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Abstract

The large-inputs asymptotic capacity of a peak and average power limited
discrete-time Poisson channel is derived using a new firm (non-asymptotic) lower
bound and an asymptotic upper bound. The upper bound is based on the dual
expression for channel capacity and the recently introduced notion of capacity-
achieving input distributions that escape to infinity. The lower bound is based on
a lemma that lower bounds the entropy of a conditionally Poisson random variable
in terms of the differential entropy of the conditional mean.

1 Introduction

We consider a memoryless discrete-time channel whose output Y takes value in the set of
non-negative integers Z

+
0 and whose input takes value in the set of non-negative reals R

+
0 .

Conditional on the input x ≥ 0, the output has a Poisson distribution of mean x + λ0,
where λ0 is some non-negative constant. Thus

Pr[Y = y|X = x] = e−(x+λ0) (x + λ0)
y

y!
, y ∈ Z

+
0 , x ≥ 0. (1)

This channel is often used to model pulse-amplitude modulated optical communication
with a direct-detection receiver [1]. Here the input x is proportional to the product of
the transmitted light intensity by the pulse duration; λ0 similarly models the time-by-
intensity product of the background radiation (“dark current”); and the output Y models
the number of photons arriving at the receiver during the pulse duration. An average
power constraint on the transmitter is accounted for by the average input constraint

E[X] ≤ P (2)

and a peak power constraint by
0 ≤ X ≤ A. (3)

We use 0 < α ≤ 1 to denote the average-to-peak ratio

α = P/A. (4)
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The case α = 1 corresponds to the absence of an average power constraint, whereas
α � 1 corresponds to a very weak peak power constraint.

No analytic expression for the capacity of the Poisson channel is known. In [1] Shamai
showed that capacity-achieving input distributions are discrete with a finite number of
mass points that increases to infinity as the constraints are relaxed.

In [2] Brady & Verdú considered the case of the channel with an average power
constraint only. The following bounds were derived: Let P, λ0 ↑ ∞ proportionally such
that SNR , P

λ0
is constant. Given ε > 0 there exists an Pε such that for all P > Pε the

capacity is bounded by

C(P) ≥ 1

2
log

P

2π
− 1

2
log

(
1 +

1

SNR

)
− ε; (5)

C(P) ≤ 1

2
log

P

2π
+ log

(√
SNR

(
1 +

1

Pε

)
+

1√
SNR

)
+ 1 + log

3

2
+ ε. (6)

Note that the difference between the upper and lower bound is unbounded if the dark
current is held constant while P tends to infinity.

Here we present results for the more general case of both peak and average power
constraints. We improve the lower bound to channel capacity and introduce an asymp-
totic — peak and average powers tending to infinity with their ratio and the dark current
held fixed — upper bound. The upper and lower bounds asymptotically coincide, thus
yielding the asymptotic expansion for channel capacity.

2 Results

We begin with the case where only the average power constraint E[X] ≤ P is imposed.

Theorem 2.1. The channel capacity C(P) of a Poisson channel with dark current λ0

under an average power constraint E[X] ≤ P is bounded as follows:

C(P) ≥ 1

2
logP−

√
π
(
λ0 + 1

12

)
2P

+ (P+ 1) log

(
1 +

1

P

)
− 1; (7)

C(P) ≤ 1

2
logP + o(1). (8)

Here, the error term o(1) tends to zero as P ↑ ∞. Hence, the asymptotic expansion for
the channel capacity is

lim
P↑∞

{
C(P) − 1

2
logP

}
= 0, (9)

irrespective of λ0, which is held fixed.

In Figure 1 these bounds are plotted together with the lower and upper bound (5)
and (6) from Brady & Verdú [2].

Next consider the case where both average and peak power constraints are imposed.
Holding the average-to-peak ratio α fixed, we distinguish between two cases: α ≥ 1

3

(including the peak power constraint only case α = 1) and 0 < α < 1
3
. We begin with

the former:



Theorem 2.2. The channel capacity C(A,P) of a Poisson channel with dark current λ0

under a peak power constraint 0 ≤ x ≤ A and an average power constraint E[X] ≤ P,
where the ratio α = P

A
lies in

[
1
3
, 1
]
, is bounded as follows:

C(A,P) ≥ 1

2
logA− 1

2
log

πe

2
+

(
A

3
+ 1

)
log

(
1 +

3

A

)
− 1

− 1

2
log

(
1 +

λ0 + 1
12

A

)
+

√
λ0 + 1

12

A
arctan

(√
A

λ0 + 1
12

)
; (10)

