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Let us now check thatS; T; and Y satisfy the conditions of
Lemma 5.

Observation (4) impliesjXj � jSjd0=2. Together with (3) and since
N = �n, this implies thatjSj satisfies (2). Point 1) of Lemma 5 holds
by the definition ofS. Point 2) of Lemma 5 holds by (5).

Therefore, the conclusion of Lemma 5 holds and we have

jT j � �jSj

with � = 1=(2 � �) < 1.
The proof of convergence consists of repeating the argument. For

i � 1 let X(i) be the set of edges in error after decoding stepi. For
i � 0, letS(i) be the set of vertices defined as

• S(i) = fv 2 A; Ev \X(i+1) 6= ;g if i is even

• S(i) = fv 2 B; Ev \X(i+1) 6= ;g if i is odd.

We have just proved thatjS(1)j � �jSj. Therefore,S(1) also
satisfies (2) and we havejS(2)j � �jS(1)j and more generally
jS(i)j � �ijSj. WhenS(i) = ; thenX(i+1) = ; and the decoding is
complete.

Remark: The above proof consisted of showing that the setsS(i)

have strictly decreasing cardinalities. The weight of the error vector,
however, does not necessarily decrease at each iteration.

Theorem 2 is a direct consequence of Theorem 6.

IV. A PROOF OFLEMMA 4

The proof is very much in the spirit of [6].
Let AAA = (aaaijijij) be the2n � 2n adjacency matrix of the bipartite

graphG, i.e.,aij = 1 if the vertex indexed byi is adjacent to the vertex
indexed byj andaij = 0 otherwise; a fixed ordering of the vertices
is assumed but does not influence the computations to come. LetXXXSTSTST

be the column vector of length2n such that every coordinate indexed
by a vertex ofS or of T equals1 and the other coordinates equal0. It
is straightforward to check that

tXXXSTSTSTAXAXAXSTSTST =
vvv2SSS[TTT

dddGGG (vvv) (6)

wheredG (v) stands for the degree ofv in the subgraph induced by
S [ T , i.e., the number of neighbors ofv that belong toS or toT .

Now let jjj be the all-one vector and letkkk be the vector such that
every coordinate indexed by a vertex ofA equals1 and every coordi-
nate indexed by a vertex ofB equals�1. jjj andkkk are eigenvectors of
AAA associated to the eigenvalues� and��, respectively. Next define
YYY STSTST as the vector such that

XXXSTSTST =
jSSSj+ jTTT j

2n2n2n
jjj +

jSSSj � jTTT j

2n2n2n
kkk + YYY STSTST :

It is straightforward to check thatYYY STSTST is orthogonal tojjj andkkk. Be-
cause the eigenspaces ofAAA are orthogonal we can therefore write

tXXXSTSTSTAAAXXXSTSTST =
jSj + jT j

2n

2

�jjj � jjj �
jSSSj � jTTT j

2n2n2n

2

�kkk � kkk

+tttYYY STSTSTAAAYYY STSTST

which reduces to, sincejjj � jjj = kkk � kkk = 2n2n2n,

tXXXSTSTSTAXAXAXSTSTST = tttYYY STSTSTAYAYAY STSTST + 222
jSSSkTTT j

nnn
�:

Now, sinceYYY STSTST is orthogonal tojjj and since the eigenspace associated
to the eigenvalue� is of dimension one (G is connected) we have
tYYY STSTSTAYAYAY STSTST � �kYYY STSTST k

222. Together with (6) we obtain therefore

(jSj+ jT j)dST � �kYYY STSTST k
222 + 222

jSSSkTTT j

nnn
� (7)

wheredST is the average degree in the induced subgraphGS[T . There
remains the computation ofkYYY STSTST k

222. Note thatYYY STSTST hasjSj coordi-
nates equal to1� jSj=n, jT j coordinates equal to1� jT j=n, n� jSj
coordinates equal to�jSj=n, andn�jT j coordinates equal to�jT j=n.
After some rearranging we obtain

kYYY STSTST k
222 = jSSSj+ jTTT j �

jSSSj222 + jTTT j222

nnn
:

Together with (7) this yields Lemma 4.
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Abstract—The sum-product algorithm (belief/probability propagation)
can be naturally mapped into analog transistor circuits. These circuits en-
able the construction of analog-VLSI decoders for turbo codes, low-density
parity-check codes, and similar codes.

Index Terms—Analog circuits, belief propagation, factor graphs, itera-
tive decoding, turbo codes.

