of the mathematical tools
and results that are needed for the analysis of the capacity of
flat-fading channels. This section may be glanced over in first
reading and referred to as needed.

A. Some Useful Distributions

In this subsection, we introduce some of the distributions and
special functions that appear in this work.

By a zero-mean unit-variance circularly symmetric Gaussian
distribution denoted we shall refer to the distribution
on the complex field of density

More generally, we let denote the distribution that
results when an random variable is scaled by
and shifted by . In the multivariate case we write

if is a circularly symmetric zero-mean multi-
variate Gaussian random vector, i.e., if can be expressed
as the product of a deterministic matrix and a complex random
vector whose components are i.i.d. . In particular

where denotes the transpose operation anddenotes Her-
mitian conjugation. See [22], [17] and references therein for
additional information on circularly symmetric Gaussian vari-
ables.

If are i.i.d. then the sum
has a central chi-square distribution with degrees of
freedom—a distribution that is typically denoted and
which has the density (over the nonnegative real line) [23,
Ch. 18]

(195)

This distribution is a special case ( and ) of the
Gamma distribution on the nonnegative real numbers, which is
of density [23, Ch. 17]

(196)

Here denotes the Gamma function and is given by

(197)

In fact, , which corresponds to the sum of the
squared-magnitudes of independent random vari-
ables, is a special case of the standard Gamma dis-
tribution, which corresponds to the Gamma distribution with

, i.e.,

(198)

See [23, Ch. 17] for additional details on the Gamma and central
chi-square distributions.

For , the density of the Gamma distribution has a sin-
gularity at the origin. This motivates us to define aregularized

Gamma distributionon the nonnegative real line to be of the
density

(199)

Here denotes the incomplete Gamma function and is
given by

(200)

For , the regularized Gamma distribution (199) thus coin-
cides with the Gamma distribution (196). For , however,
the density of the regularized Gamma distribution is bounded
for all values of .

We next derive an isotropic distribution on under which
has a regularized Gamma distribution. Here denotes

the Euclidean norm as in (12). We first recall that if a nonneg-
ative real random variable is of density and if

then the density of is given by .
Consequently, if is to have a regularized Gamma distribu-
tion (199) then should be of density

(201)
Next we recall that the surface area of an-dimensional com-
plex sphere of radius is

(202)

so that the density of the isotropic distribution on under
which is of a regularized Gamma distribution is the ratio
of (201) to (202), namely

(203)

A linear transformation on such isotropic distributions leads to
the family of distributions on that will be of most interest to
us. For any , and any nonsingular deterministic
matrix the density on is

(204)
For the tightness of the proposed bounds at low SNR, it will
be important to note that this family of densities includes the
family of all zero-mean circularly symmetric Gaussians on
with nonsingular covariance matrices. Indeed, such Gaussians
are obtained by setting, , , and .

A nonnegative real random variable is said to have anoncen-
tral chi-squaredistribution with degrees of freedomandnon-
centrality parameter if it is distributed like

(205)

where are i.i.d. and satisfy

(206)
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(The distribution of (205) depends on the constants only
via the sum of their squares.) The pdf of such a distribution is
given by [24, Ch. 29]

(207)

Here denotes the modified Bessel function of the first kind
of order , i.e.,

(208)

(see [15, eq. 8, 445]).
If the number of degrees of freedomis even, i.e., if

for some nonnegative integer, then the noncentral chi-square
distribution can also be expressed as a sum of the squared-norms
of complexGaussians.

We send forward the following expression for the expected
logarithm of scaled noncentral chi-square distributed random
variables: Let be i.i.d. , let be ar-
bitrary complex constants, and letbe a nonzero complex con-
stant. Then

(209)

where

(210)

and denotes the exponential integral function defined as

(211)

For future reference we note here that the function is a
monotonically increasing concave function with

(212)

where is given by

(213)

and denotes Euler’s constant.
See Appendix X for a derivation of this expectation and the

properties of .

B. Stochastic Ordering

Here we recall some of the basic definitions related to sto-
chastic ordering. Only the univariate real case will be addressed.
For more on stochastic ordering please refer to [25], [26], [8]
and references therein. The following definitions and statements
can be found, for example, in [8, Sec. 1.A].

Definition 6.1: Let and be two distributions on the real
line. We shall say that is stochastically larger than (or equal
to) and write

if the following equivalent conditions hold.

• For any , the probability of the half
ray under the law is at least as large as the
probability of that ray under , i.e.,

(214)

• For any increasing functions

is increasing

(215)
whenever the expectations exist.

• There exists a probability space with two random variables
such that is distributed, is distributed,

and , almost surely, i.e.,

a.s. (216)

Slightly abusing notation we shall sometimes write

for two real random variables to indicate that the distribu-
tion functions of is stochastically larger than (or equal to)
the distribution function of . With this notation it follows
from (216) that

• if then for any increasing function

• also, if ; ; the pair is
independent; and the pair is independent, then

(217)

The main result we need is stated in the following lemma (see
also [27, Sec. 4.2.2]):

Lemma 6.2:The following claims demonstrate stochastic or-
dering for some specific distributions.

a) Let the real random variable have a continuous strictly
unimodal symmetric density , i.e.,

and

Let be deterministic. Then

(218)

b) Suppose and . Then
implies , or stated a little

more sloppily

(219)
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c) For any mean vector and any covariance matrix

(220)

d) Let and let be independent of . Then

e) Let and be two nonnegative definite matrices. Then

(221)

Proof:
a) The symmetry of the distribution of allows us to assume,

without loss of generality

For any we have

where we have used the symmetry of the distribution ofin
the second equality. Similarly

Consequently

Both the integrals on the RHS of the above are over intervals
of length but they differ in their centers. We shall now
conclude the proof by showing that the first integral is greater
or equal to the second because its center is closer to the origin.

