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Let us now check thats, T, and Y satisfy the conditions of wheredsr is the average degree in the induced subgt@ghr . There
Lemma 5. remains the computation ¢t s~||”. Note thatY sz has|S| coordi-
Observation (4) impliesX | > |S|do/2. Together with (3) and since nates equal té — |S|/n, |T| coordinates equal to— |T'|/n, n — |S|
N = An, thisimplies thatS| satisfies (2). Point 1) of Lemma 5 holdscoordinates equal te|S|/», andrn— |T'| coordinates equal to |T'| /.
by the definition ofS. Point 2) of Lemma 5 holds by (5). After some rearranging we obtain
Therefore, the conclusion of Lemma 5 holds and we have y IS|2 + |T2
o IYsrll” =S|+ IT| -
IT| < B1S]| _ o
with 3 =1/(2—-«a) < 1. Together with (7) this yields Lemma 4.

The proof of convergence consists of repeating the argument. For
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i>0,let S pe the set of vertices defined as [1] M. Sipser and D. A. Spielman, “Expander Codd&EE Trans. Inform.
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We have just proved thaS* 7| < /|S|. Therefore, 5T also [4] G. A. Margulis, “Explicit group theoretical constructions of combinato-

T 2) “
satisfies (2) and we haves™”| < 3|S™| and more generally rial schemes and their application to the design of expanders and con-
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Theorem 2 is a direct consequence of Theorem 6.

IV. A PROOF OFLEMMA 4

The proof is very much in the spirit of [6]. Probability Propagation and Decoding in Analog VLSI

Let A = (a;j) be the2n x 2n adjacency matrix of the bipartite Hans-Andrea LoeligerMember, IEEE
graph, i.e.,a;; = 1if the vertexindexed byis adjacent to the vertex Felix LustenbergerStudent Member, IEEEMa’rkus Helfenstein, and
indexed by;j anda;; = 0 otherwise; a fixed ordering of the vertices Felix Tarkoy, Mer‘nber IEEE '
is assumed but does not influence the computations to com& &gt ' '
be the column vector of lengv. such that every coordinate indexed

by a vertex ofS or of T equalsl and the other coordinates equalt Abstract—The sum-product algorithm (belief/probability propagation)
is straightforward to check that can be naturally mapped into analog transistor circuits. These circuits en-
able the construction of analog-VLSI decoders for turbo codes, low-density
‘XerAXgr = Z dag (V) (6) parity-check codes, and similar codes.
veSUT Index Terms—Analog circuits, belief propagation, factor graphs, itera-

whered . . (v) stands for the degree ofin the subgraph induced by tive decoding, turbo codes.
S UT,i.e., the number of neighbors ofthat belong ta5 or to 7.

Now let j be the all-one vector and lét be the vector such that
every coordinate indexed by a vertexfequalsl and every coordi-
nate indexed by a vertex d? equals—1. j andk are eigenvectors of It has recently been observed that a number of important algorithms
A associated to the eigenvaluasand— A, respectively. Next define in error-control coding, signal processing, and computer science can
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parity-check codes (“Gallager codes”) [7], [8], and similar code P Pt
[9], [10]. In all these mentioned cases (but notah cases), the 1,p(z=0)
sum-product algorithm works with signals (“messages”) that are,
may be viewed as (exact or approximate descriptions of) probabil
distributions! such instances of the sum-product algorithm will be

referred to aprobability propagatior? — ’__llz :I}J

[4], Kalman filtering, “belief propagation” in Bayesian networks [5],
and, in particular, iterative decoding of turbo codes [6], low-densit l

In some important cases, which include iterative decoding, the su 1, p(y=0) I I poy=1)
product algorithm operates with signals (messages) that representp ?l__ ﬂ Y
ability distributions defined ofinite sets and can be decomposed intt !
elementary computations (defined in Section Ill) that we will alterne
tively refer to assum-product modulesr probability gates

Digital implementations of sum-product modules requir I.p(x=0} L.p(x=1)
real-number arithmetic and are thus quite complex. The ms -
point of this correspondence is that sum-product modules can 1

realized directly as simple analog transistor circuits. The enti = =
family of sum-product modules is obtained as variations of a single ) o
simple circuit, which provides an amazing match between probabilfjg- 1. Soft exclusiveer circuit.
propagation and transistor physics.

