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dvanced error correcting codes and/or coded
modulation schemes are an essential part of most

modern data transmission systems for both wireless and cop-
per wire applications. As shown in Fig. 1, the coding system
consists of two parts: an encoder in the transmitter and a
decoder in the receiver. The channel in Fig. 1 comprises every-
thing between the encoder output and decoder input, includ-
ing modulation, demodulation, and equalization. The purpose
of the coding system is to transform a noisy channel into a
reliable bit pipe.

In contrast to many other signal processing tasks in com-
munications, the encoding and decoding of error-correcting
codes has always been implemented digitally. However, some
researchers have recently become interested in analog
decoders. For example, analog or hybrid implementations of
the so-called Viterbi decoding algorithm for trellis codes have
been proposed [1, 2]. The present article focuses on recent
work on analog decoding by Hagenauer [3, 4] and by our-
selves [5, 6] in the context of turbo coding and iterative
decoding (see next section). This work suggests that analog
decoders for such codes can be constructed that outperform
digital implementations by a wide margin.

By its very nature decoding is nonlinear. In fact, it is
almost the opposite of a linear operation: small disturbances
of the decoder input signal should not affect
the decoder output signal at all. Analog
decoding has thus little in common with
traditional analog signal processing such as
linear filtering. It will be argued later in this
article that decoding is fundamentally better
suited for analog implementation than such
linear operations.

Decoders of high-performance codes
such as turbo and related codes may be
viewed as being composed of building
blocks that we will alternately refer to as
trellis modules or probability gates. The for-
mer term refers to a type of computation
that arises in turbo coding; the latter indi-
cates that these building blocks may be viewed as a general-
ization of logic gates to probabilistic reasoning. We will give
examples of such building blocks and indicate how they can be
realized in analog very large-scale integration (VLSI).

ALGEBRAIC AND PROBABILISTIC CODING

The field of error control coding is divided into the subfields
of algebraic coding and probabilistic coding, with complemen-
tary strengths and weaknesses. Algebraic coding relies on the
techniques of advanced abstract algebra and is most useful for

providing very strong protection against
low noise levels. Typical examples of
codes are BCH codes and Reed-
Solomon codes [7].

Probabilistic coding relies more on
statistical decision techniques and is

better suited to providing moderate protection against high
noise levels. Typical examples of such codes are trellis codes,
turbo codes, and low-density parity check codes. Turbo codes
[8] represent a recent breakthrough in coding that moved the
practically achievable data rates much closer to the theoretical

limit (the channel capacity) than was earlier believed possible;
low-density parity check codes were invented in 1963, but
were only recently discovered to be almost as good as turbo
codes [9].

We will illustrate the nature of the computations in alge-
braic and probabilistic coding by the following simple exam-

ple. Consider the encoder of Fig. 2. It takes
as input two information bits, u1 and u2,
and transforms them into three coded bits,
x1, x2, and x3. The first two coded bits, x1
and x2, are simply copies of the informa-
tion bits u1 and u2, respectively; the third
coded bit, x3, results from exclusive-ORing
(i.e., adding modulo 2) u1 and u2.

An algebraic decoder for this code is
shown in Fig. 3. Because the code is too
weak to allow for any error correction, this
decoder performs only error detection. The
computation in the decoder consists merely
of two exclusive-OR operations.

The decoder input signal y1, …, yn in
Fig. 1 is a sequence of real numbers (e.g., the matched filter
output) that represent noisy bits. These numbers generally
give an indication of the reliability of the received bit. In alge-
braic decoding, these “soft” bits are first converted into ordi-
nary “hard” bits, as indicated in Fig. 3; the reliability
information is discarded.

Probabilistic decoding, in contrast, operates directly with
such soft bits; the conversion to hard bit estimates occurs after
the decoding proper. For the example of Fig. 2, such a
decoder is shown in Fig. 4. The gates in Fig. 4, which will be
discussed later, involve real number operations.

In general, both encoding and algebraic decoding involve
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■ Figure 1. Communication system.
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mostly exclusive-OR operations, which are perfectly suited for
digital implementation. Probabilistic decoding, on the other
hand, uses computations with real numbers, which makes digi-
tal implementations of such decoders much more complex
than those of algebraic decoders.

Moreover, the computation networks of decoders for
high-performance codes such as turbo codes and low-density
parity check codes contain loops. In digital implementations,
these loops lead to iterative computations where the whole
network is recomputed several times until a steady state is
reached (or until the available time is over). Such iterations
are also required if the soft output of the decoder is fed back
to other parts of the receiver, as indicated in Fig. 5. (The use
of such feedback loops is the subject of much current
research.) The combined needs of real-number arithmetic
and iterative decoding require substantial computational
resources.

Graphical representations of codes and decoding networks
as in Fig. 4 have recently become a subject of significant
research interest [10–13].

