
Sending a Bi-Variate Gaussian Source over a
Gaussian MAC

Amos Lapidoth Stephan Tinguely
Signal and Information Processing Laboratory

Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
{lapidoth, tinguely}@isi.ee.ethz.ch

Abstract— We consider a problem where a memoryless bi-
variate Gaussian source is to be transmitted over an additive
white Gaussian multiple-access channel with two transmitting
terminals and one receiving terminal. The first transmitter only
sees the first source component and the second transmitter only
sees the second source component. We are interested in the pair
of mean squared-error distortions at which the receiving terminal
can reproduce each of the source components.

It is demonstrated that in the symmetric case, below a certain
signal-to-noise ratio (SNR) threshold, which is determined by the
source correlation, uncoded communication is optimal. ForSNRs
above this threshold we present outer and inner bounds on the
achievable distortions.

I. I NTRODUCTION

We consider the situation where a memoryless bi-variate
Gaussian source is to be transmitted over an additive white
Gaussian multiple-access channel with two transmitting ter-
minals and one receiving terminal. Each of the two source
components is fed to a different average-power constrained
encoder. Our interest lies in the achievable expected squared-
error distortion region. We show that in the symmetric case,
where the source components are of the same variance and
the transmitting terminals are subjected to the same average
power constraint, uncoded transmission is optimal below a
threshold signal-to-noise ratio (SNR) that is determined by
the correlation between the source components. For SNRs
above this threshold we provide outer and inner bounds on
the achievable distortions.

The problem at hand can be viewed as the Gaussian version
of the problem addressed by Cover, El Gamal and Salehi [1]
(see also [2] and [3]). It also appears to be closely related
to the quadratic Gaussian CEO problem [6], [7] and the
quadratic Gaussian two-terminal source-coding problem [4],
[5]. However, it differs in character from the CEO problem
and from the two-terminal source coding problem in that no
error-free bit-pipes of finite rates can be assumed. This is due
to the fact that the source-channel separation theorem doesnot
apply to our situation. Furthermore, the CEO problem focuses
on the reconstruction of a single Gaussian random variable,
whereas in our case the interest lies in the reconstruction of
both source components.

II. PROBLEM STATEMENT

The time-k output Yk ∈ R of the discrete-time two-user
additive white Gaussian multiple-access channel is given by

Yk = x1,k + x2,k + Zk,

wherex1,k ∈ R denotes the time-k symbol transmitted by the
first transmitter,x2,k ∈ R is the time-k symbol transmitted by
the second transmitter, andZk denotes the time-k noise term.
The noise terms{Zk} are independent identically distributed
(IID) zero-mean variance-N Gaussian random variables that
are independent of the input sequences({x1,k}, {x2,k}). We
shall consider the case where Transmitter 1 and Transmitter2
are average-power limited toP1 andP2 respectively. See (1)
ahead.

At time k the source emits the pair(S1,k, S2,k) where the
{(S1,k, S2,k)} are IID zero-mean Gaussians of covariance
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with ρ ∈ [−1, 1], and0 < σ2
i < ∞, i = 1, 2.

The sequence{S1,k} is fed to Transmitter 1 and the
sequence{S2,k} is fed to Transmitter 2. Based on the channel
output we wish to reconstruct the source vector. The perfor-
mance criterion we focus on is the expected squared-error
distortions in reconstructing each of the components of the
source vector.
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whenever{(S1,k, S2,k)} are IID zero-mean bi-variate Gaus-
sian vectors of covariance matrixKSS as above and{Zk}
are IID zero-mean variance-N random variables that are
independent of{(S1,k, S2,k)}. Here we used the shorthand
notation whereSn

1 denotes(S1,1, . . . , S1,n) and similarly for
Sn

2 .
The problem we address here is, for given

σ2
1 , σ2

2 , ρ, P1, P2, to find the set of pairs(D1, D2) such
that (D1, D2, σ

2
1 , σ

2
2 , ρ, P1, P2) is achievable.

By the symmetric version of this problem we shall refer to
the case whereσ2

1 = σ2
2 , whereP1 = P2, and where we seek

the set of pairs(D, D) that are achievable. That is, if we set
σ2 = σ2

1 = σ2
2 andP = P1 = P2 then we are interested in

D∗(P, N, σ2, ρ) , sup{D : (D, D, σ2, σ2, ρ, P, P )

is achievable}. (3)

III. PRELIMINARY REMARKS

Before discussing our results, we make three remarks re-
garding the general nature of the problem. The firs two remarks
show that there is no loss in generality by assuming that
the correlation coefficient is non-negative and that the source
components are of equal variance. As a consequence we shall
assume for the remainder thatσ2

1 = σ2
2 = σ2 and that

ρ ∈ [0, 1]. The third remark addresses a convexification issue
of the distortion regions.