I. INTRODUCTION

It has recently been observed that a number of important algorithms
in error-control coding, signal processing, and computer science can
be interpreted as instances of a general “sum-product algorithm”
which operates by message passing on a graph (the factor graph [1],
[2]; see also Aji and McEliece [3]). These algorithms include the
forward–backward [Bahl–Cocke–Jelinek–Raviv (BCJR)] algorithm
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[4], Kalman filtering, “belief propagation” in Bayesian networks [5],
and, in particular, iterative decoding of turbo codes [6], low-density
parity-check codes (“Gallager codes”) [7], [8], and similar codes
[9], [10]. In all these mentioned cases (but not inall cases), the
sum-product algorithm works with signals (“messages”) that are, or
may be viewed as (exact or approximate descriptions of) probability
distributions;1 such instances of the sum-product algorithm will be
referred to asprobability propagation.2

In some important cases, which include iterative decoding, the sum-
product algorithm operates with signals (messages) that represent prob-
ability distributions defined onfinite sets and can be decomposed into
elementary computations (defined in Section III) that we will alterna-
tively refer to assum-product modulesor probability gates.

Digital implementations of sum-product modules require
real-number arithmetic and are thus quite complex. The main
point of this correspondence is that sum-product modules can be
realized directly as simple analog transistor circuits. The entire
family of sum-product modules is obtained as variations of a single
simple circuit, which provides an amazing match between probability
propagation and transistor physics.

With these circuits, any network of sum-product modules (proba-
bility gates) can be directly implemented in analog VLSI. This holds,
in particular, for the iterative decoding of turbo codes and low-density
parity-check codes. A main attraction of such analog decoders is that
the iterations disappear: the decoder is just an asynchronous electrical
network that stabilizes (usually) in a state that corresponds to the trans-
mitted codeword.

We have found that such decoding networks are quite robust against
the nonidealities of real VLSI and can outperform comparable dig-
ital implementations by two orders of magnitude in terms of speed
(when designed for the same power consumption) or power consump-
tion (when designed for the same speed). A more detailed account of
these issues will be given elsewhere.

Prior related work includes the analog Viterbi decoders of [11]–[16]
as well as the “diode decoder” [17], [18] (see also [19]). The work by
Wiberget al.[9], [20] on Tanner graphs and the sum-product algorithm
was motivated in part by speculations on analog decoding networks
(cf. [21]). Hagenaueret al. were the first to simulate continous-time
versions of the sum-product algorithm and to explicitly suggest analog
implementations, without, however, proposing transistor level circuits
[22] (see also [23]). The circuits of this paper were first presented in
[24] and some more details were given in [25] and [26]. A summary
of this research was given in [27]. Recently, circuits similar to those of
this paper were also proposed by Moerzet al. [28], [29].

This correspondence is structured as follows. An introductory ex-
ample of a sum-product module and its circuit realization is given in
Section II. Sum-product modules are defined in Section III. The tran-
sistor circuits are presented in Section IV, and some comments and con-
clusions are given in Section V.

II. I NTRODUCTORYEXAMPLE: THE SOFT EXCLUSIVE–OR GATE

Let X andY be two independent binary random variables, and let
Z
�
=X�Y , where “�” denotesmod-2 addition (exclusive–OR). With

the notationpX(b)
�
= P (X = b) we have

pZ(0)

pZ(1)
=

pX(0)pY (0) + pX(1)pY (1)

pX(0)pY (1) + pX(1)pY (0)
: (1)

A computational unit that performs the computation (1) ofpZ frompX
andpY , for whatever representation of the probability distributions,

1We use the termsprobability mass functionandprobability distributionsyn-
onymously.

2This could also be called “belief propagation,” although the underlying
factor graph need not represent a Bayesian network.

Fig. 1. Soft exclusive–OR circuit.

will be referred to as a “soft exclusive–OR gate.” (This is what Hage-
nauer [23] calls a “box-plus” element.)

Clearly, the complexity of a digital implementation of such a soft
XOR gate depends on the representation of the probability distributions.
For example, any probability distributionp defined onf0; 1g can be
represented by the differencep(0) � p(1). In this representation, the
computation (1) becomes

pZ(0)� pZ(1) = (pX(0)� pX(1))(pY (0)� pY (1)): (2)

Yet another representation of any suchp is the “log-likelihood ratio”
Lp

�
= ln(p(0)=p(1)). In this representation, (1) becomes

LZ = 2 tanh�1(tanh(LX=2) tanh(LY =2)): (3)

Note that, in all these representations, the softXOR gate requires at least
one multiplication.