To this end, define the function

The function is thus symmetric and takes value in the in-
terval . Expressing its derivative as

we conclude from the strict monotonicity of that is
zero at the origin, and negative whenever . Thus, at-
tains its maximum at the origin, and is monotonically decreasing
for .

b) The real case follows immediately from Part a). For the
complex case we note that , being noncentral
chi-square distributed, can be written as the sum of the squares
of two real Gaussian random variables and

. Expressing similarly proves
the claim by Part a) and (217).

c) Using a diagonalization argument we shall prove that Part
c) follows from Part b) and (217). Let . We shall
demonstrate that . Let be a unitary
matrix that diagonalizes so that

where are the (nonnegative) eigenvalues of. Let
so that the covariance matrix of is and so

that the components of are independent. Let .
Since is unitary, i.e., norm-preserving

(222)

where denotes theth component of . Similarly

(223)

But, by Part b) it follows that

and, consequently, by the independence of and by (217),
it follows that

which concludes the proof by (222) and (223).
d) This follows from Part c) by a conditioning argument

where the inequality follows from Part c).
e) This follows from Part d) by choosing and

.

C. The Rayleigh–Ritz Theorem

The name of Lord Rayleigh appears in this paper not only
in reference to the fading distribution that is named after him,
but also because the following proposition is based on the
Rayleigh–Ritz characterization [28, Theorem 4.2.2] of the
extremal eigenvalues of Hermitian matrices.

Proposition 6.3: Let be an complex random
matrix all of whose components have a finite second moment,
so that . Denote by the
largest (resp., smallest) eigenvalue of the covariance matrix of
the -random vector that results when the entries ofare
stacked on top of each other. Let be a deterministic
unit-norm complex vector and denote by
the maximal (resp., minimal) eigenvalue of the covariance ma-
trix of the random vector . Then

(224)

(225)

Proof: The proofs of (224) and (225) are almost identical,
so we shall only prove the latter. By the Rayleigh–Ritz theorem
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[28, Theorem 4.2.2] the smallest eigenvalue of the covariance
matrix of an -dimensional random vector can be expressed
as

Consequently, for any , there exist coefficients
such that and

where the last inequality follows from the Rayleigh–Ritz char-
acterization of , because the sum of squares of the

coefficients is one, but these coefficients do
not necessarily achieve .

D. Differential Entropy

In this subsection, we present some results on differential en-
tropy. Our focus is on relationships between the differential en-
tropy of a random vector and the expectation of the
logarithm of its norm . We shall also need some re-
sults relating the differential entropy of a random matrix

and the differential entropy of the vector that re-
sults when the matrix is multiplied by a deterministic vector

. Results on uniform continuity of differential entropy will also
be presented.

1) Some Definitions:The differential entropy of an
-dimensional real random vector is defined if the density

(with respect to the Lebesgue measure on) is defined
and if at least one of the integrals

is finite. In this case, is defined as the difference between
the two nonnegative integrals

(226)

where we use the rules and for
all . This is written as

(227)

The differential entropy of an-dimensionalcomplexrandom
variable is defined as the differential entropy of the-dimen-
sional real vector comprising of the real and imaginary parts of
each of its components. Finally, the differential entropy of
a random matrix is the differential entropy of the vector com-
prising of its entries.

2) Some Bounds and Integrability Conditions:We begin
with some upper bounds on and . The bound on

is standard. The bound on is fairly crude, but
it serves to show that a second-moment constraint not only
guarantees that is bounded, but also gives an upper bound
on .

Lemma 6.4:Let the complex random vector have a den-
sity with respect to the Lebesgue measure on, and
assume that its norm is of finite second moment

(228)

Then

(229)

and

(230)

Proof: Inequality (229) is standard. Its proof relies on the
fact that of all random vectors of given marginals, differential
entropy is maximized by the one whose components are inde-
pendent [12]; on the fact that of all complex random variables
of a given second moment, differential entropy is maximized by
the circularly symmetric Gaussian distribution; and by the con-
cavity (in the variance) of the differential entropy of a circularly
symmetric complex Gaussian.

We now proceed to prove inequality (230). To this end define

(231)

and set

(232)

If then and inequality (230) is satisfied.
We now focus on the case . In this case, we can express

as

(233)

Equation (233) thus relates to and to the differential
entropy of the density on given by

(234)

This density on is of second moment

so that by (229) and (233)

(235)

Inequality (230) now follows by noting that ,
for all , and by noting that , for all

.
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We now prove a conditional version of Lemma 6.4.

Lemma 6.5:Let the random vectors and satisfy
and . Let

(236)

(237)

(238)

(239)

Then the mappings and
are nonnegative integrable mappings, i.e.,

(240)

In particular

-a.s. (241)

Proof: We shall prove the results for and
. The analogous proofs for are omitted. Using

(242)

and Lemma 6.4 we obtain

(243)

Consequently

(244)

Using the upper bound and expanding the range of
integration we obtain

(245)

3) Random Matrices Operating on Deterministic Vectors:
The next lemma will be used to exhibit a uniform lower bound

on in terms of . Using Lemma 6.4, an analogous
conclusion about can be drawn.

Lemma 6.6:Let the random matrix satisfy
and . Then

(246)

and

(247)

Proof: Assume without loss of generality thatis of zero
mean. Since , it follows that the

covariance matrix of the components of is non-
singular. Let denote the minimal eigenvalue of
this covariance matrix. Let denote a zero-mean Gaussian
matrix whose components have the same covariance matrix as
the components of . The nonsingularity of the covariance ma-
trix implies that

(248)

Using the data processing inequality for relative entropy we
obtain

(249)

where the relative entropy between two random vectors or ma-
trices is defined as the relative entropy between their corre-
sponding distributions. It now follows from (249) that

(250)

or

(251)

Any lower bound on will now yield a bound on
via (251). For example, using Proposition 6.3 we obtain that
the smallest eigenvalue of the covariance matrix of is no
smaller than the smallest eigenvalue of the covariance matrix of
the elements of , namely, . We thus obtain

(252)

which implies (246).
To prove (247) we note that the condition

implies

(253)

so that by Lemma 6.4

(254)

The proof of (247) now follows from (246) and (254) by ex-
pressing as .

