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Abstract— We consider a problem where a memoryless bi- Il. PROBLEM STATEMENT

variate Gaussian source is to be transmitted over an additig The time% outputY;, € R of the discrete-time two-user
white Gaussian multiple-access channel with two transmithg

terminals and one receiving terminal. The first transmitter only ~additive white Gaussian multiple-access channel is given b

sees the first source component and the second transmitter gn Y. — VA

sees the second source component. We are interested in théarpa k= TLk o+ T2k + Lk

of mean squared-error distortions at which the receiving teminal ~ wherez; ;, € R denotes the timé-symbol transmitted by the

can reproduce each of the source components. first transmitterys . € R is the timek symbol transmitted by
It is demonstrated that in the symmetric case, below a certai  the second transmitter, arff), denotes the timé-noise term.

signal-to-noise ratio (SNR) threshold, which is determing by the  The noise termg Z,,} are independent identically distributed

source correlation, uncoded communication is optimal. FOISNRs IID . & G . d ables that
above this threshold we present outer and inner bounds on the (IID) zero-mean varianc aussian random variables tha

achievable distortions. are independent of the input sequen¢és, 1}, {z21}). We
shall consider the case where Transmitter 1 and Transr2itter
are average-power limited t&; and P, respectively. See (1)
ahead.
. INTRODUCTION At time k the source emits the paiS x, S2.x) Where the
{(S1,k,S2,1)} are 1ID zero-mean Gaussians of covariance

We consider the situation where a memoryless bi-variate Kgs = ( ot paLT2 ) ’
Gaussian source is to be transmitted over an additive white po102 - 03

Gaussian multiple-access channel with two transmittinrg tewith p € [—1,1], and0 < 02 < o0, i = 1, 2.

minals and one receiving terminal. Each of the two sourceThe sequence{S; ;} is fed to Transmitter 1 and the
components is fed to a different average-power constrainsejuencg S ;} is fed to Transmitter 2. Based on the channel
encoder. Our interest lies in the achievable expected eduaroutput we wish to reconstruct the source vector. The perfor-
error distortion region. We show that in the symmetric casmance criterion we focus on is the expected squared-error
where the source components are of the same variance digfortions in reconstructing each of the components of the
the transmitting terminals are subjected to the same ageragurce vector.

power constraint, uncoded transmission is optimal below aDefinition 1: Givenoy,09 > 0, p € [—1,1], and Py, P, >
threshold signal-to-noise ratio (SNR) that is determingd I9 we say that the tupléD:, D5, 07,03, p, P1, P») is achiev-

the correlation between the source components. For SNijfle if there exists a sequence of encoder p(@ifg)afz(n))

above this threshold we provide outer and inner bounds on (n)

the achievable distortions. i R =R i=1,2

The problem at hand can be viewed as the Gaussian versityd a sequence of reconstruction paﬁsén), §">)
of the problem addressed by Cover, El Gamal and Salehi [1] ¢<n) R LR =19
(see also [2] and [3]). It also appears to be closely related v ’ ’
to the quadratic Gaussian CEO problem [6], [7] and thguch that the average power constraints are satisfied
guadratic Gaussian two-terminal source-coding problem [4 1 n) /e .
[5]. However, it differs in character from the CEO problem EE[”fi( )(Si )HQ} s b, i=12 @)
and from the two-terminal source coding problem in that ngnd
error-free bit-pipes of finite rates can be assumed. Thisiesd =~
to the fact that the source-channel separation theoremrages  lim —E {H(Si,la ooy Sim)
apply to our situation. Furthermore, the CEO problem fosuse noeen 9
on the reconstruction of a single Gaussian random variable,—@(-") (ff")(S?) + fg(")(SQ) +(Z4,.. .,Zn)) H ] < D,
whereas in our case the interest lies in the reconstruction o i
both source components. i=1



whenever{(S; 1, S2.x)} are IID zero-mean bi-variate Gaus-

sian vectors of covariance matrikss as above and Z;}

are |ID zero-mean varianch- random variables that are
independent of{(S1,x, S2,x)}. Here we used the shorthand

notation whereS7" denotes(S; 1,...,.51 ) and similarly for

and the reconstructions

demonstrate  the achievability of the tuple
(a2 D1,a3Dq, 0302, 0303, p, P1, ).