A circuit for the computation of (1) is shown in Fig. 1. The
input probabilities[pX(0); pX(1)]

T and [pY (0); pY (1)]
T as well

as the output probabilities[pZ(0); pZ(1)]T are represented by
current vectors[IXpX(0); IXpX(1)]T , [IY pY (0); IY pY (1)]T , and
[IZpZ(0); IZpZ(1)]

T , respectively, where the total input currentsIX
andIY can be chosen freely in a large range.

The circuit of Fig. 1 is a version of the so-calledGilbert multiplier,
which is a standard circuit for real-number multiplication that has been
known for over 30 years [30]. The transistor pairs at the four corners of
the circuit are current mirrors, which make such modules freely cascad-
able; the actual computation is done by the six transistors in the middle
row. The full description of this circuit is given in Section IV.

It is noteworthy that all three formulations (1)–(3) are closely related
to this circuit. While (1) corresponds arguably most directly to the cir-
cuit (see Section IV), we shall see that the log-likelihood ratiosLX ,
LY , andLZ of (3) appear also in the circuit:LX andLY appear as the
voltage between the corresponding input terminals andLZ appears as
the voltage between the gates of the output transistors. Equations (2)
and (3) correspond to two different classical ways of using the circuit
as a real-number multiplier.

III. SUM-PRODUCT MODULES

A sum-product module (probability gate) is a computational unit
as shown in Fig. 2 that performs a computation of the following
type. As input, it takes two probability mass functionspX and pY
defined onX

�
= fx1; . . . ; xmg andY

�
= fy1; . . . ; yng, respectively;
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Fig. 2. General sum-product module.

Fig. 3. Trellis diagram forf(x; y; z) = 1 iff x� y = z (Example 1).

Fig. 4. Trellis diagram forf(x; y; z) = 1 iff x = y = z (Example 2).

as output, it computes a probability mass functionpZ , defined on
Z

�
= fz1; . . . ; zkg, according to

pZ(z) = 


x2X y2Y

pX(x)pY (y)f(x; y; z) 8 z 2 Z (4)

wheref is a functionX � Y � Z ! f0; 1g and where
 is an ap-
propriate scale factor that does not depend onz. Note that (4) defines
a large family of modules that is parameterized by the functionf .

If the reader is familiar with Tanner graphs or factor graphs [20],
[2], he will notice that both the function-to-variable computation and
the variable-to-function computation of the sum-product algorithm are
of the form (4), provided that the local functionf is f0; 1g-valued. In
particular, both the forward recursion and the backward recursion of
the BCJR algorithm [4] are of this form.

Specificf0; 1g-valued functionsf are conveniently illustrated by
trellis diagrams as in Figs. 3, 4, and 7. The left-hand nodes correspond
to the elements ofX , the right-hand nodes correspond to the elements
of Z , and an edge betweenx 2 X andz 2 Z with labely 2 Y exists
if and only if f(x; y; z) = 1. Note that the trellis diagram uniquely
definesf .

Example 1 (SoftXOR Gate): Let X = Y = Z = f0; 1g and let
f(x; y; z) = 1 if x � y = z (where “�” denotesmod-2 addition)
andf(x; y; z) = 0 else. The corresponding trellis diagram is shown
in Fig. 3. With this functionf , the module of Fig. 2 becomes a soft
exclusive-OR gate as in Section II.

In generalization of Example 1, “soft” versions of all standard logic
gates can be constructed by a suitable choice off .

Example 2 (Componentwise Product):Let X = Y = Z and let
f(x; y; z) = 1 if x = y = z andf(x; y; z) = 0 else. The cor-
responding trellis diagram (forX = Y = Z = f0; 1g) is shown in
Fig. 4. The computation (4) then reduces to the componentwise product

Fig. 5. One trellis section of a 4-state tail-biting convolutional code.

of pX andpY . Such computations appear in nearly all applications be-
cause they arise whenever independent information (pX andpY ) about
the same random variable is combined.

The specific modules from Example 1 and 2 actually suffice for
the decoding of low-density parity-check codes. The general form
(4), with general finite alphabetsX , Y , andZ , and with an arbitrary
f0; 1g-valued functionf , suffices for iterative decoding in general.