4) Differential Entropy and Expectations of Logarithms:
The following lemma relates the differential entropy of a

random vector to the expectation of the logarithm of its norm.

Lemma 6.7:Let be an -dimensional complex random
vector of density . Then the following relationships be-
tween differential entropy and the expected log-norm hold.

a) For any and

where the term tends to zero as .
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b) Consequently, if in addition , then

(255)

c) Moreover, for any and we have the
uniform bound

(256)

d) If , then for any there exists some
finite number (not depending on the law of )
such that

(257)

e) Let be an -dimensional random vector. Assume that
the differential entropy of some subset of its elements is
defined and is greater than . Then

(258)

f) Let the random matrix satisfy and
. Then

(259)

g) Let the random vectors and be independent and of
the same dimension. Assume that . Then

(260)

Proof: To prove Part a) we express

(261)

as the sum of two integrals

and

Parts b) and c) follow directly from Part a). Part d) follows from
Part a) by choosing and .

To prove Part e) we note that since the logarithm func-
tion is monotonic, it follows that if the expected-log of the
squared-norm of a subset of the components ofis greater
than , then so is the expected-log of the norm-squared
of all its components. Consequently, it suffices to prove the
lemma for the case that , i.e., in the case where

. But in this case the claim follows directly from
Part d).

Part f) follows from Part d) and Lemma 6.6, i.e., from (257)
and (247). Part g) follows by conditioning on and applying
Part c) with .

The following lemma extends Lemma 6.7 to provide uniform
bounds for the case where a random matrix operates on deter-
ministic vectors. It will allow us to limit attention to integrations
over sets that avoid the singularity of the logarithmic function
at the origin.

Lemma 6.8:Let the complex random matrix sat-
isfy and . Then

(262)

Proof: Since the lemma only addresses limiting behaviors
as , we shall restrict ourselves throughout the proof to

(263)

We shall prove the result by showing that for any integer

(264)

where

(265)

To this end, we shall show that9

-a.s. (266)

and exhibit a dominating function that will allow us to use the
Dominated Convergence Theorem to infer that

(267)

Since (267) implies (264), the lemma will follow.
To prove (266) fix then some integer , and for

any consider

(268)

The argument in the conditional expectation in (268) can be
written as

(269)

9Recall thatHHH is thetth column of .
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where

(270)

Since any element in satisfies

(271)

it follows from (263), from the lower bound in (271), and from
the upper bound in (271) that

(272)

so that for and for satisfying (263) the integrand
(269) can be upper-bounded by

(273)

Using (271) again we can further upper-bound (273) (for
and for satisfying (263)) by

(274)

To prove (266), we shall now consider the supremum (over)
of the conditional (on ) expectation (over )
of the two terms in (274) separately. With regard to the first, we
have that

(275)

can be upper-bounded by

(276)

which for almost every converges to zero as
because by Lemma 6.5

-a.s.
(277)

Having established the pointwise convergence of this term to
zero, we can now justify the swapping of the limit with
the expectation (with respect to ) by exhibiting an
integrable (with respect to ) dominating function (of

but not depending on or ). An
appropriate function is, for example,

(278)

which is integrable by Lemma 6.5. Here we used to
denote the volume of the unit ball in .

The supremum (over ) of the conditional (on
) expectation (over ) of the second term in (274) can

be similarly analyzed using Lemma 6.7 to show that for almost
every realization of

(279)

converges to zero as . This can be argued because for
almost every realization of it follows from Lemma
6.5 that so that the limiting behavior
in (279) follows from a conditional version of Lemma 6.7, Part
b). To demonstrate a dominating function, we can rely on the
conditional version of Lemma 6.7, Part c) and use Lemma 6.5
to demonstrate the integrability of the dominating function.

5) Continuity Issues:We turn now to address some conti-
nuity claims about differential entropy and related functions.

Lemma 6.9:Let and be two independent real random
variables satisfying and . Then

(280)

Proof: The idea of the proof is to relate differential en-
tropy to relative entropy, and to then use the lower semiconti-
nuity of the latter. This approach is surveyed in [29]. We begin
by first treating the case where is not deterministically zero,
i.e., . Let

Note that the assumption guarantees that for
all sufficiently small values of.

Let denote the probability measure corresponding to
, and let be the probability measure corresponding to

a Laplacian random variable of equal expected magnitude,
i.e., of expected magnitude . Thus, has the density

(281)

Since converges weakly to and since converges
weakly to [30, 17.1.d], it follows by the lower semiconti-
nuity of relative entropy (see, e.g., [21, Proof of Lemma 4] and
references therein) that

(282)

But using the explicit form of the density of (281) we have

(283)

It thus follows from (282), (283) (and from our assumption
, which implies the continuity of ) that

(284)

This completes the proof of the lemma (for the case )
because the independence of and guarantees that

, and hence .
The case can be treated by other methods. For this

case, and .
The result now follows by noting that because it
follows that . (The max-entropy distribution under
an expected magnitude constraint is the Laplacian distribution,
which has a finite differential entropy.)
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Lemma 6.10:Let be a complex random variable satisfying
and . Let and let

be independent of and uniformly distributed over an interval
of length . Then

(285)

Proof: Since differential entropy is invariant under trans-
lation, it follows that there is no loss in generality in assuming
that is uniformly distributed over the interval . By the
scaling property of differential entropy [12, Theorem 9.6.4] it
follows that

(286)

where is uniformly distributed over the interval
and independent of . The claim now follows from Lemma 6.9
because the conditions and guar-
antee that ; see Lemma 6.7.