53 _ _ Applying the same argument in the other direction with
The problem we address here s, for given  scalings byl/a; and1/a, concludes the proof.
0?,0%,p,P1, P, to find the set of pairs(D;, D;) such ' istorti '
1,02,P, 11,2, . T p 1,2 3) The achievable distortion is a  convex
that (D1, D2, 01,03, p, P1, P») is achievable. function of the power constraints (P, P).
By the symmetric version of this problem we shall refer to That s, if (D1,Dq,0%2,0%,p,P1,P,) and
the case where? = o3, where P, = P,, and where we seek (D1, Da, 02,02, p, P, P,) are achievable then
the set of pair§ D, D) that are achievable. That is, if we set

0?2 =0? =03 and P = P, = P, then we are interested in (AD1+AD1, AD2+AD2, 07,03, p, APL+APL, AP +APy))

. A 5 o is achievable for any\ € [0, 1], where = (1 — \).
D*(P,N,0%,p) =sup{D: (D,D,0",0%,p, P, P) This follows by a simple time-sharing argument
is achievablg. (3)

IV. MAIN RESULTS

We present necessary conditions as well as sufficient condi-

Before discussing our results, we make three remarks fons for achievability. In certain cases they agree. Thuofs

garding the general nature of the problem. The firs two remaﬂ)(f thosg cond|t|or_15 will be d|scussed_|_n the next sec_t|0n. -
show that there is no loss in generality by assuming thatOurflrst re25ult2|sanecessary condition for the achievgbili
the correlation coefficient is non-negative and that thes®u of (D1, D2, 07,03, p, P1, ).

components are of equal variance. As a consequence we shall"€0rem 1:A necessary condition for the achievability of

Dl,DQ,O'Q,O'Q,p,Pl,PQ) is that

I1l. PRELIMINARY REMARKS

assume for the remainder thaf = 02 = o2 and that
p € [0,1]. The third remark addresses a convexification issue 1 P, + P, + 2p/P Py
of the distortion regions. 5 log <1 + N ) > R(D1, D2),

1) The optimal distortion region depends on the correlati
coefficient only via its absolute valug|. That is, the tu-
ple (D1, Da, 0%, 02, p, P1, P) is achievable if, and only
if, the tuple (D1, D2, 02,02, —p, P1, P») is achievable.
To see this note that iff{™, £, ¢'™, ¢{") achieves
the distortion (Dl,Dgg for the source of correlation

Where the expression fdk(D,, D2) varies, depending on the
values of(Dy, Ds). There are three cases.(ID,, D2) are in
the set

02
Dy <0*(1=p), Dz < (0*(1 = p*) - Dl)fpl} ’

coefficientp, then(fF\™, 5™, 6, ¢{™) where then o
1 o*(1—p
r(n n n n R D ,D = — 10 _— ] .
fl( )(Sl): 1( )(_Sl) (D1, D2) 2 g2< DD, >
and If (D1, D-) are in the set
(Y. V) =~ (W, Y {O§D1§02,

achieves(D1, D5) on the source with correlation coef-(az(1 _ )= Dy) 2

ficient —p. 0? — Dy
2) The optimal distortions scale linearly with thehen

source variances. That is, iftv,as are positive

then (D1, Dy, 0%,03,p,P1,P,) is achievable fif,

and only if, (a?Di,a3Ds,a20%, 0303, p, P1, Ps)

is achievable. Consequently, there is a simplelOg ot(1 - p?)

linear transformation from the set of tuples 2 ©2 2

(D1,Ds) for which (Di,Ds,02,02,p, Py, Ps) is DiD; ~ (po? — /(07 = D1)(o” ~ D2))

achievable and the set of tuplé®;, Do) for which g4 if (D1, Ds) are in the set

(D1, D2, a20%, 0303, p, P1, P») is achievable.