We conclude this section with an example of a complete decoding
network for a tail-biting convolutional code. This decoder was actu-
ally implemented as an analog VLSI chip using the circuits of this
correspondence [25], [26]. (A similar analog decoder for a two-state
tail-biting code was implemented by Moerzet al. [28].) The code is
defined by the four-state tail-biting trellis consisting of nine identical
trellis sections, each trellis section as shown in Fig. 5. In the figure, each
trellis branch is labeled both with the corresponding input bit (informa-
tion bit) and with the two corresponding encoded bits (output bits). The
code is a linear block code of length18 and dimension9.

A decoding network for this code is given in Fig. 6. Each signal
line in Fig. 6 represents a whole probability mass function. This de-
coding network is a direct implementation of the BCJR forward–back-
ward algorithm [4] (adapted to a tail-biting trellis), which is a special
case of the general sum-product algorithm. Each module in Fig. 6 is a
sum-product module of the form (4). The trellis diagrams of (the func-
tionf corresponding to) these modules are shown in Fig. 7. The type-B
modules perform the “forward” computation on the tail-biting trellis,
the type-C modules perform the “backward” computation on the trellis,
the type-A modules precompute the branch metrics, and the type-D
modules compute the final output.

Assuming, for the convenience of notation, a memoryless channel,
the input to the decoder are the probability distributions

pin; i(xi)
�
= 
p(yijxi); i = 1; . . . ; 18

wherep(yijxi) is the channel law, wherey1; . . . ; y18 are the (fixed)
received channel output symbols, and where
 is the scaling factor
required to satisfypin; i(0) + pin; i(1) = 1. We shall see in the
next section that such scaling factors are implicit in the physical
representation of probability distributions and need not be computed
explicitly. Assuming a uniforma priori distribution over all codewords
(x1; . . . ; x18), the output of the decoder consists of approximatea
posteriori probability distributions~pi(ui) � p(uijy1; . . . ; y18), for
the information bitsui, i = 1; . . . ; 9. The output probability distribu-
tions are not exacta posteriori probability distributions because the
decoding network has cycles [2].
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Fig. 6. Decoding network for a tail-biting convolutional code.

Fig. 7. Trellis diagrams for (the functionf of) the sum-product modules in Fig. 6.

IV. TRANSISTORS

We now turn to the realization of probability propagation networks
as analog transistor circuits. In such analog networks, probabilities
will usually be represented as currents (and voltages will represent
log-likelihood ratios). A probability mass functionpX defined on
some finite setX

�
= fx1; . . . ; xmg is represented by a current vector

(IxpX (x1); . . . ; IxpX (xm)) with an arbitrary positive sum current
Ix. Conversely, any current vector(I1; . . . ; In) with nonnegative
components, not all of them zero, may be thought of as representing a
probability mass functionpY defined on some setY

�
= fy1; . . . ; yng

with valuespY(yi)
�
= Ii=(I1 + � � � + In).

The fundamental circuit that underlies the realization of the mod-
ules of Section III is shown in Fig. 8. Its inputs are the currentsIx; i,
i = 1; 2; . . . ; m and the currentsIy; j , j = 1; 2; . . . ; n; its outputs
are the currentsIi; j . All transistors are modeled as ideal voltage-con-
trolled current sources, for which the currentIdrain into the drain ter-
minal depends exponentially on the voltageVgate � Vsource between
the gate and source terminals according to

Idrain = I0e
(�V ��V )=U : (5)

The parametersI0, �, and� depend on the fabrication process and
on the temperature;UT is the so-called thermal voltage, which de-
pends only on the temperature. For� 6= �, the transistor is effec-
tively a four-terminal device rather than a three-terminal device; the
extra (hidden) terminal is the “bulk” or “substrate,” which serves as
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Fig. 8. Fundamental circuit.

Fig. 9. Circuit of Example 2.

the reference for all potentials. Equation (5) is an excellent approxi-
mation both for CMOS transistors in the so-called subthreshold mode
and for bipolar transistors. Our terminology and notation correspond to
the former. For bipolar transistors, “drain” is replaced by “collector,”
“gate” by “base,” “source” by “emitter,” and we have� = � � 1. It is
shown in the appendix that the behavior of the circuit is given by

Ii; j = Iz(Ix; i=Ix)(Iy; j=Iy) (6)

with Ix
�
=

i
Ix; i, Iy

�
=

j
Iy; j ; andIz

�
=

i j
Ii; j = Ix. The

circuit thus computes the pairwise product of the two probability mass
functions~pX(i)

�
= Ix; i=Ix and~pY (j)

�
= Iy; j=Iy.