Lemma 6.11:The following continuity results of differential
entropy with respect to Gaussian perturbations hold.

a) Let be a random vector satisfying
and . Let be a Gaussian random
vector that is independent of . Then

(287)

b) Let be a random matrix such that
and . Let be indepen-

dent of . Then

(288)

Proof: The proof of Part a) is very similar to the proof of
Lemma 6.9 except that rather than considering relative entropies
with respect to Laplacian random variables we need to consider
relative entropies with respect to multivariate Gaussians of equal
covariance matrices. We begin by noting that since differential
entropy is invariant under deterministic translation [12], we may
assume without loss of generality that . Consider now
a sequence converging to zero. Let .
Since conditioning on cannot increase differential entropy,
we have

(289)

so that

(290)

To study the of we first note that

where we use the symbol “ ” to denote weak conver-
gence.10 Denoting the law of by , the law of by

, the law of a zero-mean covariance Gaussian
by , and the law of a zero-mean covari-

10By weak convergence we refer to the standard definition of weak conver-
gence of probability measures [30, Ch. 17]. Functional analysts would have per-
haps preferred to refer to it as weakconvergence.

ance Gaussian by , we
obtain from the lower semicontinuity of relative entropy that

(291)

But

(292)

and

(293)

so that since we obtain

(294)

which combines with (290) to prove Part a).
To prove Part b), define the random matrix to have

independent components. We will show that

(295)

Once this relation is established, the result will follow by noting
that the RHS of (295) converges to zero as . (This conver-
gence of the RHS follows from Part a) by stacking the
components of and into vectors.)

To prove (295), express the difference in the differential en-
tropies as a mutual information as follows:

Here the inequality follows from the data processing the-
orem; the subsequent equality because is sufficient
statistics for ; and the subsequent equality because

.

Lemma 6.12:Let the random matrix satisfy
, and let be independent of

. Then for any , the mapping from to the real line

is continuous in .
Proof: Let the sequence converge to . It then

follows that the sequence converges weakly to
. By relating the differential entropy to

the relative entropy between the distribution of and
a Gaussian distribution of equal second-order moments, we can
infer from the lower semicontinuity of relative entropy that

(296)

It, therefore, remains to prove the reverse inequality

(297)

By the behavior of differential entropy under scaling, it suf-
fices to prove the lemma for and for all unit vectors

. The case is straightforward because the in-
equality suffices, in this case, to demon-
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strate (297) and, therefore, to prove continuity with the aid of
(296). We, therefore, now focus on the case whereis a unit
vector. As a reminder that this is the case at hand, we replace
with the symbol , where the hat is an indication that .
Thus, now converges to . Let be in-
dependent of and . For the purposes of obtaining uniform
bounds that do not depend on the transmitted vector it will be
helpful to consider matrix extensions ofand . Let and
be two independent random matrices, both indepen-
dent of , each of which has i.i.d. components. By
stacking the components of the matricesand into
arrays, we can invoke [31]–[33] to infer that the entropy power
of is concave in , so that, in particular, is
continuous in , for . Since any continuous function is
also uniformly continuous on compact intervals, it follows that
there exists some such that

(298)

By the monotonicity of the LHS of (298) in it thus follows
that if we define , then

(299)

It now follows from (299) that for any satisfying

(300)

where the first inequality follows by the data processing the-
orem, because

form a Markov chain, and where the last inequality follows from
(299) with .

It now follows from (300) that for

(301)

where the second inequality follows because conditioning
cannot increase differential entropy. Expanding the mutual
information term we obtain

(302)

(303)

Here the inequality follows by noting that becauseis Gaussian
and independent of , even conditional on

and because among all random vectors of a given expected
squared-norm, differential entropy is maximized by the one
whose components are i.i.d. Gaussian, so that

Inequalities (301) and (303) combine to prove that

(304)

and since was arbitrary, (297) is proved, which combines
with (296) to prove the lemma.

6) Differences Between Expected-Logarithms and En-
tropies:

Lemma 6.13:Let be a complex random
matrix satisfying and . Let
be a zero-mean complex random vector in satisfying

and . Then the function

(305)

is a bounded function of .
Proof: We begin by using Jensen’s inequality to upper-

bound to obtain for every

(306)

(307)
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We next lower-bound by conditioning on to
obtain

(308)

where the equality follows from the behavior of differential en-
tropy under the scaling ofcomplexrandom vectors, and where
the RHS of the last inequality is finite by Lemma 6.6.

Combining (307) and (308) we obtain the upper bound

(309)

which demonstrates that the mapping (305) is bounded outside
the unit ball. To demonstrate that the mapping is also bounded
inside the unit ball, we note that

(310)

which follows from (306) and the inequality

The following lemma is provided for completeness. It will
not be used in subsequent sections. It demonstrates that ifis
Gaussian, then the mapping (305) is continuous.

Lemma 6.14:Let be a complex random matrix
satisfying and . Fix some
and let be independent of . Then the func-
tion

(311)

is a continuous function of .
Proof: By Lemma 6.12, continuity will be established

once we demonstrate that the mapping

(312)

is continuous. Let converge to . We now have

By the explicit formula for the expectation of the logarithm of
a noncentral chi-squared random variable (209) it follows that
the inner integral converges, i.e., that

(313)

The required continuity now follows from the Dominated Con-
vergence Theorem as follows. We first note that

is by Lemma 6.2 stochastically larger than so that by the
monotonicity of the logarithmic function

(314)

Next, we note that by Jensen’s inequality and the definition of
the norm

(315)

The RHS of (314) is integrable with respect to, and the con-
dition implies that the RHS of (315) is also in-
tegrable with respect to. Consequently, the conditions of the
Dominated Convergence Theorem hold, and the required conti-
nuity is established.

7) Change of Coordinates:The behavior of differential en-
tropy under coordinate transformations is governed by the cor-
responding behavior of joint densities. Here we mention some
of the results that will be used repeatedly.

We begin by relating the differential entropy of a positive
random variable to the differential entropy of its logarithm and
of its square.

Lemma 6.15:Let be a nonnegative real random vari-
able. Then

(316)

and

(317)

Proof: To prove (316) let , and let be the
density function of . The density of is then

so that

from which (316) follows upon taking expectations.
To prove (317) let , and let be the density

function of . Then the density of is

so that

from which (317) follows again upon taking expectations.

We next relate the differential entropy of a complex random
variable to the joint differential entropy of it magnitude and
phase.