To see this note that if£™, £{™, ¢{”, ¢{) demon-

strate the achievability ofl Dy, Dy, 03,03, p, Pi, P)

then the encoders

<Dy <d?(1 —p2)+p2D1},

R(D17D2) =

)

{O < Dy <0% Dy > 0*(1 - p?) +p2D1}.

then

1 o2
~ R(Dl,Dg) = — 10g (—) .
F sy = (S fan) i = 1,2 2\ Dy



Corollary 1: In the symmetric case wherB, = P, we Theorem 3:The tuple(Dy, Dy, 02,02, p, Py, P») is achiev-
obtain able whenever there exist rat& > 0 and R, > 0 such that

25}9(1172”]\, for 2 e (O, o } all of the following hold:
p)+N N 1—p
D*(0?,p, P,N) > Ry < llogz (P1(1 - )+N>
0-2 M for P > P 2 N(l — )
2P(14+p)+N N T—p2*
Note: Theorem 1 can be easily extended to a much wider _ =2
. . K g 1 Pg(l P ) + N
class of sources and distortions. Indeed, if the source is Ry < 510g2 W

any memoryless bi-variate source (not necessarly zerarmea

Gaussian) and if the fidelity measur@gsi, §1), d2(s2, 82) > 1

0 that are used to measure the distortion in reconstructiclg ea R+ Ry < 5 log, (
of the source components are arbitrary, then the [@air, D)

P+ P+ 2py/PiPo+ N
N(—7)

is achievable with power#®;, P, only if -
p 1,12 ! YA Dy > o?2-2R | 1-p2(1 —~2 2Rz)
P min 1(51,52;51,52) (4) 1 —p2
51,82]51,8 1— 21_2—2R1
) Dy > gtyrms 1ZPU2)
such thatE [(Sl — 81)2} < Dy, -r
N wherep = py/(1 — 27201)(1 — 2-2f%2),
2
E [(SQ — 52) } < Dy, Corollary 4: In the symmetric caséD, D, 02,02, p, P, P)
does not exceed is achievable if there exists sonfe> 0 satisfying
1 Py + P + 2pmaxy/ P11 R < Lo, (2EA+p(1-2727) + N 7
3 log (1 + N ) < 1 082 N(1— p2(1 — 2-2R)2) @)
where pmay is the Hirschfeld-Gebelein-Rényi maximal corre- 1— p2(1 — 272R)
lation betweenS; and S,: D > 22728 > ER— (8)
1—p2(1 —272R)2
pmax = sup E[g(S1)(S5)] (5) Here the RHS of (8) is monotonically decreasing it

Evaluating Corollary 4 and Corollary 1 faP/N — co we
where the supremum is over all functionsh under which  get:

Elg(S1)] = E[h(S2)] = 0 E[g%(S1)] = E[h%(S2)] = 1 Corollary 5: In the symmetric case

(6) P 1—p
We next present two sufficient conditions for the achiev- P/%IEOO ~D (@ 2,p,P,N) =0 5
ability of (D1, D2,0°, 0%, p, P1, ;). The first is obtained by  we conclude this section with a note on the superposition
analyzing uncoded transmission. of the two discussed coding schemes.