The application of the circuit of Fig. 8 to the computation of (4)
is straightforward. The input terminals of the circuit are fed with the
currentsIx; i

�
= IxpX(xi), i = 1; . . . ; m; and Iy; j

�
= IypY (yj);

j = 1; . . . ; n, respectively, where the sum currentsIx and Iy can
be chosen freely within the range of validity of (5). The output currents
then equalIi; j = IzpX(xi)pY (yj).

The computation of (4) is completed by summing the currentsIi; j
for eachz 2 Z for which f(xi; yj ; z) = 1. This is easily accom-
plished by connecting wires together and relying on Kirchhoff’s cur-
rent law. If a termpX(xi)pY (yj) is used more than once, the corre-
sponding currentIi; j must first be replicated by current mirrors.

Example 1 (Continued):Forf as in Example 1, the circuit of Fig. 1
results. Note that the structure of the trellis diagram (Fig. 3) is evident
in the topology of the circuit.

Example 2 (Continued):Forf as in Example 2, a complete circuit
(for the binary case) is given in Fig. 9. In contrast to Example 1, the
currentsIi; j for i 6= j are not used in the summation.

The circuits for other sum-product modules (e.g., those of Fig. 6 and
Fig. 7) are easily constructed according to the same pattern.

In the circuit of Fig. 1, the total output currentIz equals the input
currentIx. This property is not shared by most other circuit modules as
is exemplified by Fig. 9. Therefore, in general, it will often be necessary
to scale the current vectors to some desired level. Such a scaling may
be achieved by a degenerate version of the fundamental circuit of Fig.
8 with m = 1 andIx; 1 fixed to some constant current. This circuit
is known as Gilbert’s vector scaling circuit [31]. By adding current
mirrors at the outputs, this circuit can be expanded into a building block
of its own. Alternatively, it can also be integrated into the other building
blocks.

As we have seen, in the circuits of this correspondence, currents rep-
resent probabilities. It is easy to see that voltages represent logarithms
of probabilities (or of probability ratios). For example, the transistors
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within the dashed box in Fig. 8 convert the input current vector

(Iy; 1; . . . ; Iy; n) = (IypY(y1); . . . ; IypY(yn))

into a voltage vector(Vy; 1; . . . ; Vy; n) with voltages

Vy; j =
1

�
(UT log(pY(yj)) + UT log(Iy=I0) + �Vref): (7)

By omitting these transistors within the dashed box, the circuit can be
converted into one with voltage inputs instead of current inputs. The
voltage input vector(Vy;1; . . . ; Vy; n) is then given by

Vy; j =
UT

�
log(pY(yj)) + Vo�s (8)

whereVo�s can be chosen freely, corresponding to the free choice
of the sum currentIy in (7), as long as all involved transistors
operate within the validity of the exponential model (5). Similarly,
the current mirrors in Figs. 1 and 9 may be viewed as logarithmic
current-to-voltage converters followed by exponential voltage-to-cur-
rent converters. (The current mirrors can also be realized by standard
quadratic-law CMOS transistors, in which case they may be viewed
as square-root current-to-voltage converters followed by quadratic
voltage-to-current converters.) Indeed, Moerzet al. [28] prefer to
describe their circuit modules—which use the circuit of Fig. 8 without
the dashed box—in terms of voltages. It should be noted, however,
that the scale factorUT =� in (8) depends both on process parameters
and on the temperature.

In our simulations and design, we have so far been focussing on
bipolar CMOS (BiCMOS) technology and used bipolar transistors
for the fundamental circuit. We have mostly been using minimal-size
transistors. The precision of individual circuit modules is then limited
mainly by transistor mismatch. For example, the accuracy of a current
mirror is on the order of 5–10%, which translates into a corresponding
error in the represented probabilities. With realistic voltage swings
and transistor parameters, this accuracy corresponds to about 5–7 bit
resolution of log-likelihood values, i.e., logarithms of probabilities.
The dynamic range of the circuits is three to six decades in terms of
currents/probabilities.

V. DISCUSSION ANDCONCLUSION

We have described a new type of analog computing network that
exhibits a natural match between probability theory and transistor
physics. The elementary modules of which these networks are
composed include probabilistic versions of all standard logic gates as
well as more general nonbinary sum-product modules. The obvious
application of such networks is to the decoding of error-correcting
codes. However, any factor graph all of whose local functions (except
those of degree one) aref0; 1g-valued can be mapped into such an
analog network.

The main advantages of such networks over digital implementations
are higher processing speed or lower power consumption or both. Ac-
cording to our (still limited) experience, this advantage can amount to
two orders of magnitude.