DIGITAL VS. ANALOG: FUNDAMENTALS
The very idea of changing from digital to analog will probably
appear odd to most readers. The problems commonly associ-
ated with analog signal processing include sensitivity to com-
ponent variations, susceptibility to noise and power supply
disturbances, and temperature dependency, among others.
However, the work by Mead [14] and others on neuromorphic
analog VLSI has demonstrated that analog signal processing
systems can be built that share the robustness of digital sys-
tems but outperform digital systems by several orders
of magnitude in terms of speed and/or power con-
sumption. This approach is characterized by exploiting,
rather than fighting, the fundamental nonlinearities of
transistor physics and by system designs that achieve
global accuracy despite imprecise local subsystems and
components.

The inherent nature of decoding makes it attractive
for such an approach. Decoding operates on noisy sig-
nals that are gradually transformed into “clean” bits;
since the input signals are noisy anyway, they need not
be represented and processed with high precision. On
the other hand, a large dynamic range is required,
which can be provided by a suitable analog design.
Also, analog processing with continuous-time networks
eliminates the iterations mentioned in the previous
section, which are replaced by the settling behavior of
the network.

Decoding networks (as in Fig. 4) typically contain
only a small number of different types of trellis mod-
ules (probability gates). This means that the design of
such decoding networks in analog VLSI is similar in
spirit to the design of digital networks with logic gates.
Moreover, in the approach of [6], all module types can
be realized as variations of the same simple transistor
circuit. 

THE IMPLEMENTATION OF
PROBABILITY GATES

We now describe the operation and implementation of the
two types of probability gates in Fig. 4. As we will see, the
description of these operations depends strongly on the repre-
sentation used for the soft bits. We begin with the following
representation. Each soft bit is represented by two nonnega-
tive real numbers, p(0) and p(1), that add up to one. The
value p(0) is (or is interpreted as) the probability that the bit
is zero; p(1) is (or is interpreted as) the probability that the
bit is one. For this representation, the two gate types of Fig. 4
are defined as in Fig. 6. The scale factor γ in Fig. 6 is chosen
such that p3(0) + p3(1) = 1.

The two gate types of Fig. 6 suffice for low-density parity
check codes; they do not suffice for trellis codes and turbo
codes. The additional trellis modules that are needed for the
latter codes also involve nonbinary states.

LOG-LIKELIHOOD-RATIO REPRESENTATION
An alternative representation of a soft bit is the single number
L = log(p(0)/p(1)), which is commonly referred to as the log-
likelihood ratio. In this representation, the operation of the
“equals-sign” gate (right in Fig. 6) becomes simple addition:
L3 = L1 + L2. The “soft-EXOR” gate (left in Fig. 6) is
expressed by the formula L3 = 2 tanh–1 (tanh(L1/2)
tanh(L2/2)), which is illustrated in Fig. 7.

Hagenauer’s approach to analog decoding is based on this
log-likelihood representation and on realizing these two for-

■ Figure 3. Error detection for the code of Fig. 2.
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mulas as analog circuits. A number of simulations
with ideal analog cells of this type have been report-
ed. These simulations show that continuous-time
decoding with networks as in Fig. 4 can work well
even if the network has loops. Transistor-level cir-
cuits have not yet been reported.

CURRENT-VECTOR REPRESENTATION
Our own approach, in contrast, is based on representing each
soft bit by two currents, I·p(0) and I·p(1), where the sum cur-
rent I can be chosen freely. This representation has the advan-
tage that all signals/currents are unipolar and cannot overflow.
Moreover, it has led to a large family of simple transistor cir-
cuits for essentially all trellis modules (even with nonbinary
states) that are of interest in coding [6].

The corresponding circuit for the soft-EXOR gate (left
in Fig. 6) is shown in Fig. 8. The transistors are assumed to
operate in so-called subthreshold mode; alternatively, bipo-
lar transistors can be used. The particular circuit of Fig. 8
happens to be (a version of) the so-called Gilbert multiplier,
which is a standard circuit for real number multiplication;
that it is, in fact, an exact soft-EXOR seems not to have
been noticed before. The corresponding circuit for the
equals-sign gate differs from Fig. 8 only in a slight change in
the wiring.

We have made extensive transistor-level simulations with
decoding networks of such modules, and a working proof-of-
concept chip has been manufactured. We found that such
decoding networks work very well and are robust against the
nonidealities of real transistors. From this experience, we
expect that such decoders will outperform digital implementa-
tions by two orders of magnitude in terms of speed (when
designed for the same power level) or power consumption
(when designed for the same speed).

CONCLUSIONS
We have described recent research results on analog VLSI
decoding networks for error correcting codes. Such decoders
appear attractive for applications where speed and/or power
consumption are critical; the expected gains amount to two
orders of magnitude. The versatile new “probability gates” are
likely to be useful beyond decoding.
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■ Figure 8. Soft-exclusive-OR gate for current-vector representation.
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