With these circuits, any network of sum-product modules (probgmII be referred to as a “soft exclusiver gate.” (This is what Hage-
bility gates) can be directly implemented in analog VLSI. This holds,_ ., [23] calls a “box-plus” element.)

in particular, for the iterative decoding of turbo codes and low-density Clearly, the complexity of a digital implementation of such a soft

pariFy-chgck co_des. A main attraction_of_ such analog decoders is tQ%tFi gate depends on the representation of the probability distributions.
the iterations disappear: the decoder is just an asynchronous electrﬁﬁ example, any probability distributigndefined on{0, 1} can be

network that stabilizes (usually) in a state that corresponds to the trafbsﬁresented by the differenge0) — p(1). In this representation, the

mitted codeword. -
. . computation (1) becomes
We have found that such decoding networks are quite robust against P @

the nonidealities of real VLSI and can outperform comparable dig- p2(0) = pz(1) = (px(0) — px (W) (py(0) — py (1)).  (2)
ital implementations by two orders of magnitude in terms of speed

(when designed for the same power consumption) or power consungt another representation of any syefs the “log-likelihood ratio”
tion (when designed for the same speed). A more detailed accoumigfé In(p(0)/p(1)). In this representation, (1) becomes

these issues will be given elsewhere.

Prior related work includes the analog Viterbi decoders of [11]-[16] Lz =2 tanh™ ' (tanh(Lx/2) tanh(Ly /2)). ®3)
as well as the “diode decoder” [17], [18] (see also [19]). The wor_k bP\éote that, in all these representations, the goft gate requires at least
Wiberget al.[9], [20] on Tanner graphs and the sum-product algorlthmne multiplication
was motivated in part by speculations on analog decoding networ(f<sA circuit for th.e computation of (1) is shown in Fig. 1. The
(cf. [21]). Hagenaueet al. were the first to simulate continous-timein ut probabilities[px (0. px (1)]* and [py (0), py (1)]” a's Well
versions of the sum-product algorithm and to explicitly suggest analg the output probabili/ties{pz(()), b2 (] a;e represented by

implementations, without, however, proposing transistor level circui?s 7 T
o . : Ixpx(0), Ixpx (1 Iy py (0), T n7,

[22] (see also [23]). The circuits of this paper were first presented Cfl],ll’l’ent vectorg xbx (0), Ixpx (D], [Iypy (0), Iypy (1], and

[24] and some more details were given in [25] and [26]. A summa 2p2(0), Izpz(1)]", respeciively, where the total input curredis

. . - N dIy can be chosen freely in a large range.
of this research was given in [27]. Recently, circuits similar to those 0 - - . . . .
. The circuit of Fig. 1 is a version of the so-call&ilbert multiplier,
this paper were also proposed by Moetal.[28], [29].

This correspondence is structured as follows. An introductory evv_hich is a standard circuit for real-numk_)er mult_iplication that has been

ample of a sum-product module and its circuit realization is given [fnovyn fqr over 30 years [30]- Th? transistor pairs at the four corners of

Section Il. Sum-product modules are defined in Section Ill. The traﬁ{ne circuitare currentmlrr'ors,.whmh make suph modyles frgely caspad-
. L . . : able; the actual computation is done by the six transistors in the middle

S|stqr cireuits are pr'esente.cl in Section IV, and some comments and SW. The full description of this circuit is given in Section IV.

clusions are given in Section V. Itis noteworthy that all three formulations (1)—(3) are closely related

to this circuit. While (1) corresponds arguably most directly to the cir-

cuit (see Section V), we shall see that the log-likelihood rafias

Let X andY be two independent binary random variables, and Iéty, andL z of (3) appear also in the circuit: x andLy appear as the

