
Some Remarks on Factor Graphs

Hans-Andrea Loeliger

Dept. of Information Technology and Electrical Engineering, Signal Proc. Lab. (ISI),
Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland.

E-mail: loeliger@isi.ee.ethz.ch

Brest 2003

Abstract:
The paper is a collection of remarks, some rather

plain, on various issues with factor graphs. In partic-
ular, it is pointed out that powerful signal processing
techniques such as gradient methods, Kalman filter-
ing, and the particle filter can be used and combined
in factor graphs.

Keywords: factor graphs, turbo signal processing,
gradient methods.

1 INTRODUCTION

Based on prior work by Wiberg et al. [1] [2], fac-
tor graphs were introduced in [3] and [4]. The main
point of these papers was to show that many known
algorithms in coding, artificial intelligence, and sig-
nal processing may be viewed as instances of the
summary-product algorithm that operates by mes-
sage passing in the factor graph.

Factor graphs can of course also be used to de-
velop new algorithms for particular applications, but
the literature on such applications is still quite lim-
ited; examples include [5] and [6].

For the past two years, we have been applying fac-
tor graphs to a wide variety of practical problems in
areas ranging from communications over biomedical
signal processing to fire detection devices. (Most of
this is as yet unpublished, but see [7] and [8].) It has
become apparent to us that the factor graph nota-
tion is indeed extremely helpful for the development
of practical algorithms. A key issue in most such ap-
plications is the coexistence of discrete and contin-
uous variables; another is the harmonic cooperation
of a variety of different signal processing techniques.
Some remarks on these topics are given in the present
paper.

The paper is structured as follows. In Section 2,
we briefly review Forney-style factor graphs (called
normal graphs in [9]), which have become our pre-
ferred notation. Section 3 is a collection of remarks
on some unrelated little issues that may be helpful to
non-experts; none of this is new. In Section 4, we ad-
dress some general issues with continuous variables.
In Section 5, we outline the use of gradient meth-
ods for local message computations in factor graphs.
Some conclusions are offered in Section 6.

u
fA

w

x
fB

fC

z

y

Figure 1: A Forney-style factor graph (FFG).

This paper is not an introduction to factor graphs;
for such an introduction, see, e.g., [4] [9] [10] [11].

2 FORNEY-STYLE FACTOR
GRAPHS

A Forney-style factor graph (FFG) is a diagram
as in Figure 1 that represents the factorization of a
function of several variables. E.g., assume that some
function f(u, w, x, y, z) can be factored as

f(u, w, x, y, z) = fA(u, w, x)fB(x, y, z)fC(z). (1)

This factorization is expressed by the FFG shown
in Figure 1. In general, an FFG consists of nodes,
edges, and “half edges” (which are connected only to
one node), and there are the following rules:

• There is a node for every factor.

• There is an edge (or half edge) for every vari-
able.

• The node representing some factor g is con-
nected with the edge (or half edge) representing
some variable x if and only if x is an argument
of g.

Implicit in these rules is the assumption that no
variable appears in more than two factors. This re-
striction is easily circumvented, however. For exam-
ple, consider the factorization

f(x) = fA(x)fB(x)fC(x). (2)

We expand this into

f(x) = fA(x)fB(x′)fC(x′′)δ(x− x′)δ(x− x′′), (3)

fA

x
= x′′

fC

fB

x′

Figure 2: Cloning of variables.

X
-

µinX f

Y
?µinY

Z
-

µoutZ

Figure 3: Message passing.

which is represented by the FFG in Figure 2. (The
“δ” in (3) may be either a Kronecker delta or a Dirac
delta, depending on the context.) The free use of
auxiliary variables (such as x′ and x′′ in Figure 2) is
typical for Forney-style factor graphs.

Other than in Figures 1 and 2, we will usually
denote the variables by capital letters and specific
values (“realizations”) of the variables with lower-
case letters.