C(A,P) ≤ 1

2
logA− 1

2
log

πe

2
+ o(1). (11)

Here, the error term o(1) tends to zero as the average and peak powers tend to infinity
with their ratio held fixed at α, 1

3
≤ α ≤ 1. Hence, the asymptotic expansion for the

channel capacity is

lim
A↑∞

{
C(A, αA) − 1

2
logA

}
= −1

2
log

πe

2
,

1

3
≤ α ≤ 1. (12)

In the second case 0 < α < 1
3

we have:

Theorem 2.3. The channel capacity C(A,P) of a Poisson channel with dark current λ0

under a peak power constraint 0 ≤ x ≤ A and an average power constraint E[X] ≤ P,
where the ratio α = P

A
lies in

(
0, 1

3

)
, is bounded as follows:

C(A,P) ≥ 1

2
logA− 1

2
log 2πe + (α − 1)u − log

(
1

2
− αu

)

− eu

(
1

2
− αu

)log

(
1 +

λ0 + 1
12

A

)
− 2

√
λ0 + 1

12

A
arctan

(√
A

λ0 + 1
12

)
+ (αA+ 1) log

(
1 +

1

αA

)
− 1; (13)

C(A,P) ≤ 1

2
logA + αu − u − log

(
1

2
− αu

)
− 1

2
log 2πe + o(1). (14)

Here, u ∈ (0, 1
2α

)
is the non-zero solution to

√
πerf

(√
u
)(1

2
− αu

)
−√

ue−u = 0, (15)

and the error function erf (·) is defined as

erf (ξ) =
2√
π

∫ ξ

0

e−t2 dt. (16)

The error term o(1) tends to zero as the average and peak powers tend to infinity with
their ratio held fixed at α, 0 < α < 1

3
. Hence, the asymptotic expansion for the channel

capacity is

lim
A↑∞

{
C(A, αA) − 1

2
logA

}
= −1

2
log 2πe+(α−1)u−log

(
1

2
− αu

)
, 0 < α <

1

3
, (17)

where u is defined as above to be the non-zero solution to (15).

See Figure 2 for plots of these bounds for different values of α.
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Figure 1: Firm lower and asymptotic upper bound on the capacity for a Poisson channel
with average power constraint E[X] ≤ P. Additionally the lower and upper bound (5)
and (6) by Brady & Verdú [2] are plotted. Apart from the asymptotic upper bound
which does not depend on the dark current all bounds assume a dark current λ0 = 3. In
(5) and (6) Pε has been set to infinity and ε to 0.
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Figure 2: Firm lower and asymptotic upper bounds on the capacity for a Poisson channel
under peak and average power constraint. The parameter α denotes the ratio of average
to peak power constraint P

A
. For α ≥ 1

3
(including the peak power constraint only case

α = 1) the bounds do not depend on α anymore.

3 Derivation

3.1 Lower Bounds

The lower bounds are based on two lemmas yielding a lower bound to H(Y ) and an
upper bound to H(Y |X) in terms of the input X. The latter is well known and is based



on the variance of Y given X = x:

Lemma 3.1. The entropy H(Y |X = x) is upper bounded by

H(Y |X = x) ≤ 1

2
log 2πe

(
x + λ0 +

1

12

)
. (18)

Proof. See [3, Theorem 16.3.3].

As to the former we have the following

Lemma 3.2. Let Y be the output of a Poisson channel with input X and dark current
λ0. Assume that X has a finite positive expectation E[X] = P. Then

H(Y ) ≥ h(X) + (1 + P) log

(
1 +

1

P

)
− 1 (19)

> h(X). (20)

Proof. See Appendix A.