Z2 X @Y, where " denotesmod-2 addition (exclusiveor). With ~ Voltage between the corresponding input terminals Badappears as
the notatiorp v (b) EN P(X = b) we have the voltage between the gates of the output transistors. Equations (2)

and (3) correspond to two different classical ways of using the circuit
0 0)py (0) + px (1)py (1 -
rz(0) = px(0)py (0) +px (py (1) . (1) as areal-number multiplier.
pz(1) px (0)py (1) + px (1)py(0)
A computational unit that performs the computation (1) offrom p x
andpy, for whatever representation of the probability distributions,

1. INTRODUCTORY EXAMPLE: THE SOFT EXCLUSIVE—OR GATE

Ill. Sum-PrRODUCT MODULES

IWe use the termgrobability mass functioandprobability distributionsyn- A sum-p.rodu.ct module (probability gate) is 6.1 computational qnlt
onymously. as shown in Fig. 2 that performs a computation of the following

2This could also be called “belief propagation,” although the underlyinlyP€: AS inpuAt, it takes two probabwty mass functions and py
factor graph need not represent a Bayesian network. defined on¥ = {z1, ..., z.n } andY = {y1. ..., ya }, respectively;
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Fig. 5. One trellis section of a 4-state tail-biting convolutional code.

Fig. 3. Trellis diagram forf (z, y, z) = 1 iff & y = =z (Example 1).
of px andpy . Such computations appear in nearly all applications be-

1 cause they arise whenever independent informagig@na(ndpy-) about
le———I the same random variable is combined. O
The specific modules from Example 1 and 2 actually suffice for
0 the decoding of low-density parity-check codes. The general form
Qo————=0 (4), with general finite alphabet¥, ), and Z, and with an arbitrary
X Y A {0, 1}-valued functionf, suffices for iterative decoding in general.

We conclude this section with an example of a complete decoding
network for a tail-biting convolutional code. This decoder was actu-
ally implemented as an analog VLSI chip using the circuits of this
correspondence [25], [26]. (A similar analog decoder for a two-state
as output, it computes a probability mass functipn, defined on tail-biting code was implemented by Moeez al. [28].) The code is
z=2 {z1, ..., =1}, according to defined by the four-state tail-biting trellis consisting of nine identical

trellis sections, each trellis section as shown in Fig. 5. In the figure, each
pz(z)=7 D > px(@py(y)f(e,y.2)  Vz€Z (4 trellis branch s labeled both with the corresponding input bit (informa-
rEX yey tion bit) and with the two corresponding encoded bits (output bits). The
wheref is a function¥ x Y x Z — {0, 1} and wherey is an ap- code is a linear block code of length and dimensior®.
propriate scale factor that does not depend oNote that (4) defines A decoding network for this code is given in Fig. 6. Each signal
a large family of modules that is parameterized by the funcfion line in Fig. 6 represents a whole probability mass function. This de-

If the reader is familiar with Tanner graphs or factor graphs [20§0ding network is a direct implementation of the BCJR forward—back-
[2], he will notice that both the function-to-variable computation andard algorithm [4] (adapted to a tail-biting trellis), which is a special
the variable-to-function computation of the sum-product algorithm agase of the general sum-product algorithm. Each module in Fig. 6 is a
of the form (4), provided that the local functighis {0, 1}-valued. In  sum-product module of the form (4). The trellis diagrams of (the func-
particular, both the forward recursion and the backward recursiontigin f corresponding to) these modules are shown in Fig. 7. The type-B
the BCJR algorithm [4] are of this form. modules perform the “forward” computation on the tail-biting trellis,

Specific{0, 1}-valued functionsf are conveniently illustrated by the type-C modules perform the “backward” computation on the trellis,
trellis diagrams as in Figs. 3, 4, and 7. The left-hand nodes correspéhé type-A modules precompute the branch metrics, and the type-D
to the elements o, the right-hand nodes correspond to the elementgodules compute the final output.
of Z, and an edge betweanc X and: € Z with labely € Y exists Assuming, for the convenience of notation, a memoryless channel,
if and only if f(x, y, z) = 1. Note that the trellis diagram uniquely the input to the decoder are the probability distributions
definesf.

Fig. 4. Trellis diagram forf (z, y, z) = 1iff 2 = y = = (Example 2).