For FFGs, the basic sum-product rule for the
computation of messages has a particularly simple
form. For example, in Figure 3, the message out of
node f along the edge Z is

µoutZ(z) =
∑

x

∑
y

f(x, y, z) µinX(x)µinY (y). (4)

We also recall that the sum in (4) may be replaced
by other summary operators such as integration or
maximization, cf. [4]. In any case, a message is a
“summary” of the graph “behind” it.

3 SOME SIMPLE REMARKS

3.1 Combining Information

Consider a situation as in Figure 4, where two
codes share the coded symbols Xk, k = 1, 2, 3, . . . In
such cases, the correct handling of extrinsic informa-
tion and intrinsic information is usually considered
an issue that requires attention. Not so with factor
graphs: the correct handling of extrinsic information
and intrinsic information is automatic.

3.2 Mappers and Such

Consider a situation as in Figure 5, where two
binary symbols, XA and XB , are mapped to a 4-AM
symbol Z. Let f : Z2 × Z2 → {−3,−1,+1,+3} be
this mapping and assume that xA is mapped to the

Code 1

· · · · · ·

=

=

Code 2

· · · · · ·

Xk

Xk+1

Channel

...

Yk

Yk+1

...

Figure 4: Shared code symbol.

-

-
f -

XA

XB

Z

e 01e 00e 10e 11

Figure 5: Bits-to-symbol Mapper.

-

-
f -

-
µoutXA

-
µoutXB

-
µoutZ

-

-
f -

�
µinXA

-
µoutXB

�
µinZ

Figure 6: Messages through the mapper.

more significant bit of z. In an FFG, the mapper
becomes a factor node with local function

δf (xA, xB , z) 4=
{

1, if f(xA, xB) = z
0, else (5)

The computation of all messages in and out of
the node (cf. Figure 6) is immediate from the sum-
product rule (4). For example, we have

µinXA
(xA) =

∑
xB ,z

δf (xA, xB , z)µoutXB
(xB) µinZ(z),

(6)
which expands to

µinXA
(0) = µoutXB

(1) · µinZ(+3)
+ µoutXB

(0) · µinZ(+1) (7)
µinXA

(1) = µoutXB
(0) · µinZ(−1)

+ µoutXB
(1) · µinZ(−3). (8)

3.3 Hybrid Equality Constraint

Consider an equality constraint between a vari-
able X that takes values in some finite set X and a

X

X
= Y

R

Figure 7: Hybrid equality node.

X

Y

r r r r r r r r
?b ?b ?b ?b

r
?r

r
?r

r
?r

r
?r

Figure 8: Quantizer.

real variable Y , cf. Figure 7. Such an equality con-
straint translates into a factor δ(x−y), which should
be read as a Kronecker delta in x and a Dirac delta
in y. According to the sum-product rule (4), the
message out of the X-edge is

µoutX(x) =
∫

y

δ(x− y) µinY (y) (9)

= µinY (x), (10)

which amounts to sampling the incoming density
µinY at the elements of X . The message out of the
Y -edge is

µoutY (y) =
∑
x∈X

δ(y − x) µinX(x), (11)

a sum of weighted Dirac deltas.

3.4 Quantizers

Let X be a variable that takes on values in some
finite set X . Consider a quantizer q : X → Y :
x 7→ q(y). The set Y of possible values of Y may
be a finite subset of R, or it may consist of subsets
(intervals) of R. Such a quantizer may be present in
the original system or it may have been introduced to
make some message computations more tractable (cf.
Section 3.5). For the latter purpose, a quantizer as
in Figure 8 may be attractive. The messages through
such a quantizer node are easily computed to be

µoutY (y) =
∑

x:q(x)=y

µinX(x) (12)

and
µoutX(x) = µinY (q(x)). (13)

3.5 Real-Sum Nodes

Consider the problem of computing messages
through a node that represents the constraint

m∑
`=0

X` = 0 (14)

X0 +

X1

+

X2

+

X3

X5

Figure 9: Sum constraint of several variables.

where, for ` > 0, the variables X` take values in
finite subsets X` of R, and X0 takes arbitrary values
in R. The literal application of the sum-product rule
(4) yields sums with about

∏m
`=1 |X`| terms, which is

infeasible for large alphabets and/or large m. Note
that such a node may be decomposed as in Figure 9,
but this decomposition does not, by itself, solve the
complexity problem.