The lower bound (13) can now be derived using these lemmas in the following way:

I(X; Y ) = H(Y ) − H(Y |X) (21)

≥ h(X) + (αA+ 1) log

(
1 +

1

αA

)
− 1 − 1

2
log 2πe

− 1

2
E

[
log

(
X + λ0 +

1

12

)]
(22)

= h(X) + (αA+ 1) log

(
1 +

1

αA

)
− 1 − 1

2
log 2πe

− 1

2
E[log X] − 1

2
E

[
log

(
1 +

λ0 + 1
12

X

)]
. (23)

We choose now an input distribution of the form

Q(x) =
1

√
βπx · erf

(√
A

β

) · e− x
β , 0 ≤ x ≤ A, (24)

where β > 0 is a parameter chosen such that E[X] = αA, i.e.,

β

2
−

β
√

A

β
e−

A

β

√
πerf

(√
A

β

) = αA. (25)

For this distribution:

h(X) =
1

2
log β + log

(
√

πerf

(√
A

β

))
+

αA

β
+

1

2
E[log X] ; (26)

E
[
log
(
1 +

a

X

)]
≤
∫ A

0

log
(
1 +

a

x

)
· 1
√

βπx · erf
(√

A

β

) dx (27)

=
2π

√
a + 2

√
A log

(
1 + a

A

)− 4
√

a arctan
(√

a
A

)
√

βπ · erf
(√

A

β

) . (28)



We substitute β with A

u
, where u ∈ (0, 1

2α

)
is defined by (25) as non-zero solution of

√
πerf

(√
u
)

=

√
ue−u

1
2
− αu

. (29)

Using (26), (28), and (29) in (23) we get

I(X; Y ) ≥ 1

2
log β + log

√
πerf

(√
u
)

+ αu + (αA+ 1) log

(
1 +

1

αA

)
− 1 − 1

2
log 2πe

−
π
√

λ0 + 1
12

+
√
A log

(
1 +

λ0+ 1
12

A

)
− 2
√

λ0 + 1
12

arctan

(√
λ0+ 1

12

A

)
√

βπ · erf (√u)
(30)

=
1

2
logA+ αu − u − log

(
1

2
− αu

)
+ (αA+ 1) log

(
1 +

1

αA

)
− 1

− 1

2
log 2πe −

(
1

2
− αu

)
eu


π

√
λ0 + 1

12

A
+ log

(
1 +

λ0 + 1
12

A

)

− 2

√
λ0 + 1

12

A
arctan

√
λ0 + 1

12

A


 (31)

=
1

2
logA− 1

2
log 2πe + αu − u − log

(
1

2
− αu

)

−
(

1

2
− αu

)
eu


log

(
1 +

λ0 + 1
12

A

)
− 2

√
λ0 + 1

12

A
arctan

√
A

λ0 + 1
12




+ (αA+ 1) log

(
1 +

1

αA

)
− 1, (32)

where we have used

arctan

(
1

ξ

)
=

π

2
− arctan ξ, ξ ∈ R. (33)

This concludes our proof.
The derivations of (10) and (7) are very similar and therefore omitted. Note that

(10) corresponds to (13) with u ↓ 0.

3.2 Asymptotic Upper Bounds

For the derivation of the asymptotic upper bounds we will assume that the dark current
is zero, i.e., λ0 = 0. This is no real restriction because firstly any upper bound to the
capacity of a Poisson channel without dark current is also an upper bound to the case
with non-zero dark current. And secondly we will show that asymptotically the dark
current has no impact on the capacity at all. The derivation of the upper bounds relies
on the following:

• In order to avoid the problems arising from the fact that the output of a Poisson
channel is discrete, we introduce a new channel defined as Ỹ = Y + U , where
U is uniformly distributed between 0 and 1. Then Ỹ ≥ 0 is continuous with a
distribution

W̃ (ỹ|x) = e−x xbỹc

bỹc! , ỹ ≥ 0, x ≥ 0, (34)



where b·c denotes the operation that truncates any real-number to the next smaller
(or equal) integer. Note that I(X; Ỹ ) = I(X; Y ) and h(Ỹ |X = x) = H(Y |X = x).
Further, note that

lim
x↑∞

{
E
[
log Ỹ

∣∣X = x
]
− log x

}
= 0; (35)

lim
x↑∞

{
h(Ỹ |X = x) − 1

2
log x

}
= lim

x↑∞

{
H(Y |X = x) − 1

2
log x

}
≥ 1

2
log 2πe. (36)

• The upper bounds are based on the following inequality [4]:

C ≤ EQ∗
[
D
(
W̃ (·|X)

∥∥R(·))] (37)

= EQ∗

[
−
∫ ∞

0

W̃ (ỹ|X) log R(ỹ) dỹ − h(Ỹ |X = x)

]
, (38)

where Q∗ denotes the capacity-achieving input distribution to the Poisson channel
fulfilling all input constraints, and where R(·) denotes any distribution over R

+
0

that can be chosen freely.