Lemma 6.16:Let be a complex random variable of dif-
ferential entropy . Let and be
two real random variables designating the magnitude and phase
of , so that . Let denote the
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joint differential entropy of the pair when the pair is
viewed as a pair of real random variables. Then

(318)

In particular, if is circularly symmetric then

(319)

circularly symmetric.

(320)

Proof: The differential entropy is given by
, where is the joint density function of the

real and imaginary parts of with respect to the Lebesgue
measure on . The result now follows by relating the density

and the density with respect to polar
coordinates

Equation (320) is a consequence of (317).

The extension of this result to complex vectors is slightly
more intricate. In the following, we shall relate the differential
entropy of a complex random vector in to some en-
tropy-like quantities related to its magnitude and its direc-
tion

(321)

To express the desired result, we shall need a differential en-
tropy-like quantity for random vectors that take value on the
unit-sphere in .

Let denote the area measure on the unit-sphere in. Let
denote the area of the entire unit-sphere, so that

(322)

If a random vector takes value in the unit-sphere and has
the density with respect to , then we shall let

(323)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant

under translation, so is invariant under rotation. That is,
if is a deterministic unitary matrix, then

(324)

Also note that if is uniformly distributed on the unit sphere,
then . (Recall that we use to denote the
surface of the unit-sphere—see (322).)

If is any random vector, and if conditional on
the random vector has density then we can
define

(325)

and we can define as the expectation (with respect to
) of .

Lemma 6.17:Let be a complex random vector taking
value in and of differential entropy . Let denote
its norm and denotes its direction as in (321). Then

(326)

whenever all the quantities in (326) are defined. Here the first
term on the right is the differential entropy of when viewed
as a real (scalar) random variable.

Proof: Omitted.

E. Isotropic Distribution

In this subsection, we recall the definition and some proper-
ties of isotropically distributed vectors and matrices.

Definition 6.18: A random vector taking value in is
said to be uniformly distributed over the unit sphere if
with probability one, and if for any deterministic unitary matrix

the distribution of is identical to the distribution of .

Definition 6.19: A random vector is said to be
isotropically distributedif one of the following equivalent con-
ditions holds.

a) For any deterministic unitary matrix , the distri-
bution of is identical to the distribution of .

b) The random vector can be written in the form
, where is a nonnegative random variable;

is uniformly distributed over the unit sphere in ; and
the pair are independent.

c) For any random unitary matrix that is independent
of , the law of is identical to the law of .

The most important example of an isotropically distributed
random vector is the one whose components are i.i.d.

. Any multiplication of such a vector by an in-
dependent nonnegative random variable also results in an
isotropically distributed random vector.

Definition 6.20: We shall say that a random unitary
matrix is Haar distributed if it is distributed according to the
Haar measure on the set of all unitary matrices. That is, if
is with probability one unitary, and if for any deterministic
unitary matrix the law of is identical to the law of .

Definition 6.21: We shall say that an random matrix
is isotropically distributed if for any deterministic unitary
matrix the law of is identical to the law of .

Lemma 6.22:Let by an isotropically distributed
random matrix. Then we have the following.

1) For any deterministic vector , the vector is
isotropically distributed.

2) For any random vector that is independent of ,
the vector is isotropically distributed.

3) Each of the columns of is an isotropically distributed
random vector.

4) If is any deterministic unitary complex matrix,
then the law of is identical to the law of .
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5) If is any random unitary matrix that is indepen-
dent of , then the law of and the law of are both
identical to the law of .

Proof: Omitted.

We now turn now to rotation-commutative matrices. See Def-
inition 4.34.

Lemma 6.23:Let be an random rotation commuta-
tive matrix.

a) If and are two deterministic unit-vectors, then the
distributions of and of are identical. Equiv-
alently, if is independent of , then is in-
dependent of and has a law that is identical to the law
of , for any deterministic unit vector.

b) If is an isotropically distributed random-vector that is
independent of , then the random vector is isotrop-
ically distributed.

c) Let be some arbitrary deterministic unit-vector.
For every deterministic unit vector let be some
deterministic unitary matrix such that . Let be
an arbitrary random vector in that is independent of.
Then conditional on , on , and
on , the distribution of does
not depend on .

Proof: To prove Part a), let be some deterministic uni-
tary matrix such that . Then because is unitary we
have

and the result now follows becauseis rotation commutative
so that the law of is the same as the law of.

To prove Part b), we shall show that for any deterministic uni-
tary matrix , the law of is identical to the law of

. Let be such a matrix. Then , which
can also be written as from which the result is
apparent because the fact thatis isotropically distributed im-
plies that the law of is the same as the law of, and
the fact that is isotropically distributed implies that the law
of is the same as the law of . The independence of
and guarantees that the law of the product is
determined by the individual laws of each of the terms.

The proof of Part c) relies on expressing as

(327)

and noting that, because is isotropically distributed, the law
of is identical to the law of .

VII. SUMMARY AND CONCLUSION

In this paper, we proposed a technique for deriving upper
bounds on channel capacity and demonstrated its use by
studying the capacity of multiple-antenna systems operating

over flat-fading channels with neither receiver nor transmitter
side information. Extensions to receivers with partial side
information were also considered. This technique has been
subsequently successfully employed in the study of the ca-
pacity of other channels such as finite-state channels with only
intersymbol interference memory [18, Sec. 4.6], [3], channels
with both additive noise and phase noise [4], and Poisson
channels [5]. Extensions to the study of error exponents are
discussed in [6].

The technique is based on the inequality (11), which we ex-
tended to continuous alphabets in (186) of Theorem 5.1. To
derive an upper bound on mutual information (and ultimately
on channel capacity) one would typically start by judiciously
picking some family of distributions on the output alphabet. Ap-
plying (186) to any output distribution in the family leads
to an upper bound on mutual information, and if the family is
sufficiently rich, the tightest such bound may be quite good.

In the study of multiple-antenna flat-fading channels we have
had some success with the family of output distributions of den-
sities (204). By applying (186) to output distributions in
this family we obtained the upper bound (25). It should, how-
ever, be noted that (25) is not specific to fading channels. It can
be applied to any channel taking output in Euclidean space.