In practical applications, however, the computa-
tions can usually be reduced to a manageable level.
One way to achieve this is to insert a quantizer (e.g.,
as in Figure 8) between the “small” sum constraint
nodes in Figure 9. By properly adjusting such quan-
tizers to the noise level of the application, the per-
formance loss can usually be kept negligible.

In summary, sum constraints among finite-
alphabet real variables can usually be handled com-
putationally. One should not forget, though, that
sum constraints among many variables dilute infor-
mation: messages through such nodes tend to be un-
informative.

4 REMARKS ON CONTINUOUS
VARIABLES

For continous variables, literal application of
the sum-product or max-product update rules often
leads to intractable integrals. Dealing with contin-
uous variables thus involves the choice of suitable
message types and of the corresponding (exact or ap-
proximate) update rules. So far, the following mes-
sage types have proved useful:

Constant messages. The message is a “hard-
decision” estimate of the variable. This mes-
sage type appears, e.g., if a decision-feedback
equalizer is represented as a message passing
algorithm. Another example is θ̂ in Section 5
below.

Quantized messages are an obvious choice (cf.
Section 3.5). However, quantization is usually
infeasible in higher dimensions.

Mean and variance of (exact or assumed) Gaus-
sian Messages. This is the realm of Kalman
filtering. Kalman filtering as message passing
in a factor graph was briefly treated in [4] and

worked out in more detail in [10], see also [11]
[12] [13].

The derivative of the message at a single point
is the data type used for gradient methods,
see Section 5.

List of samples. A probability distribution can be
represented by a list of samples from the distri-
bution. This data type is the basis of the par-
ticle filter [14]; its use for message passing al-
gorithms in general graphs seems to be largely
unexplored, but promising.

Note that all these message types are consistent with
the axiom that a message is a summary of everything
“behind” the transmitting node.

With these message types, it is possible to inte-
grate most good known signal processing techniques
as local message computations in a factor graph. In
the next section, we outline such a translation for
gradient methods.

5 ON GRADIENT METHODS

The use of gradient methods for local message
computations in factor graphs is illustrated in Fig-
ure 10, which represents the global function f(θ) 4=
fA(θ)fB(θ). The variable Θ is assumed to take val-
ues in R or in Rn. Suppose we wish to find

Θ̂ 4= argmax
θ

f(θ) (15)

by solving
d

dθ

(
log f(θ)

)
= 0. (16)

Note that
d

dθ

(
log f(θ)

)
=

f ′(θ)
f(θ)

(17)

=
fA(θ)f ′B(θ) + fB(θ)f ′A(θ)

fA(θ)fB(θ)
(18)

=
d

dθ

(
log fB(θ)

)
+

d

dθ

(
log fA(θ)

)
.

(19)

Figure 10 may be a part of some bigger FFG. In
this case, the nodes fA and fB may be summaries of
the graph “behind” them. The functions fA and fB

may be infeasible to represent, or to compute, in their
entirety, but it may be easy to evaluate d

dθ

(
log fA(θ)

)
(and likewise for fB) at any given point θ.

A general gradient method to find a solution θ̂ of
(16) operates as follows.

1. The equality constraint node in Figure 10
broadcasts some initial estimate θ̂. The node
fA replies by sending

d

dθ

(
log fA(θ)

)∣∣∣∣
θ=θ̂

fA PPPPPPPP

PPi
θ̂

PPq

fB
��������

��)
θ̂

��1
= Θ

-

θ̂

Figure 10: On gradient methods.

and the node fB replies accordingly.

2. A new estimate θ̂ is computed as

θ̂new = θ̂old + s · d

dθ

(
log f(θ)

)∣∣∣∣
θ=θ̂old

(20)

where s ∈ R is a positive step-size parameter.

3. The procedure is iterated as one pleases.

As always with message passing algorithms, there
is much freedom in the scheduling of the individual
operations.