While traditional analog design is plagued with precision problems
(sensitivity to component variations, susceptibility to noise and power
supply disturbances, temperature dependency, etc.), we found that such
analog decoding networks are quite robust against the nonidealities of
real transistors. While most of our actual experience is with bipolar
transistors, we believe that subthreshold CMOS implementations can
be made similarly robust. This robustness may be explained by noting
that the input signals to the decoder are noisy anyway and thus need
not be represented and processed with high precision. (It is well known
that for digital iterative decoders the number of bits used to represent

messages can be quite low.) The quantitative analysis of these effects
is a challenging theoretical problem.

An interesting option for enhancing the robustness of the network
against the stated imperfections is the use of redundant factor graphs,
i.e., of redundant equations (parity checks) in the decoding network.
Preliminary experience suggests that extremely robust networks can
be obtained in this way. This opens the problem of systematical con-
struction of such redundant code descriptions, which appears to be a
new topic in coding theory.

In most of the potential application areas (in particular, iterative de-
coding), the computation network contains loops. It is in such applica-
tions that the full advantage over digital implementations appears be-
cause the computationally demanding iterations required in the digital
case are subsumed by the natural settling behavior of the analog net-
work.

A network with loops may not always converge to a stable state.
However, this holds also for the corresponding iterative digital algo-
rithm. Indeed, we have so far observed little difference between the
convergence behavior of an analog decoding network and its digital
(i.e., discrete-time) counterpart. For decoding applications, experience
with (digital) iterative algorithms indicates that nonconvergence is not
a serious problem for good decoder architectures.

Analog networks in the spirit of this correspondence appear gener-
ally suitable for the realization of a mapping from some high-dimen-
sional analog input space into a finite output space (“bits”) that is insen-
sitive to small disturbances at the input. This opens the prospect that all-
analog receivers—from the demodulator output to the error-correcting
decoder—can be built with such networks. In particular, “soft” feed-
back loops between the various elements (equalizer, channel tracking,
multiuser separation, decoder, etc.) would fit naturally into that ap-
proach. A first step in that direction was made in [23].

APPENDIX

DERIVATION OF (6)

Let Vx; i andVy; j denote the potentials at the input terminals for
Ix; i andIy; j , respectively. On the one hand, we have

Ii; j
Ix; i

= Ii; j

n

`=1

Ii; ` (9)

= I0 exp
�Vy; j � �Vx; i

UT

n

`=1

I0 exp
�Vy; ` � �Vx; i

UT

(10)

= exp
�Vy; j
UT

n

`=1

exp
�Vy; `
UT

: (11)

On the other hand, we have

Iy; j
Iy

= Iy; j

n

`=1

Iy; ` (12)

= I0 exp
�Vy; j � �Vref

UT

n

`=1

I0 exp
�Vy; ` � �Vref

UT

(13)

= exp
�Vy; j
UT

n

`=1

exp
�Vy; `
UT

: (14)

Combining (11) and (14) and noting thatIz = Ix yields (6).
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Unified Design of Iterative Receivers Using Factor Graphs

Andrew P. Worthen, Student Member, IEEE,and
Wayne E. Stark, Fellow, IEEE

Abstract—Iterative algorithms are an attractive approach to ap-
proximating optimal, but high-complexity, joint channel estimation and
decoding receivers for communication systems. We present a unified
approach based on factor graphs for deriving iterative message-passing
receiver algorithms for channel estimation and decoding. For many
common channels, it is easy to find simple graphical models that lead
directly to implementable algorithms. Canonical distributions provide
a new, general framework for handling continuous variables. Example
receiver designs for Rayleigh fading channels with block or Markov
memory, and multipath fading channels with fixed unknown coefficients
illustrate the effectiveness of our approach.

Index Terms—Channel estimation, fading channels, iterative decoding,
low-density parity-check (LDPC) codes.

I. INTRODUCTION

It is well known that for many communication systems joint demod-
ulation and decoding is required for optimum performance. Typically,
this processing is too complex for practical implementation and some
sort of serial processing is employed. Iterative algorithms which ap-
proximate optimal joint decoding for a variety of concatenated codes
[1]–[3] are known to have excellent performance. This has led to an
interest in iterative algorithms for approximating joint channel estima-
tion, demodulation, and decoding, which we calliterative receivers.
The usual paradigm for these designs is the interconnection of soft-
input/soft-output (SISO) modules [4].

Graphical models for codes [5]–[7] lead to iterative algorithms for
decoding, including the turbo decoding algorithm [8]. Factor graphs
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