1) The optimal distortion region depends on the correlation
coefficient only via its absolute value|ρ|. That is, the tu-
ple (D1, D2, σ
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2 , ρ, P1, P2) is achievable if, and only
if, the tuple(D1, D2, σ
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2 ,−ρ, P1, P2) is achievable.
To see this note that if(f (n)
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the distortion (D1, D2) for the source of correlation
coefficientρ, then(f̃
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achieves(D1, D2) on the source with correlation coef-
ficient −ρ.

2) The optimal distortions scale linearly with the
source variances. That is, ifα1, α2 are positive
then (D1, D2, σ
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is achievable. Consequently, there is a simple
linear transformation from the set of tuples
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strate the achievability of(D1, D2, σ
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Applying the same argument in the other direction with
scalings by1/α1 and1/α2 concludes the proof.

3) The achievable distortion is a convex
function of the power constraints (P1, P2).
That is, if (D1, D2, σ

2
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2 , ρ, P1, P2) and
(D̃1, D̃2, σ
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is achievable for anyλ ∈ [0, 1], whereλ̄ = (1 − λ).
This follows by a simple time-sharing argument

IV. M AIN RESULTS

We present necessary conditions as well as sufficient condi-
tions for achievability. In certain cases they agree. The proofs
of those conditions will be discussed in the next section.

Our first result is a necessary condition for the achievability
of (D1, D2, σ

2
1 , σ2

2 , ρ, P1, P2).
Theorem 1:A necessary condition for the achievability of

(D1, D2, σ
2, σ2, ρ, P1, P2) is that
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where the expression forR(D1, D2) varies, depending on the
values of(D1, D2). There are three cases. If(D1, D2) are in
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and if (D1, D2) are in the set
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Corollary 1: In the symmetric case whereP1 = P2, we
obtain

D∗(σ2, ρ, P, N) ≥






σ2 P (1−ρ2)+N
2P (1+ρ)+N for P

N ∈
(
0, ρ

1−ρ2

]

σ2
√

(1−ρ2)N
2P (1+ρ)+N for P

N > ρ
1−ρ2 .

Note: Theorem 1 can be easily extended to a much wider
class of sources and distortions. Indeed, if the source is
any memoryless bi-variate source (not necessarly zero-mean
Gaussian) and if the fidelity measuresd1(s1, ŝ1), d2(s2, ŝ2) ≥
0 that are used to measure the distortion in reconstructing each
of the source components are arbitrary, then the pair(D1, D2)
is achievable with powersP1, P2 only if

min
P bS1, bS2|S1,S2

I(S1, S2; Ŝ1, Ŝ2) (4)

such thatE
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whereρmax is the Hirschfeld-Gebelein-Rényi maximal corre-
lation betweenS1 andS2:

ρmax = sup E[g(S1)h(S2)] (5)

where the supremum is over all functionsg, h under which

E[g(S1)] = E[h(S2)] = 0 E
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]
= 1

(6)
We next present two sufficient conditions for the achiev-

ability of (D1, D2, σ
2, σ2, ρ, P1, P2). The first is obtained by

analyzing uncoded transmission.
Theorem 2:For (D1, D2, σ

2, σ2, ρ, P1, P2) to be achiev-
able it suffices that both of the following conditions hold:

D1 ≥ σ2 (1 − ρ2)P2 + N

P1 + P2 + 2ρ
√

P1P2 + N

D2 ≥ σ2 (1 − ρ2)P1 + N

P1 + P2 + 2ρ
√

P1P2 + N
.

Corollary 2: In the symmetric case

D∗(σ2, ρ, P, N) ≤ σ2 P (1 − ρ2) + N

2P (1 + ρ) + N
Combining Corollary 1 and Corollary 2, we obtain:

Corollary 3: For the symmetric case,

D∗(σ2, ρ, P, N) = σ2 P (1 − ρ2) + N

2P (1 + ρ) + N
, if

P

N
<

ρ

1 − ρ2

i.e., uncoded transmission is optimal for allP/N < ρ/(1−ρ2).
The second sufficient condition follows from analyzing the

scheme where the encoding functionsf
(n)
i (sn

i ), i = 1, 2,
are randomly generated independent rate-Ri vector quantizers,
i.e. the channel inputs are the rate-Ri vector quantized source
sequences.