For channels taking value in the nonnegative reals, we con-
sidered the family of regularized Gamma distributions (199),
which leads (via Theorem 5.1) to the inequality (30). This in-
equality can be useful in the study of noncoherent channels
where the channel output has a nonnegative sufficient statistic.
See, for example, [4] for an application of this inequality to non-
coherent communication and [5] for applications to the Poisson
channel.

Using inequality (25), we derived upper bounds on the ca-
pacity of Rayleigh- and Ricean-fading channels in the absence
of any receiver side information. These bounds were comple-
mented by some new lower bounds. The bounds are tight in the
sense that their difference from capacity tends to zero at high
SNR and in the sense that their ratio to capacity approaches
one at low SNR. For the Ricean model, where the fading is

distributed, our bounds indicate the following: Up to
some threshold, which is nearly a rate of , Gaussian
inputs with nearest neighbor decoding that ignores the fading
are nearly optimal. Above this threshold, one needs more so-
phisticated coding and decoding techniques to achieve capacity,
but capacity soon grows so slowly with the SNR that commu-
nication becomes extremely power inefficient, and thus of only
limited engineering interest.

The poor power efficiency of communication over flat-fading
channels at high SNR is not specific to the Ricean model. We
have demonstrated that under very general conditions, even
allowing for memory and partial receiver side information,
channel capacity typically grows only double-logarithmically
with the SNR; see Theorem 4.2. In an attempt to better under-
stand the high-SNR behavior of channel capacity and to assess
the rate above which capacity only increases double-logarith-
mically in the SNR, we have introduced the “fading number”

as

SNR SNR (328)
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For channels for which the limsup in (328) is actually a limit,
capacity at high SNR can be expressed as

SNR SNR (329)

where the term decays to zero as the SNR tends to infinity.
In this sense, is the second-order term in the high-SNR ca-
pacity expansion. It is also in this sense that it would seem that
at rates that are significantly higher than, communication be-
comes power inefficient and capacity increases only double-log-
arithmically in the SNR.

Motivated by these interpretations of the fading number, we
set out to compute its value. This computation was significantly
simplified by Theorem 4.8, which allowed us to replace the
additive noise with a minimal input power constraint without
altering the high-SNR asymptotics. The proof of this theorem
hinges on the notion of “capacity-achieving input distributions
that escape to infinity,” which also has applications in the
high-SNR analysis of other channels with costs; see [4] and [5].

Loosely speaking, we say that the capacity of a channel can
be achieved by input distributions that escape to infinity if the
high-SNR channel capacity asymptotics can be achieved even
if the channel input are subjected to an additional input con-
straint that only allows inputs of a given minimal cost. It turns
out that, in addition to some technical conditions, for a channel
to have this property it suffices that its capacity grows sublin-
early to infinity in the cost; see Theorem 4.13. We hope that this
observation may be of some use in the study of the high-SNR
capacity of other channels.

By replacing the additive noise with a minimal energy
constraint we were able to compute the fading number of
some memoryless fading channels including SISO channels
(with Rayleigh and Ricean channels as special cases), the
fading number for SIMO channels, and the fading number for
MISO channels. The latter was shown to be achievable using
beamforming. Note, however, that the beamforming “direction”
(103) is not typically the one that maximizes the SNR in the
resulting SISO channel. In the Gaussian fading case, it is the
direction that maximizes the specular-to-granular fading ratio
(105).

For fading channels with memory the computation of the
fading number is more intricate. Theorem 4.41 solves the
problem for the SISO case. It hinges on the fact that the fading
number of a memoryless SISO system can be achieved by
input distributions that do not depend on the fading law and
that are bounded away from zero so that from past inputs and
outputs one can arbitrarily well estimate past fading levels.
These properties also hold for SIMO channels, but not for
MISO systems.

If the fading process is a stationary and ergodic regular
Gaussian process then the fading number takes on a particularly
simple form; see Corollary 4.42. It is interesting that for such
fading and in the absence of any receiver side information,
the fading number is determined by the (normalized) specular
component and the mean squared error in predicting the fading
value from its past. It is not directly related to such concepts as
the Doppler-spread or coherence-time.

For an analysis of the case where the fading process isnot
regular(i.e., ) see [34]. There a necessary and sufficient

condition for a double-logarithmic capacity growth is derived;
the “pre-log” for channels with logarithmic capacity growths is
computed; and examples of channels with growths of the form

SNR for are presented.
It is instructive to compare the high-SNR behavior of channel

capacity SNR in the absence of side information (329) with
the behavior in its presence SNR . In its presence—if per-
fect—capacity (for i.i.d. zero-mean Gaussian fading) typically
grows logarithmically in the SNR [17], [35], with

SNR SNR

(330)
which is in stark contrast to (329).

(The formula we derived for the expectation of the logarithm
of a noncentral chi-square random variable (209) also allows us
to evaluate the high-SNR channel capacity of some fading chan-
nels with a nonzero mean in the presence of perfect receiver side
information, e.g., the Ricean channel (181) and SIMO Gaussian
channels with mean.)

Other models also lead to results that are dramatically dif-
ferent from (329). For example, the block constant fading model
of [36] was analyzed at high SNR in [37]. It was shown there
that at high-SNR capacity is given asymptotically as

SNR (331)

where and is the number
of symbols over which the channel remains constant.

It is thus seen that at high SNR, the behavior of the capacity of
fading channels depends critically on the assumed fading model.

APPENDIX I
LOW-SNR ANALYSIS

In this appendix, we discuss the bound (27) at low SNR. In
particular, we show that the choice and satisfying

yields the max-entropy bound (28) and
demonstrate that this bound is tight enough to give the right
capacity–energy slope at zero SNR. We begin with the former
task.

Substituting in (27) yields the bound

Computing and substituting

yields

and

thus establishing (28).
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We now turn to demonstrating tightness at low SNR. Using
the bound we obtain from (28)

where denotes the maximal eigenvalue of the
matrix . At low SNR this agrees with the asymptotic
expression [38]

(332)

APPENDIX II
A PROOF OFTHEOREM 4.2

Proof: In view of Lemma 4.5 it suffices to prove this theorem
in the case where the fading is memoryless, the additive noise is
memoryless, and the side information is null. Consequently, to
simplify notation, we remove all time indexes. Also, since the
mean of the noise can be subtracted off at the receiver, we shall
assume throughout .