• In [4, Definition 4.11, p. 8] the notion of capacity achieving input distributions that
escape to infinity is defined. Using [4, Theorem 4.13, p. 9] one can show that the
capacity of a Poisson channel can be achieved by such distributions, i.e., for any
P0 there exists input distributions {Q∗

P
}P≥0 satisfying the peak and average power

constraints such that

lim
P↑∞

{C(P/α,P) − I(Q∗
P; W )} = 0 (39)

and
lim
P↑∞

Q∗
P(X ≤ P0) = 0. (40)

The derivation of (14) is based on (38) with the choice

R(ỹ) =

{
pR1(ỹ) = p · ỹµ−1e−ỹ/β

βµγ(µ,A(1+δ)/β)
∀ 0 ≤ ỹ ≤ A(1 + δ)

(1 − p)R2(ỹ) = (1 − p) · e−(ỹ−A(1+δ)) ∀ ỹ > A(1 + δ)
, (41)

where µ, β, δ > 0,

p = Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = A

]
, (42)

and where γ(·, ·) denotes the incomplete gamma function

γ(µ, ξ) =

∫ ξ

0

e−ttµ−1 dt µ > 0. (43)

Plugging R(ỹ) into the first term of (38) yields

−
∫ ∞

0

W̃ (ỹ|x) log R(ỹ) dỹ

= − log p · Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = x
]

︸ ︷︷ ︸
Ia

−
∫ A(1+δ)

0

W̃ (ỹ|x) log R1(ỹ) dỹ︸ ︷︷ ︸
Ib

− log(1 − p) · Pr
[
Ỹ > A(1 + δ)

∣∣∣X = x
]

︸ ︷︷ ︸
Ic

+

∫ ∞

A(1+δ)

W̃ (ỹ|x)
(
ỹ −A(1 + δ)

)
dỹ︸ ︷︷ ︸

Id

.(44)



We will now look at each term individually:

Ia = Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = x
]
log

1

p
≤ log

1

p
; (45)

Ib =

∫ A(1+δ)

0

W̃ (ỹ|x) log
βµγ

(
µ, A(1+δ)

β

)
ỹµ−1e−ỹ/β

dỹ (46)

=

{
µ log β + log γ

(
µ,
A(1 + δ)

β

)}
Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = x
]

+ (1 − µ)

∫ A(1+δ)

0

W̃ (ỹ|x) log ỹ dỹ +
1

β

∫ A(1+δ)

0

ỹW̃ (ỹ|x) dỹ (47)

=

{
µ log β + log γ

(
µ,
A(1 + δ)

β

)}
Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = x
]

+ (1 − µ)

{
E
[
log Ỹ

∣∣∣ X = x
]
−
∫ ∞

A(1+δ)

W̃ (ỹ|x) log ỹ dỹ︸ ︷︷ ︸
≥0 for A>1

}

+
1

β

{
E
[
Ỹ
∣∣∣ X = x

]
−
∫ ∞

A(1+δ)

ỹW̃ (ỹ|x) dỹ︸ ︷︷ ︸
≥0

}
(48)

≤
{

µ log β + log γ

(
µ,
A(1 + δ)

β

)}
Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = x
]

+ (1 − µ)E
[
log Ỹ

∣∣∣ X = x
]

+
1

β

(
x +

1

2

)
, (49)

where for the inequality we assumed that µ < 1 and A > 1. Further,

Ic ≤ Pr
[
Ỹ > A(1 + δ)

∣∣∣X = A

]
log

1

1 − p
= (1 − p) log

1

1 − p
, (50)

where we have used the monotonicity of the Poisson distribution and the fact that X ≤ A.
Finally,

Id ≤
∞∑

y=bA(1+δ)c
ye−x 1

y!
xy −A(1 + δ) Pr

[
Ỹ > A(1 + δ)

∣∣∣X = x
]

︸ ︷︷ ︸
≥0

(51)

≤ x
∞∑

y=bA(1+δ)c
e−x 1

(y − 1)!
xy−1 (52)

= x

∞∑
y=bA(1+δ)c−1

e−x 1

y!
xy (53)

= x

∫ ∞

bA(1+δ)c−1

W̃ (ỹ|x) dỹ (54)

= x Pr
[
Ỹ > bA(1 + δ) − 1c

∣∣∣X = x
]

(55)

≤ APr
[
Ỹ > bA(1 + δ) − 1c

∣∣∣X = x
]