Theorem 3:The tuple(D1, D2, σ
2, σ2, ρ, P1, P2) is achiev-

able whenever there exist ratesR1 > 0 andR2 > 0 such that
all of the following hold:
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1 − ρ̃2

D2 > σ22−2R2 · 1 − ρ2(1 − 2−2R1)

1 − ρ̃2
.

whereρ̃ = ρ
√

(1 − 2−2R1)(1 − 2−2R2).
Corollary 4: In the symmetric case(D, D, σ2, σ2, ρ, P, P )

is achievable if there exists someR > 0 satisfying

R <
1

4
log2

(
2P (1 + ρ(1 − 2−2R)) + N

N(1 − ρ2(1 − 2−2R)2)
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(7)

D > σ22−2R · 1 − ρ2(1 − 2−2R)

1 − ρ2(1 − 2−2R)2
. (8)

Here the RHS of (8) is monotonically decreasing inR.
Evaluating Corollary 4 and Corollary 1 forP/N → ∞ we
get:

Corollary 5: In the symmetric case

lim
P/N→∞

√
P

N
D∗(σ2, ρ, P, N) = σ2

√
1 − ρ

2
.

We conclude this section with a note on the superposition
of the two discussed coding schemes.

Note: We have analyzed two coding schemes; uncoded
transmission and transmission of vector-quantized sourcese-
quences. The superposition of those two schemes, analogous
to the scheme discussed for the single-user case in [9], seems
to yield strict improvements of the above discussed achievable
(D1, D2, σ

2, σ2, ρ, P1, P2). Detailed results are to follow.

V. NOTES ON THEDERIVATIONS

In this section we shall try to sketch the ideas behind the
proofs of the main results.

The proof of Theorem 1 consists on one hand of upper
bounding the mutual information between the the source
vectors and the reconstructions, and on the other hand eval-
uating the rate distortion function for a bi-variate Gaussian
source. The key to upper bounding the mutual information
between source and reconstructions is to use the average power
constraints (1) and the limited correlation between the source
components to obtain the upper bound

1

n

n∑

k=1

Var
(
X1,k

(
Sn
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)
+ X2,k

(
Sn

2
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≤ P1 + P2 + 2ρ
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(9)



where X1,k(Sn
1 ) is the k-th component off (n)

1 (Sn
1 ) and

whereX2,k(Sn
2 ) is analogously defined. Once this bound is

established for all encodersf (n)
1 , f

(n)
2 satisfying the power

constraints (1), one can derived necessary conditions for
achievability by using the data processing inequality to upper
bound the mutual information between the source vectors and
their reconstructions by the mutual information between the
transmitted waveforms and the received waveform. This latter
mutual information is upper bounded by the capacity of the
additive Gaussian noise channel subject to the power constraint
P1 + P2 + 2ρ

√
P1P2.

The rate distortion function is obtained from evaluating
(4) under the given distortion constraints and for the given
source lawPS1,S2 . From the maximum mutual information
theorem it follows that this minimum is achieved if and only if
S1, S2, Ŝ1, Ŝ2 are jointly Gaussian. The minimization problem
is then reduced to a minimization over the set of covariance
matrices ofS1, S2, Ŝ1, Ŝ2 that satisfy the distortion constraints
and where the submatrix inS1, S2 is the covariance matrix of
the source. The minimizing covariance matrix can be found
by noticing that every relevant distortion pair can be achieved,
with minimal necessary rate, by combining a scaling of the
source with reverse waterfilling. LetD(R) be the set of all
distortion pairs(d1, d2) that can be achieved on the source pair
(S1, S2) with rateR, and letDc(R) be the set of(d1, d2) that
can be achieved with rateR on the scaled source(S1, cS2).
The regionDc(R) corresponds to the regionD(R) scaled by a
factor c2 on theS2-axis. Reverse waterfilling at rateR on the
unitarily decorrelated pair(V1, V2) of (S1, cS2) achieves the
point (d∗1, d

∗
2) ∈ Dc(R) of minimal sumd1 +d2. And sinceR

is the minimal rate needed to achieve(d∗1, d
∗
2) on (S1, cS2),

and

min
P bS1, bS2|S1,S2

:

E[(S1−bS1)
2]≤d1

E[(S2−bS2)
2]≤ 1

c2
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:

E[(S1−bS1)2]≤d1

E[(cS2−c bS2)
2]≤d2

I(S1, cS2; Ŝ1, cŜ2),

the rate R is also the minimal rate needed to achieve
(d∗1, d

∗
2/c2) on (S1, S2). Hence, by choosing the appropriate

scaling c, we can get any relevant point on the boundary
of D(R). The covariance matrix of(S1, S2, Ŝ1, Ŝ2) that
achieves(d∗1, d

∗
2/c2) now follows from the covariance matrix

of (V1, V2, V̂1, V̂2), where(V̂1, V̂2) result from reverse water-
filling at rateR on (V1, V2).1

The proof of Theorem 2 is straightforward. One merely
considers the uncoded scheme where

f
(n)
i (Sn

i ) =

√
Pi

σ
(Si,1, . . . Si,n), i = 1, 2

and then analyzes the linear minimum mean squared-error
estimators ofSi,k from Yk.