P (@) 2 yplyilas). =118
Example 1 (SofkorGate): LetX’ = Y = Z = {0, 1} and let e T

f(x,y, 2) = 1if 2@y = z (where “D” denotesmod-2 addition) wherep(y;|x;) is the channel law, wherg , ..., y1s are the (fixed)
andf(z, y, z) = 0 else. The corresponding trellis diagram is showreceived channel output symbols, and wheres the scaling factor
in Fig. 3. With this functionf, the module of Fig. 2 becomes a softrequired to satisfypin, i(0) + pin, (1) = 1. We shall see in the
exclusiveor gate as in Section Il. LI next section that such scaling factors are implicit in the physical
representation of probability distributions and need not be computed

In generalization of Example 1, *soft” versions of all standard Ioglgx licitly. Assuming a uniforna priori distribution over all codewords
gates can be constructed by a suitable choicg. of phicitly. 9 P

(21, ..., x18), the output of the decoder consists of approxinete
Example 2 (Componentwise Productlet ¥ = Y = Z and let posteriori probability distributionsgp; (v;) =~ p(ui|yi, ..., yis), for
flz,y,2) = 1lifz = y = zandf(x, y, z) = 0 else. The cor- the information bits:;,7 = 1, ..., 9. The output probability distribu-

responding trellis diagram (fot = Y = Z = {0, 1}) is shown in tions are not exaca posteriori probability distributions because the
Fig. 4. The computation (4) then reduces to the componentwise proddetoding network has cycles [2].
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Fig. 6. Decoding network for a tail-biting convolutional code.
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Fig. 7. Trellis diagrams for (the functiofi of) the sum-product modules in Fig. 6.

IV. TRANSISTORS The fundamental circuit that underlies the realization of the mod-
ules of Section Il is shown in Fig. 8. Its inputs are the currdits,
i=1,2,..., mandthecurrent§, ;,j = 1, 2, ..., n; its outputs

We now turn to the realization of probability propagation networkare the current$; ;. All transistors are modeled as ideal voltage-con-
as analog transistor circuits. In such analog networks, probabilitigelled current sources, for which the currdat.in into the drain ter-
will usually be represented as currents (and voltages will represeninal depends exponentially on the voltagg:e — Viource between
log-likelihood ratios). A probability mass functiopy defined on the gate and source terminals according to
some finite seft £ {21, ..., 2., } is represented by a current vector Tivain = Toe(®Veate=Vsource) /U (5)
(Lepx (1), ..., Lpx (wm)) with an arbitrary positive sum current The parameters,, «, and3 depend on the fabrication process and
I.. Conversely, any current vectqts, .... I,) with nonnegative on the temperaturd/r is the so-called thermal voltage, which de-
components, not all of them zero, may be thoughi of as representingefqds only on the temperature. For# 3, the transistor is effec-
probability mass functiopy defined on some st = {y1..... y»} tively a four-terminal device rather than a three-terminal device; the
with valuespy (y;) 2 L)L+ -+ 1). extra (hidden) terminal is the “bulk” or “substrate,” which serves as
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Fig. 8. Fundamental circuit.
I, p(z=0) IpGz=1)

IprO)F—I l—l |—< I—LE«& I,py=1)

Fig. 9. Circuit of Example 2.

the reference for all potentials. Equation (5) is an excellent approxi-Example 1 (Continued)For f as in Example 1, the circuit of Fig. 1
mation both for CMOS transistors in the so-called subthreshold modesults. Note that the structure of the trellis diagram (Fig. 3) is evident
and for bipolar transistors. Our terminology and notation corresponditothe topology of the circuit. O

the former. For bipolar transistors, “drain” is replaced by “collector,”
“gate” by “base,” “source” by “emitter,” and we have= 3 = 1. Itis
shown in the appendix that the behavior of the circuit is given by