The proof of the theorem is based on a study of the bound (27)
when it is applied to input distributions satisfying the average
power constraint . In fact, it will suffice to con-
sider (27) with the possibly suboptimal choice of the matrix
as the following identity matrix:

(333)

We begin noting that by Lemma 6.13

(334)

and consequently

(335)

where the supremum is overall input distributions, irrespective
of their power. We now continue the proof of the theorem with a
study of the remaining terms in (333). We begin by noting that if

does not approach infinity with the
SNR, then the theorem follows directly from (333) and (335) by
choosing any fixed . In fact, in this case the capacity is
bounded in the SNR.

The more interesting case is, of course, when
does tend to infinity with the SNR. In this case, we

shall derive the theorem by focusing on (333) with the choice

(336)

where with the SNR.
For small values of , we note that since is analytic at

with , we obtain from the relationship

that

(337)

where the correction term tends to zero as tends to zero.
Consequently, since we obtain from (333) and
(336) the bound

(338)

The theorem will now follow from (334) and (338) once we
obtain the logarithmic bound on

(339)

where the last term in the above is finite by (256) (evaluated at
).

This bound can be derived by upper-bounding
by

(340)

and by lower-bounding by

(341)

(342)

as can be justified by the independence of and .

APPENDIX III
A PROOF OFTHEOREM 4.3

Proof: In view of Lemma 4.5 it suffices to prove this in the
memoryless case. We shall, therefore, proceed to treat this case,
and dispense with all time indexes. Expanding the mutual infor-
mation term we obtain using the data processing inequality
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The proof is now concluded by noting that, since i.i.d. Gaus-
sians maximize differential entropy subject to an expected
squared-norm constraint

and by noting that by Lemma 6.6

APPENDIX IV
A PROOF OFLEMMA 4.5

Proof: The first inequality is a simple consequence of the
chain rule and the basic properties of mutual information

The second inequality can be argued by using the chain rule to
write

(343)

and by studying the term as follows:

APPENDIX V
A PROOF OFLEMMA 4.7

Proof: To simplify notation, we shall prove this lemma for
the memoryless case. The general case follows along similar

lines but with more cumbersome notation. We prove this lemma
in two steps. In the first, we shall show that is invariant
with respect to multiplication by a deterministic matrix on the
right, namely,

(344)

In the second step, we shall demonstrate invariance on the left,
i.e.,

(345)

To prove (344) it suffices to show that

(346)

because an application of the inequality to the random matrix
and the deterministic matrix will prove the reverse in-

equality.
To proceed with the proof of (346) we write

where . We now note that

(347)

so that the capacity of the channel with average
power is no larger than the capacity of the channel

with average power . This proves (346) in
view of (46).

We next prove (345) for which it suffices to show

(348)

To prove (348) write

where can be written as
where and are independent zero-mean circularly sym-
metric multivariate Gaussians of covariances and

, respectively. Here denotes the min-
imal eigenvalue of . Thus, we have

We thus conclude that the capacity of the channel
with noise variance (and SNR given by ) is no larger
than the capacity of the channel with fading matrix and
noise variance (and SNR given by ). This
demonstrates (348) in view of (46).
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APPENDIX VI
A PROOF OFTHEOREM 4.13

Proof: Fix some and let .
For any and any probability law on define

(349)

Define also the function for any by

(350)

(351)

Note that the concavity of and its sublinear growth imply

(352)

where and denote the left and right derivatives of
at . This observation combined with the duality
[1, Lemma 3.1, Sec. 2.3] and the observation that if two

probabilitiy measures assign a small probability tothen so
does any convex combination of the two, show that to prove the
theorem it suffices to show that for any and any
there exists some law such that

(353)

and such that

(354)

To prove this we begin by noting that

(355)

This follows because

where the last step follows by the unboundedness of.
Fix now some . For any it follows from the

definition of (350) that there exists some probability measure
such that

(356)

Define now as the supremum of the mutual infor-
mation corresponding to the channel over all input dis-
tributions whose support is contained in

(357)

Notice that , so that in particular

(358)

By (357) and (355), it now follows that for all sufficiently
small we have , so that for such small

’s we can define a probability measure as the conditional
distribution of conditioned on

Borel (359)

Note that in particular

(360)

While does not necessarily assign a small probability
to the set , we shall now proceed to find a possibly different
measure that satisfies

(361)

and does. The probability will be found in the convex hull
of . Let

(362)

and consider the mapping from to the reals

(363)

By the concavity of mutual information and the linearity of ex-
pectation it follows that this mapping is concave and thus con-
tinuous on and lower semicontinuous at the endpoints.
Consequently, exactly one of the following must hold:

a) the mapping’s supremum over is equal to the map-
ping’s limit as ; or

b) the supremum is equal to the mapping’s limit as and
a) does not hold; or

c) the mapping’s supremum over is achieved in the
open interval and it attained neither in the limit

nor in the limit .

In the former case, we can guarantee (361) and that at the same
time will be arbitrarily close to zero, by choosing to
be of the form , for very close to . This follows from
(360), which implies .

In the latter two cases, we can find somesuch that for
(361) holds and such that at the same time the

left derivative of the mapping is negative so that

(364)

(The discussion of the three cases is superfluous if the
supremum is achieved by some because then the choice of

would result in being greater or equal to
and of (364) being satisfied unlesswere zero, with

the latter case resulting in .)
Note that because is in the convex hull of

and because is the conditional of given (359),
it follows that is also the conditional version of given

Borel (365)
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We now proceed to demonstrate that (364) implies that
must be small. From (364) we have

(366)

Here, the first equality follows from the expression for the di-
rectional derivative of mutual information (76); the subsequent
equality by (360) and because is the conditional proba-
bility conditional on (365); the subsequent equality
by expressing mutual information as an integral (over) of rel-
ative entropies as in (349), and by writing (349) as the sum of
two integrals, over and ; the subsequent
equality by a simple algebraic manipulation; and the following
inequality by the nonnegativity of the cost function .