It can be shown, for example, that the standard
LMS algorithm may be obtained in this way from a
suitable factor graph. If second derivatives are also
available, Newton-type methods can be used.

6 CONCLUSIONS

• “Turbo signal processing”—iterative message
passing in a graphical model—allows to com-
bine and to extend many of the best known
algorithms for detection and estimation prob-
lems, including gradient methods, Kalman fil-
tering, and particle filters. Our accumulating
experience confirms that the graphical frame-
work helps to see such algorithmic options in
practical problems.

• As factor graphs develop into a general tool for
signal processing, there appear to be similar
developments (with similar graphical models)
in statistics, artificial intelligence, and neural
networks, cf. [15] [13].

• Dealing with continuous variables involves
many design choices, and this is a vast field
of research. Nevertheless, many good practical
solutions are apparent already.

• Forney-style factor graphs provide an espe-
cially elegant notation.

REFERENCES

[1] N. Wiberg, H.-A. Loeliger and R. Kötter,
“Codes and iterative decoding on general
graphs,” Europ. Trans. Telecomm., vol. 6,
pp. 513–525, Sept/Oct. 1995.

[2] N. Wiberg, Codes and Decoding on General
Graphs. Linköping Studies in Science and Tech-
nology, Ph.D. Thesis No. 440, Univ. Linköping,
Sweden, 1996.

[3] B. J. Frey, F. R. Kschischang, H.-A. Loeliger,
and N. Wiberg, “Factor graphs and algorithms,”
Proc. 35th Allerton Conf. on Communications,
Control, and Computing, (Allerton House, Mon-
ticello, Illinois), Sept. 29 – Oct. 1, 1997, pp. 666–
680.

[4] F. R. Kschischang, B. J. Frey, and H.-A.
Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Trans. Information Theory,
vol. 47, pp. 498–519, Feb. 2001.

[5] A. P. Worthen and W. E. Stark, “Unified design
of iterative receivers using factor graphs,” IEEE
Trans. Information Theory, vol. 47, Feb. 2001,
pp. 843–849.

[6] J. Boutros and G. Caire, “Iterative multiuser
decoding: unified framework and asymptotic
analysis,” Proc. 2001 IEEE Int. Symp. on In-
formation Theory, Washington DC, June 24–29,
2001, p. 317.

[7] J. Dauwels and H.-A. Loeliger, “Joint decod-
ing and carrier synchronization using factor
graphs,” Proc. 2003 IEEE Int. Symp. Infor-
mation Theory, Yokohama, Japan, June 29 –
July 4, 2003.

[8] B. Vigoda, J. Dauwels, N. Gershenfeld, and H.-
A. Loeliger, “Low-complexity LFSR synchro-
nization by forward-only message passing,” sub-
mitted to IEEE Trans. Information Theory.

[9] G. D. Forney, Jr., “Codes on graphs: normal
realizations,” IEEE Trans. Information Theory,
vol. 47, no. 2, pp. 520–548, 2001.

[10] H.-A. Loeliger, “Least squares and Kalman fil-
tering on Forney graphs,” in Codes, Graphs, and
Systems, R. E. Blahut and R. Koetter, eds.,
Kluwer, 2002, pp. 113–135.

[11] P. O. Vontobel and H.-A. Loeliger, “On factor
graphs and electrical networks,” in Mathemati-
cal Systems Theory in Biology, Communication,
Computation, and Finance, J. Rosenthal and
D. S. Gilliam, eds., IMA Volumes in Math. &
Appl., Springer Verlag, to appear.

[12] P. O. Vontobel, Kalman Filters, Factor
Graphs, and Electrical Networks. Internal re-
port INT/200202, ISI-ITET, ETH Zurich, April
2002.

[13] M. I. Jordan, Graphical Models, draft of book.
[14] A. Doucet, J. F. G. de Freitas, and N. J. Gor-

don, eds., Sequential Monte Carlo Methods in
Practice. New York: Springer-Verlag, 2001.

[15] M. I. Jordan and T.J. Sejnowski, eds., Graph-
ical Models: Foundations of Neural Computa-
tion. MIT Press, 2001.