Lij = L(L,i [ 1:)( yj/I) (6)
) N A The circuits for other sum-product modules (e.g., those of Fig. 6 and
with I, = 3, I, i, I, = 3, I, ;,andL. = 3,5 I, ; = I,. The  Fig. 7) are easily constructed according to the same pattern.
circuit thus computes the pairwise product of the two probability massin the circuit of Fig. 1, the total output currefit equals the input
functionsp x (i) = 27, i/ L. andpy ( 7) =1,;/1,. currentl,.. This property is not shared by most other circuit modules as
The application of the circuit of Fig. 8 to the computation of (4)s exemplified by Fig. 9. Therefore, in general, it will often be necessary
is straightforward. The input terminals of the circuit are fed with th& scale the current vectors to some desired level. Such a scaling may

Example 2 (Continued):For f as in Example 2, a complete circuit
(for the binary case) is given in Fig. 9. In contrast to Example 1, the
currentsl;, ; for i # j are not used in the summation. |

currentsI, ; 2 px(xi), ¢ = 1, ..., m,andl, ; = I,pv(y;), be achieved by a degenerate version of the fundamental circuit of Fig.
Jj = 1,..., n, respectively, where the sum curredtsand, can 8 withm = 1 andI, ; fixed to some constant current. This circuit
be chosen freely within the range of validity of (5). The output currents known as Gilbert’s vector scaling circuit [31]. By adding current
then equal;,; = Lpx(x:)py(y;). mirrors at the outputs, this circuit can be expanded into a building block

The computation of (4) is completed by summing the currénts  of its own. Alternatively, it can also be integrated into the other building
for eachz € Z for which f(z:, y;, z) = 1. This is easily accom- blocks.
plished by connecting wires together and relying on Kirchhoff’s cur- As we have seen, in the circuits of this correspondence, currents rep-
rent law. If a termpx (z::)py (y;) is used more than once, the corretesent probabilities. It is easy to see that voltages represent logarithms
sponding current; ; must first be replicated by current mirrors. of probabilities (or of probability ratios). For example, the transistors
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within the dashed box in Fig. 8 convert the input current vector messages can be quite low.) The guantitative analysis of these effects
is a challenging theoretical problem.

Ly, 15+ oy y,n) = (Typy(y1)s o5 Lypy(yn)) An interesting option for enhancing the robustness of the network
against the stated imperfections is the use of redundant factor graphs,
i.e., of redundant equations (parity checks) in the decoding network.
Preliminary experience suggests that extremely robust networks can
be obtained in this way. This opens the problem of systematical con-

By omitting these transistors within the dashed box, the circuit can Bteructlon O.f SUCh. redundant code descriptions, which appears to be a
new topic in coding theory.

converted into one with voltage inputs instead of current inputs. The
voltage input vectotVy, 1, ..., V,, ») is then given by

into a voltage vectofV, 1, .... V, .) with voltages

R 1, . . .
Vis = g(["T log(py(y;)) + Ur log(I,/To) + BVier).  (7)

In most of the potential application areas (in particular, iterative de-
coding), the computation network contains loops. It is in such applica-
Ur i - . tions that the full ad_vantage over di_gita_l imp_lementati_ons appears _be-
o log(py(y;)) + Vors () cause the computationally demanding iterations required in the digital

. .case are subsumed by the natural settling behavior of the analog net-
where V. can be chosen freely, corresponding to the free choi Y 9 9

of the sum currentl, in (7), as long as all involved transistors

operate within the validity of the exponential model (5). SlmllarlyHowever, this holds also for the corresponding iterative digital algo-

the current mirrors in Figs. 1 and 9 may be viewed as Iogarlthm}ﬁhm. Indeed, we have so far observed little difference between the

current-to-voltage converters followed by exponential VOltage'to'CU(Ebnvergence behavior of an analog decoding network and its digital

rent converters. (The current mirrors can also be realized by stand rd discrete-time) counterpart. For decoding applications, experience
guadratic-law CMOS transistors, in which case they may be viewed,,’ '

h (digital) iterative algorithms indicates that nonconvergence is not
as square-root current-to-voltage converters followed by quadrag

It ¢ ¢ : Indeed. Moatzal. [28 for t %erious problem for good decoder architectures.

voltage-to-curreént conver ers.) In eed, voaw al. [ ] preter to Analog networks in the spirit of this correspondence appear gener-
describe their circuit modules—which use the circuit of Fig. 8 wnthou.g”y suitable for the realization of a mapping from some high-dimen-
the dashed box—in terms of voltages. It should be noted, howevg