To continue with the above chain of inequalities we next de-
fine the probability measure as the conditional law of
conditioned on

Borel (367)

so that in particular

(368)

(If then our discussion is over— has already
escaped.) Alternatively

Borel

(369)

and, hence,

Borel (370)

We shall now continue to lower-bound the RHS of (366) by
first noting that by (370)

(371)

We next note that by (367)

(372)

so that by (371) and (372)

(373)

It now follows from (366) and (373) that

(374)

so that

(375)

By (361), (355), and (358) we thus obtain

(376)

thus demonstrating that escapes to infinity.

APPENDIX VII
A PROOF OFTHEOREM 4.14

Proof: In view of Theorem 4.8, any upper bound on the ca-
pacity of the channel

(377)

subject to the constraints

(378)

will give rise to an upper bound on the fading number of the
channel . The upper bound of our choice is the
one that is based on (25). Our proof will thus be based on an
asymptotic analysis of the bound (25) applied to the channel

.
Let be monotonically increasing to infinity, and

let be a corresponding sequence of input distributions
satisfying

(379)
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and

where denotes the channel .
Fix some and and define

(380)

so that the restriction implies

Consequently, by (24)

It thus follows from Theorem 5.1 that for any input distribution
satisfying

-a.s. (381)

the mutual information can be bounded as

(382)

The rest of the proof is dedicated to the study of the asymp-
totic behavior of the various terms in the above inequality. We
begin by arguing using Lemma 6.8 that for any nonsingular ma-
trix

(383)

To that end, we first note that by the behavior of logarithms
under scaling it suffices to show

(384)

Let be arbitrary. By Lemma 6.8 (applied to the matrix
), there exists some such that

(385)

Also,

(386)

Consequently, for all

from which (384) follows because was arbitrary.
The next term in (382) to be studied is the term

. For distributions satisfying (381)
this term can be lower-bounded as

(387)

where the last equality should be taken as a definition for .
Notice that

(388)

as can be argued as follows. The lower bound on in (388)
can be argued using Lemma 6.7, Part f) applied to the matrix

. The upper bound on in (388) can be verified using
the concavity of the logarithm function and Jensen’s inequality.

Having established (388), we continue with the proof of the
theorem. Combining (382) and (387) we obtain

(389)

It now follows from (389) and (383) that in order to conclude
the proof of the theorem it will suffice to establish that there
exist parameters and such that

(390)
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This inequality is trivial if is bounded, because
in that case the LHS tends to for any fixed values of
and . Therefore, by possibly passing to a subsequence, it
suffices to treat the case where

(391)

A choice of the parameters and that will demonstrate
(390) is

(392)

(393)

With this choice of parameters, we have for the various terms in
(390)

(394)

(395)

(see Appendix XI)

(396)

(397)

(398)

Expressions (394)–(398) prove (390) and thus conclude the
proof of the theorem.

APPENDIX VIII
A PROOF OFPROPOSITION4.23

Proof: Let . To derive an upper bound on the
fading number in the presence of receiver side information we
invoke Lemma 4.5 (in the memoryless case) to obtain

(399)

and then upper bound by invoking Theorem 4.16.
We now proceed with a lower bound. To that end, we choose
to be circularly symmetric with being uniformly

distributed over the interval . Using Lemma
4.9 we have

where the second inequality follows from (83). We next note
that for a fixed , the term

(400)

is monotonically decreasing in . Choose now

so that is monotonically increasing in ; it tends to infinity
as ; and approaches zero
as . With this choice, the function

(401)

is for every monotonically increasing (in ) to zero. In addi-
tion, the RHS of (401) is integrable as a function of. The de-
sired lower bound now follows by the Monotone Convergence
Theorem.

APPENDIX IX
A PROOF OFTHEOREM 4.41

The proof of this theorem was outlined in the text. There re-
mains to show that, defined in (136), tends to zero as the SNR
tends to infinity. This is what we prove in this appendix.

Rewriting we have

where are i.i.d. .
We thus conclude from Lemma 6.11 that for any realization

of the conditional law of converges monotonically in
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to zero. Choosing gives the desired
convergence in the SNR. The result now follows by averaging
over using the Monotone Convergence Theorem.

APPENDIX X
EXPECTED-LOG OF A NONCENTRAL

Lemma 10.1:Let the random variable have a noncentral
distribution with an even number of degrees of freedom, i.e.,

(402)

where are i.i.d. , and are determin-
istic complex constants. Then

(403)

(404)

where

(405)

Moreover, the functions are monotonically increasing and
concave in the interval .

Proof: The density of is given by [24, Ch. 29]

(406)
where denotes the modified Bessel function of the first
kind of order . Thus, the required expectation can be
written as

(407)

Expressing as a power series

(408)

we obtain from [15, 4.352 (1)]

(409)

(410)

(411)

(412)

(413)

where denotes Euler’s psi-function (213) and where we
define the function as

(414)

with derivatives

(415)

(416)

To conclude the proof of (403), it is now required to show
that is identical to . We shall begin by studying the
derivative and show that it can be expressed as

(417)

Indeed

Integrating this series term-by-term we obtain

(418)

for some constant . By evaluating the RHS of (418) at
and comparing with the evaluation at of the RHS of (414)
we conclude that . With this value of it is readily
seen that the RHS of (418) is identical to , and we thus
conclude that . Since is identical to , the
monotonicity and concavity of follow from those of ,
which can be verified from (415) and (416).
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APPENDIX XI
A LIMIT OF THE INCOMPLETEGAMMA FUNCTION

Lemma 11.1:Let the sequences and take
value in the open interval . Assume

(419)

(420)

(421)

for some . Then

(422)

Proof: Integrating (200) by parts we obtain

thus establishing

The claim now follows from the continuity of
around .

ACKNOWLEDGMENT
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