1We note that this idea generalizes to Gaussian sources with more than two
components.

The proof of Theorem 3 involves an analysis of randomly
generated independent vector quantizers for the two compo-
nents. The proposed scheme is conceptually simple, but its
analysis gets involved by the included epsilons and deltas.For
the sake of clarity and brevity we shall omit these epsilons and
deltas here.

The encoder for thei-th, i = 1, 2, source component is a
rate-Ri Gaussian vector quantizer that scales the quantized
sequence to meet the channel input power constraint. Its
codebookCi consists of2nRi codewords that are chosen IID
uniformly on the surface of anRn-sphere of center at the
origin and radius

√
nσ2(1 − 2−2Ri). Encoderi chooses the

codewordu∗
i in the codebookCi that is closest (in Euclidean

distance) to the source sequencesi = (si,1, si,2, . . . , si,n), and
transmits its scaled version

xi = αi argmin
u∈Ci

‖si − u‖

= αi argmax
u∈Ci

〈si,u〉 ,

where

αi =

√
Pi

σ2(1 − 2−2Ri)
,

and where〈·, ·〉 denotes the standard inner product inR
n. The

distance‖si − u∗
i ‖ between the source sequencesi and its

closest codewordu∗
i approaches, with high probability,σ2 ·

2−2Ri as the blocklengthn tends to infinity. It can be shown
that, for largen, the correlation coefficient between the chosen
codewordsU∗

1 andU∗
2 is, with very high probability, close to

ρ̃ = ρ
√

(1 − 2−2R1)(1 − 2−2R2).

This coefficientρ̃ plays a central role in this coding scheme.
The decoding is performed in two parts. First the transmitted

codeword pair is recovered, and then this codeword pair is used
to make linear estimates of the source sequences. To recover
the transmitted pair(u∗

1,u
∗
2), the decoder seeks, among all

“jointly typical” pairs (u1,u2) ∈ C1 × C2, i.e among all pairs
satisfying

〈u1,u2〉 ≈ ρ̃ ‖u1‖ ‖u2‖ ,

the codeword pair(û1, û2) ∈ C1 × C2 whose weighted sum
α1û1 + α2û2 has the smallest angle to the channel outputy,
i.e.

(û1, û2) = argmax
(u1,u2)∈C1×C2:

〈u1,u2〉≈ρ̃‖u1‖‖u2‖

〈
α1u1 + α2u2

‖α1u1 + α2u2‖
,

y

‖y‖

〉
.

The corresponding source estimates are then

ŝ1 = β1û1 + γ1û2

ŝ2 = β2û1 + γ2û2,

where the coefficientsβ1, γ1, β2, γ2 are chosen such that
(ŝ1, ŝ2) would form the minimum mean squared-error es-
timates of (s1, s2) if S1, S2, U

∗
1 , U∗

2 were zero-mean joint



Gaussians with correlation coefficients

ρ(S1, S2) = ρ, ρ(S1, U
∗
1 ) =

√
1 − 2−2R1

ρ(S1, U
∗
2 ) = ρ

√
1 − 2−2R2 , ρ(S2, U
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1 ) = ρ

√
1 − 2−2R1

ρ(S2, U
∗
2 ) =

√
1 − 2−2R2 , ρ(U∗

1 , U∗
2 ) = ρ̃.

The analysis of the three error events{û1 6= u∗
1, û2 = u∗

2},
{û1 = u∗

1, û2 6= u∗
2}, and{û1 6= u∗

1, û2 6= u∗
2} gives that re-

liable transmission of the pair(u∗
1,u

∗
2) is possible for all rates

(R1, R2) in the region2

R =

{
(R1, R2) : R1 <

1

2
log2

(
P1(1 − ρ̃2) + N

N(1 − ρ̃2)

)

R2 <
1

2
log2

(
P2(1 − ρ̃2) + N

N(1 − ρ̃2)

)

R1 + R2 <
1

2
log2

(
P1 + P2 + 2ρ̃

√
P1P2 + N

N(1 − ρ̃2)

) }
.

It can then be shown that for all(R1, R2) ∈ R, the proposed
sequence of schemes achieves the distortions3

D1 = σ22−2R1 · 1 − ρ2(1 − 2−2R2)

1 − ρ̃2

D2 = σ22−2R2 · 1 − ρ2(1 − 2−2R1)

1 − ρ̃2
.
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