Theorem 2:For (D1, Ds,0%,0% p, P1, P) to be achiev-  Note: We have analyzed two coding schemes; uncoded
able it suffices that both of the following conditions hold:  transmission and transmission of vector-quantized soseee

) (1-p)P+ N guences. The superposition of those two schemes, analogous
Dy >0 to the scheme discussed for the single-user case in [9],sseem
Py + Py +2p/PiP, + N : S . ’
LRt 2oVl £ to yield strict improvements of the above discussed achieva
Dy > o2 (1—p)P + N (D1, Do, 0%, 02, p, P, P»). Detailed results are to follow.
P+ Py +2p\/PPy + N’ V. NOTES ON THEDERIVATIONS
Corollary 2: In the symmetrlc case ) i ) )
In this section we shall try to sketch the ideas behind the
D*(0?,p,P,N) < o2 P(l—p*)+ N proofs of the main results.
2P(1+p) + N The proof of Theorem 1 consists on one hand of upper

Combining Corollary 1 and Corollary 2, we obtain:

) bounding the mutual information between the the source
Corollary 3: For the symmetric case,

vectors and the reconstructions, and on the other hand eval-
D*(0%, p, P,N) = o P1—-p*)+N it P o P uating the rate distortion functioq for a bi-variatg Gaaesi_
S 2P(1+p)+ N’ N ~1-—p2 source. The key to upper bounding the mutual information
between source and reconstructions is to use the averags pow
constraints (1) and the limited correlation between thes®u

omponents to obtain the upper bound

i.e., uncoded transmission is optimal for BIN < p/(1—p?).
The second sufficient condition follows from analyzing th

scheme where the encoding functiom‘lgl)(s?), i = 1,2,

are randomly generated independent r&terector quantizers,

i.e. the channel inputs are the rafe-vector quantized source 7, ZVar X16(ST) + Xo(S3)) < Pr+ Po+ 20/ APy

sequences. (9)



where X ,(S7) is the k-th component offl(")(S{l) and The proof of Theorem 3 involves an analysis of randomly

where X, (S%) is analogously defined. Once this bound igenerated independent vector quantizers for the two compo-

established for all encoderg™, f{™ satisfying the power nents. The proposed scheme is conceptually simple, but its

constraints (1), one can derived necessary conditions foralysis gets involved by the included epsilons and deffias.

achievability by using the data processing inequality tparp the sake of clarity and brevity we shall omit these epsilars a

bound the mutual information between the source vectors agieltas here.

their reconstructions by the mutual information betweem th The encoder for thé-th, ¢ = 1,2, source component is a

transmitted waveforms and the received waveform. Thisdattrate-R; Gaussian vector quantizer that scales the quantized

mutual information is upper bounded by the capacity of trgequence to meet the channel input power constraint. Its

additive Gaussian noise channel subject to the power @nstr codebookC; consists of2"%: codewords that are chosen IID

P, + P, +2p\/P Ps. uniformly on the surface of afR™-sphere of center at the
The rate distortion function is obtained from evaluatingrigin and radius,/no2(1 — 2—28:). Encoderi chooses the

(4) under the given distortion constraints and for the giverodewordu? in the codeboolC; that is closest (in Euclidean

source lawPs, s,. From the maximum mutual informationdistance) to the source sequesge= (s; 1, 5si2; .- ., Sin), and

theorem it follows that this minimum is achieved if and orfly itransmits its scaled version

S1, 52,51, 52 are jointly Gaussian. The minimization problem )

is then reduced to a minimization over the set of covariance Xi= arﬁgm”* —uf

matrices ofSy, S, S1, Ss that satisfy the distortion constraints '

and where the submatrix ifi;, S- is the covariance matrix of T qiarshax (i),

the source. The minimizing covariance matrix can be found

by noticing that every relevant distortion pair can be aokie WN€re

with minimal necessary rate, by combining a scaling of the o — P;

source with reverse waterfilling. L&P(R) be the set of all ’ o2(1 — 272Ri)’

distortion pairg(d;, d2) that can be achieved on the source pair ) ]

(S1,55) with rate R, and letD,(R) be the set ofd, d») that a_nd wherg(-, -) denotes the standard inner produciif. The

can be achieved with rat& on the scaled sourcs), cS,). distance|ls; —uj| between the source sequenceand its