. . ional analog input space into a finite output space (“bits”) that is insen-
that the scale factdr'r /a in (8) depends both on process parametef§. .« wiee 4o oo ot the input. This opens the prospect that all-
and on the temperature.

| mulati d desi h far b ¢ . analog receivers—from the demodulator output to the error-correcting
n our simulations and design, We have so far been 10cussiNg G-, qer can be built with such networks. In particular, “soft” feed-

bipolar CMOS (BICMOS) technology and used bipolar transstor@ack loops between the various elements (equalizer, channel tracking,

Ior th_etfund?_rr?ental (_:lr_cun. fV_Vedhg(\j/e rlnqstly_tbeez ulsm_g r;;]lnln:gl-_?l ultiuser separation, decoder, etc.) would fit naturally into that ap-
ransistors. The precision of individual circuit modules is then limited - "5 ot step in that direction was made in [23].

mainly by transistor mismatch. For example, the accuracy of a current
mirror is on the order of 5-10%, which translates into a corresponding
error in the represented probabilities. With realistic voltage swings
and transistor parameters, this accuracy corresponds to about 5-7 bit

resolution of log-likelihood values, i.e., logarithms of probabilities. Let V, ; andV,, ; denote the potentials at the input terminals for
The dynamic range of the circuits is three to six decades in termspf; andI, ,, respectively. On the one hand, we have

currents/probabilities.
[l . n
. =Im'/zfi-f (9)
=1

;oo
‘y,j

A network with loops may not always converge to a stable state.

APPENDIX
DERIVATION OF (6)

V. DiscussION ANDCONCLUSION L

V\_/e_ have described a new type of analo_g_ computing network_that aVy, ;- V. n aVy o — AV
exhibits a natural match between probability theory and transistor =Io exp T Zfo exp ? (10)
physics. The elementary modules of which these networks are =1
composed include probabilistic versions of all standard logic gates as s n .

. . (l‘q,J OL"'U‘/

well as more general nonbinary sum-product modules. The obvious = exp —2+ > exp - (11)
application of such networks is to the decoding of error-correcting T =1 T
codes. However, any factor graph all of whose local fun_ctions (exce@ﬁ the other hand, we have
those of degree one) af@, 1}-valued can be mapped into such an
analog network. I, ; i

The main advantages of such networks over digital implementatiory% =1y, Z Iy 12)
are higher processing speed or lower power consumption or both. Ac- =t
cording to our (still limited) experience, this advantage can amount to aVy ;= BVier " aVy (= BV
two orders of magnitude. =Ip exp ———= [} L exp —H——= (19)

Z: T =1 UT

While traditional analog design is plagued with precision problems
(sensitivity to component variations, susceptibility to noise and power aV, n oV, o
supply disturbances, temperature dependency, etc.), we found that such = exp UM ZeXP U"" - (14)
analog decoding networks are quite robust against the nonidealities of T =1 T
real transistors. While most of our actual experience is with bipo'@ombining (11) and (14) and noting th&t = I, yields (6).
transistors, we believe that subthreshold CMOS implementations can
be made similarly robust. This robustness may be explained by noting
that the input signals to the decoder are noisy anyway and thus need
not be represented and processed with high precision. (It is well knowriThe authors wish to thank Prof. J. L. Massey and Prof. G. S.
that for digital iterative decoders the number of bits used to represémbschytz for encouragement and support.

ACKNOWLEDGMENT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 843

(1

[2]

(3]
(4]

(5]

(6]

[71
(8]
9]

(10]

[11]

[12]

[13]

(14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

REFERENCES [26] F. Lustenberger, M. Helfenstein, H.-A. Loeliger, and F. Tarkdy, “All-
. . ) u analog decoder for a binary (18, 9, 5) tail-biting trellis code,Piroc.
B. J. Frey, F. R. I_(schlschang, H.-A. Loeliger, and N. Wlberg, I_:actor ESSIIgC 199Duisburg, Ge>r/n(1any, Seznt. 1999, ?)p. 362365,
graphs and algorlthm_s," |ﬁr0c: 35th Allerton Conf. Communications, [27] H. A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkdy, “De-
Control, and ComputingMonticello, IL, Sept. 29-Oct. 1, 1997, pp. coding in analog VLSI,IEEE Commun. Magpp. 99101, Apr. 1999.
666-680. [28] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer, “An analog 0.25