(56)

≤ APr
[
Ỹ > A(1 + δ2)

∣∣∣X = x
]

(57)



≤ APr
[
Ỹ > A(1 + δ2)

∣∣∣X = A

]
(58)

≤ AereA(er−1−r−rδ2), (59)

where in (57) we assume that A � 1 and we have chosen 0 < δ2 < δ. The second
last inequality follows from the monotonicity of the Poisson distribution. And for the
last inequality we used Chernoff’s bound Pr[W ≥ w] ≤ e−rwE

[
erW

]
with the choice

r = log(1 + δ2). Note that (1 + δ2) log(1 + δ2) − δ2 > 0 for δ2 > 0.
Combining all these results together with (35), (36), and

p̃(A) := EQ∗
[
Pr
[
Ỹ ≤ A(1 + δ)

∣∣∣X = x
]]

→ 1 as A ↑ ∞ (60)

yields

C ≤ p̃(A)µ log β + p̃(A) log γ

(
µ,
A(1 + δ)

β

)
+

(
1

2
− µ

)
EQ∗[log X]

+
1

β

(
αA+

1

2

)
− 1

2
log(2πe) + o(1), (61)

where o(1) tends to zero as A ↑ ∞. To further simplify we choose µ = 1/2 and substitute
β with A(1 + δ)/u, u > 0:

C ≤ p̃(A)
1

2
logA(1 + δ) − p̃(A)

1

2
log u + p̃(A) log γ

(
1

2
, u

)
+

u

A(1 + δ)

(
αA+

1

2

)
− 1

2
log(2πe) + o(1) (62)

=
1

2
p̃(A) logA− 1

2
p̃(A) log u + p̃(A) log

√
πerf

(√
u
)

+
αu

1 + δ
− 1

2
log(2πe) +

1

2
p̃(A) log(1 + δ) + o(1) (63)

= p̃(A)

(
1

2
logA +

1

2
log(1 + δ) − u − log

(
1

2
− αu

))
− 1

2
log 2πe +

αu

1 + δ
+ o(1). (64)

The first equality follows from the identity γ
(

1
2
, u
)

=
√

πerf (
√

u) where γ(·, ·) is defined
in (43) and erf (·) in (16). In the second equality we have chosen u ∈ (0, 1/2α] to be the
non-zero solution to (29). Note that such a non-zero solution always exists as long as
0 < α < 1

3
. This concludes our proof.

The derivations of (11) and (8) are very similar and therefore omitted.

A Proof of Lemma 3.2

Proof. Given X = x, Y can be written as Y = Y1 + Y2, where Y1 ∼ Po (x) and Y2 ∼
Po (λ0), Y1 ⊥⊥ Y2. But

H(Y ) = H(Y1 + Y2) ≥ H(Y1 + Y2|Y2) = H(Y1|Y2) = H(Y1), (65)

and we can restrict ourselves to the case where λ0 = 0.
The proof of this case is based on the data processing inequality for relative entropy

[5, Chapter 1, Lemma 3.11(ii)]. Let PX(·) denote the distribution of X and let PE(·)



denote the mean-P exponential distribution on R
+
0 . Let PY (·) be the distribution of Y

when Y is conditionally Poisson given X, for X ∼ PX , and let PG(·) be the distribution
of Y when Y is conditionally Poisson given X and X ∼ PE. It can be shown that PG(·)
is a mean-P geometric distribution on Z

+
0 :

PG(y) = (1 − p) · py, y ∈ Z
+
0 (66)

where

p =
P

1 + P
. (67)

By the data processing theorem we obtain:

D
(
PX(·)∥∥PE(·)) ≥ D

(
PY (·)∥∥PG(·)), (68)

where D(·‖·) denotes relative entropy [3, Chapter 2]. The first inequality in the lemma’s
statement now follows by evaluating the left hand side of (68)

D
(
PX(·)∥∥PE(·)) =

∫ ∞

0

PX(x) log
PX(x)
1
P
e−x/P

dx = −h(X) + logP+ 1, (69)

evaluating the right hand side of (68)

D
(
PY (·)∥∥PG(·)) =

∞∑
y=0

PY (y) log
PY (y)

(1 − p)py
= −H(Y ) − P log p + log

1

1 − p
, (70)

and using (67).
The second inequality follows by noting that (1+P) log(1+P−1)−1 is monotonically

decreasing in P and approaches zero, as P→ ∞.
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