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ABSTRACT the non-regular Gaussian fading process, the asymptatic be
havior of the channel capacity can be variedy, double-
logarithmic, logarithmic, or a fractional power thereohel
pre-logI1PP was defined as

The feedback capacity of a single-input single-output fad-
ing channel with memory is investigated. It is shown that
asymptotically, as the signal-to-noise ratio (SNR) teras t
infinity, noiseless feedback does not increase capacity. oPPe | CPP(SNR) )
More _specmcally, for finite-energy stationary and_er- - SNI}R%O W? @)

godic fading processes that are regula.,(that have a fi-
nite differential entropy rate) feedback does notincréase ~ whereCP? denotes capacity with a peak-power constraint,
fading number and for Gaussian fading processes that are and its value was computed, see (19).
non-regular feedback does not increasepiteelog In this paper we extend these results to the case where

there is a noiseless feedback link from the receiver to the
' transmitter. We show that for fading channels with memory
Regular feedback does not increase the fading number or the pre-log.

Index Terms— Channel Capacity, Fading Channels
Fading Number, Feedback, High SNR, Pre-Log,
and Non-Regular Fading Processes.

1. INTRODUCTION 2. CHANNEL MODEL

In [1] the capacity of fading channels with memory was in-  \ye consider a communication system as depicted in Fig. 1.

vestigated. It was shown there thatfor any finite-en€edy A messagels is transmitted over a single-input single-out-
ular fading proces§ Hy} (i.e,, one having a finite entropy

rate) the channe_l capgcihy” grows asym_ptotica]ly only H., 7
double-logarithmically in the signal-to-noise ratio (SNR

Thefading numbery was introduced as the second term in .
the high-SNR expansion of the capacity M X Yi M

x({Hp}) 2 S&Ii%to{C(SNR) —loglog SNR}, (1) A

where(C' stands for the capacity with peak- or average-po-

wer constraint, and its value was computed.
Subsequently [2], [3], [4], for the more restricted Gaus-  Fig. 1. The communication system under consideration.

sian fading and for peak-power constraints, the analysis of

non-regularfading processes.€., processes of differential  put fading channel with memory. The channel output at

entropy rate negative infinity) was completed. It was shown time & is given by

that while for regular fading processes the channel capac-

ity grows like loglog SNR, this is not necessarily the case

for non-regular fading. Depending on the spectrkifr) of

Y. = Hyxp + Z, 3

wherez, € C denotes the timé-channel input; the random
The work of S. M. Moser was supported in part by the ETH under variableH, € C.deno'[es_ t[he t'm@'fadmg term; andZ;, €
TH-23 02-2. C denotes the timé&-additive noise term.




The additive noise processZ;} is assumed to be a
white zero-mean circularly-symmetric complex Gaussian
processi.e.,

{Z} ~ID Ne(0,02) (4)

for somes? > 0.
Neither transmitter nor receiver know the realization of

The subject of our investigation is the capacity per chan-
nel use which we denote liy(SNR). To clarify notation we
will use superscripts “Avg” and “PP” to denote the capacity
under average-power and peak-power constraints, respec-
tively, and a subscript “FB” whenever feedback is available
Clearly,

the fading proces§H, }; they only know its law. We con- CPP(SNR) < C™I(SNR) < CA%9(SNR),  (10)
sider two different scenarios. In the first scendidy } is
stationary, ergodic, of finite energy and
CPP(SNR) < CEF(SNR). (11)
2

E UH"" ] < 00 ®) Consequently, for the corresponding fading numbers
and of finite differential entropy rate PPUHLY) < Y™O({H,)) < Xé\ég({Hk}), (12)

h({Hy}) > —oco. ®) XPP{HY) < XER({HLY), (13)

In the second scenario we address the case where theiimd for the corresponding pre-logs

entropy rateh({ H; } ) need not be finite, but we restrict our- I1°P < TIPR. (14)

selves to Gaussian fadind.e., we assume tha{ﬁk} £
{H\ — d} is a zero-mean, finite-variance, stationary circu-
larly-symmetric Gaussian process of arbitrary spectrsd di
tribution functionEF()), —1/2 < XA < 1/2, whered € C
denotes the spectral component of the process.