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and : P f
the sum-product algorithm[EEE Trans. Inform. Theorywol. 47, pp. gf'\ﬂgs t;icl)lgglnr?pM?SP;gg(;der, itProc. ISSCC 200an Francisco,

498-519, Feb. 2001.

S. M. Aji and R. J. McEliece, “The generalized distributive laWeEE
Trans. Inform. Theonyol. 46, pp. 325-343, Mar. 2000.

L. R.Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear [30]

[29] M. Moerz, J. Hagenauer, and E. Offer, “On the analog implementation of
the APP (BCJR) algorithm,” iRroc. 2000 IEEE Int. Symp. Information
Theory Sorrento, Italy, June 25-30, 2000, p. 425.

B. Gilbert, “A precise four-quadrant multiplier with subnanosecond re-

codes for minimizing symbol error ratelEEE Trans. Inform. Theory sponse,1IEEE J. Solid-State Circuits/ol. 3, pp. 365-373, 1968
vol. IT-20, pp. 2.8.47287' Mar._197_4. . [31] ——, “Amonolitic 16-channel analog array normalizei2EE J. Solid-
J. Pearl,Probabilistic Reasoning in Intelligent Systen2ed ed. San State Circuitsvol. 19, pp. 956-963, 1984

Francisco, CA: Morgan Kaufmann, 1988.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannonlimit

error-correcting coding and decoding: Turbo codes,”Proc. Int.

Conf. Communications (ICC'93%5eneva, Switzerland, May 1993, pp.

1064-1070.

R. G. Gallager,Low-Density Parity-Check CodesCambridge, MA:

MIT Press, 1963. e . . . .

D. J. C. MacKay, “Good error-correcting codes based on very sparddhified Design of Iterative Receivers Using Factor Graphs
matrices,IEEE Trans. Inform. Theoryol. 45, pp. 399-431, Mar. 1999.

N. Wiberg, H.-A. Loeliger, and R. Kétter, “Codes and iterative decoding Andrew P. WorthenStudent Member, IEEEBNd

on general graphs,Euro. Trans. Telecommurvol. 6, pp. 513-525, Wayne E. StarkFellow, IEEE

Sept./Oct. 1995.

G. D. Forney Jr., “On iterative decoding and the two-way algorithm,” in

Proc. Int. Symp. Turbo Codes and Related Toprest, France, Sept.
1997.

A. S. Acampora and R. P. Gilmore, “Analog Viterbi decoding for hig
speed digital satellite channel$EEE Trans. Communvol. COM-26,
pp. 1463-1470, Oct. 1978.

T. W. Mathews and R. R. Spencer, “An integrated analog CMOS Viter
detector for digital magnetic recordingEEE J. Solid-State Circuits
vol. 28, pp. 1294-1302, Dec. 1993.

M. H. Shakiba, D. A. Johns, and K. W. Martin,
BiCMOS class-IV partial-response analog Viterbi decoder,Pioc.
CICC '95, Santa Clara, CA, May 1995, pp. 567-570.

A. Demosthenous and J. Taylor, “Current-mode approaches to imp
menting hybrid analogue/digital Viterbi decoders,”Rmoc. IEEE Int.  |ndex Terms—Channel estimation, fading channels, iterative decoding,
Conf. Electronics, Circuits, and Systemi996. low-density parity-check (LDPC) codes.

X. Wang and S. B. Wicker, “An artificial neural net Viterbi decoder,”
IEEE Trans. Communvol. 44, pp. 165-171, Feb. 1996.

M. H. Shakiba, D. A. Johns, and K. W. Martin, “BICMOS circuits for
analog Viterbi decoders,|IEEE Trans. Circuits Syst. |llvol. 45, pp.