The regiorD, (R) corresponds to the regidd(R) scaled by a closest codewordi; approaches, with high probability;” -

factor¢? on theSy-axis. Reverse waterfilling at rate on the 2 as the blocklength tends to infinity. It can be shown

unitarily decorrelated paifVy, V) of (S1,cS;) achieves the that, for largen, the cor_relat_lon coefflt_:lent betwe_e_n the chosen

point (d%, d3) € De(R) of minimal sumd, + d. And sinceR codeworddU3 and U3 is, with very high probability, close to

is the minimal rate needed to achiey&, d5) on (51, ¢Ss),

and 5= /(1 —2-2R1)(1 — 2-2R2).
min I(Sy, So; S, §2) = This coefficie_ntﬁ_plays a cent_ral role in this_ coding scheme.
Ps1,5515,,52° The decoding is performed in two parts. First the transihitte

E[(S1—51)]<dy

- codeword pair is recovered, and then this codeword pairgd us
E[(S2—52)*|< % d2

R to make linear estimates of the source sequences. To recover
min 1(S1,cS2;51,¢52), the transmitted paifuj,u}), the decoder seeks, among all
Ps) 8515155 “jointly typical” pairs (u1,uz) € C; x Co, i.e among all pairs

E[(51-51)%]<ds ntly
E[(cS2—c82)?]<d2 satisfying

ui,uz) &~ pllu uqz||,
the rate R is also the minimal rate needed to achieve (ur,uz) & pf[us ]zl

(df,d5/c*) on (S1,52). Hence, by choosing the appropriatehe codeword paifi;, tiz) € C; x Co whose weighted sum
scaling ¢, we can get any relevant point on the boundary;; + asti; has the smallest angle to the channel ougput
of D(R). The covariance matrix of(Si, S3, S1,S52) that i.e.

achieves(d;, d3/c?) now follows from the covariance matrix
10 2 ~ o~ R aju; + agug y
of (V1, Vs, V4, Va), where(Vy, Va) result from reverse water- (g, z) = argmax —_— = =),
filing at rate R on (V4, V5).1 sy arur + azuz| " |lyll
u,u ~ u u
The proof of Theorem 2 is straightforward. One merely T
considers the uncoded scheme where The corresponding source estimates are then
VP . N N
F(SP) = Y (S, Sy i = 1,2 81 = (il + iy
ag N ~ ~
So = (2111 + Yoli2,

and then analyzes the linear minimum mean squared-error

estimators ofS; ;. from Y. where the coefficients}, v1, 32, 72 are chosen such that

1we note that this idea generalizes to Gaussian sources wité than two (_51752) would form the minimum mean Squared'err_or_ es-
components. timates of (sy,ss) if S1,S2, Uy, Uy were zero-mean joint



Gaussians with correlation coefficients

p(Slv‘S’Q):pa p(Slan): V1_272R1
p(S1,U3) = pv1 —272R2 p(S5,Uy) = pv1 — 272
p(527U2*) =v1-—- 2_2R21 p(UfaU;) = p~

The analysis of the three error evetis; # uj, ix = ub},
{1 = u}, 0 # uj}, and{G; # u, 4y # u}} gives that re-
liable transmission of the pajuj, u3) is possible for all rates
(R1, R2) in the regiord

1 P(1-p*)+N
= N —1 _—_—
R (Ri,R2): Ry < 5 og2< N =)

Py(1 —ﬁ2)+N)

1
R -1
253 °g2< N -7

1 P+ P 200/ P1 Py + N
R1+R2<§1og2< 1+ P+ 20V PP + )

N(1-p?)
It can then be shown that for alR;, R2) € R, the proposed
sequence of schemes achieves the distortions

2 —2R.
D12022_2R1.1_p(1_2 2)

1—p2
Dy = o292k 1- p2(1 — 2_2R1)
1—p2 '
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