We always assume thé¥ } and{ H } are independent
and that their joint law does not depend on the channel in-
put.

Finally, we allow noiseless feedback from the receiver to
the transmitter. The feedback is delayed by one time-step,

so that the feedback random vector available to the trans-

mitter at time instant consists of all past channel outputs
vt

We consider two types of power constraints: an average-
power constraint and a peak-power constraint. Under the

former we require that for any messagec {1, ..., [¢"}|}
I —
- > E[Xe(m, YFHP] < &, (7)
k=1

were X, (m, Y1) denotes the symbol transmitted at time
k to convey message after the symbols
Ylk_l = (5/17 s 7Yk—1)

were received; denotes the blocklength; afddenotes the
rate in nats per channel use.

Under the peak-power constraint we replace (7) with the
almost sure constraint

Xk(m, Y/ P <& 1<k<n ®)

The signal-to-noise ratiSNR) is defined in both situ-

ations by

&

SNR2 0_; (9)

3. REGULAR FADING

In [1] it is shown that for regular fading the fading number
x as defined in (1) is given by

X HRY) = XM ({Hy})

= log 7+ E [log |[H1[°] — h({H}), (15)
where )
M{HLY) 2 Tim - h(HT). ae)

We now extend these results to the case where there is
noiseless feedback from the receiver to the transmitter.

Theorem 1. Let a fading channel be defined as in Section 2
with a fading process that is stationary, ergodic, of finite e
ergy, and of finite differential entropy ra{é). Then noise-
less feedback from the receiver to the transmitter does not
increase the asymptotic channel capadity,

S&lngoo {Crs(SNR) — C(SNR)} = 0, a7
where the above holds irrespective of weather an average-
power constrain{7) or a peak-power constrain@®) is im-
posed.

That is, the fading number in the presence of noiseless
feedbackyrs({Hy }) is given by(15).

The intuition for this result is that feedback only helps in
improving the input power allocation and that this improve-
ment is negligible in théog log-regime.

Remark 2. Theorem 1 can be extended to the case where
the receiver has access to some partial side-information
{S} about the fading process. It is assumed that the fad-
ing process{ H; } and the receiver side-informatiofS; }



are jointly stationary, ergodic, and of finite mutual infcam
tion rate I ({Hy }; {S«}),

1
lim —I(H;ST) < oc.

n—oo n

(18)

Moreover, ({Hy}, {Sx}) are independent of the additive
noise{Z;}, and the joint law of { Hy }, {S«}, {Zx}) does
not depend on the channel input; see [1].

Then feedback (which now consists of all past channel
outputs and all past side-information variables) does not
increase the fading number({ H; }|{S«}).

As a matter of fact, the fading number is not increased
even if the side-information is revealed to the transmitter
an acausal fashion,e., the transmitter learns the realiza-
tion of ST beforethe transmission begins.

4. NON-REGULAR GAUSSIAN FADING

In [2], [3], it was shown that the pre-lofi™" as defined

in (2) is determined by the ratio of the total length of the
frequency bands where the spectral density is null to the
total frequencies:

PP = u({A: F'(1) = 0}), (19)

whereu(-) denotes the Lebesgue measure on the interval
[-1/2,1/2].
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We now extend these results to the case where there is

noiseless feedback from the receiver to the transmitter.

Theorem 3. Suppose that the fadifd{}. } and the specular
componend are such tha{ H, —d} is a stationary, ergodic,
finite-energy, circularly-symmetric, Gaussian procedsem

under a peak-power constraint noiseless feedback from the

receiver to the transmitter does not increase the asymptoti
channel capacity in the sense that,

PP, PP,
m CEs(SNR) ~ tm C (SNR). (20)

SNRioo log SNR  sNRieo log SNR

That is, the pre-log in presence of noiseless feedbEgks

given by(19).
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