1527-1537, Dec. 1998. It is well known that for many communication systems joint demod-

R. C. Davis, “Diode-configured Viterbi algorithm error correcting de- .+ P ; : ;

coder for convolutional codes,” U.S. Patent 4 545 054, Oct. 1, 1985. ulfitlon and Qechlng Is required for optllmurln performanF:e. Typically,
R. C. Davis and H.-A. Loeliger, “A nonalgorithmic maximum likeli- this processing is too complex for practical implementation and some
hood decoder for trellis codes|EEE Trans. Inform. Theoryol. 39, sort of serial processing is employed. Iterative algorithms which ap-
pp. 1450-1453, July 1993. ~ proximate optimal joint decoding for a variety of concatenated codes
L. Bu and T.-D. Chiueh, “Solving the shortest path problem using an}_[3] are known to have excellent performance. This has led to an

ﬁ%%'of’gg%twork’ IEEE Trans. Circuits Syst, vol. 46, pp. 1360-1363, interest in iterative algorithms for approximating joint channel estima-

N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertatii@n, demodulation, and decoding, which we degrative receivers.
440, Linkoping Studies in Science and Technology, Univ. LinkopingThe usual paradigm for these designs is the interconnection of soft-

Linképing, Sweden, 1996. input/soft-output (SISO) modules [4].

——, “Approaches to neural-network decoding of error-correcting ; N ; : :

codes,” Thesis 425, Linkdping Studies in Science and Technolog(y,Gra.phm(’?II mod.els for codes [5] [7] lead to !teratlve algorithms for
Univ. Link&ping, Linképing, Sweden, 1994. ecoding, including the turbo decoding algorithm [8]. Factor graphs
J. Hagenauer, “Decoding of binary codes with analog networks,” in

Proc. 1998 Information Theory Workshdpan Diego, CA, Feb. 8-11,

1998, pp. 13-14. Manuscript received December 16, 1999; revised July 10, 2000. This work
J. Hagenauer, E. Offer, C. Méasson, and M. Morz, “Decoding and equalas supported by the Department of Defense Research and Engineering
ization with analog nonlinear networksEZurop. Trans. Telecommuyn. (DDR&E) Multidisciplinary University Research Initiative (MURI) on

vol. 10, pp. 659-680, Nov.-Dec. 1999. “Low-Energy Electronics Design for Mobile Platforms” and managed by the
H.-A. Loeliger, M. Helfenstein, F. Lustenberger, and F. Tarkdy, “ProbArmy Research Office (ARO) under Grant DAAH04-96-1-0377. The work
ability propagation and decoding in analog VLSI,”Rnoc. 1998 IEEE of A. P. Worthen was supported by a National Science Foundation Graduate
Int. Symp. Information Theorgambridge, MA, Aug. 16-21, 1998, p. Research Fellowship.

146. The authors are with the Department of Electrical Engineering and Computer
F. Lustenberger, M. Helfenstein, H.-A. Loeliger, and F. Tarkdy, “ArScience, University of Michigan, Ann Arbor, Ml 48109-2122 USA (e-mail:
analog VLSI decoding technique for digital codes,” Btoc. IEEE  worthena@eecs.umich.edu; stark@eecs.umich.edu).

Int. Symp. Circuits and Systemsl. 2, Orlando, FL, June 1999, pp. Communicated by B. J. Frey, Guest Editor.

424-427. Publisher Item Identifier S 0018-9448(01)00723-4.

Abstract—iterative algorithms are an attractive approach to ap-
I,Proximating optimal, but high-complexity, joint channel estimation and
decoding receivers for communication systems. We present a unified
approach based on factor graphs for deriving iterative message-passing
l|_')via-ceiver algorithms for channel estimation and decoding. For many
common channels, it is easy to find simple graphical models that lead
directly to implementable algorithms. Canonical distributions provide
“A 200 MHz 3.3 v & New, general framework for handling continuous variables. Example
) receiver designs for Rayleigh fading channels with block or Markov
memory, and multipath fading channels with fixed unknown coefficients
iggstrate the effectiveness of our approach.

|. INTRODUCTION

0018-9448/01$10.00 © 2001 IEEE



