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1. INTRODUCTION

Graphical models such as factor graphs allow to model
complex systems and help to derive practical detec-
tion/estimation algorithms as message passing in the
graph. In this paper, we outline three examples of on-
going work of this type. For an introduction to factor
graphs, we refer to [1] and [2]. We will use the notation
of [2].

2. EMG SIGNAL DECOMPOSITION

All muscular activity in human bodies is accompanied
by electrical signals inside the muscle fibers. Such sig-
nals can be measured by electrodes (either on the skin
or inside the muscle). The art of measuring and ana-
lyzing such signals is called electromyography (EMG).

A discrete-time model of such signals may be de-
scribed as follows (see Fig. 1). There are Nsrc indepen-
dent “sources” (typically, 2 ≤ Nsrc < 50), each emit-
ting some binary signal. Specifically, source i emits the
signal Xi

4= (Xi,1, Xi,2, Xi,3, . . .) with Xi,k ∈ {0, 1}.
These signals are sparse: the fraction of ones in each
signal is usually well below 10−2 (assuming a sampling
rate of 25 kHz).

Each of Nchn electrodes (with 1 ≤ Nchn ≤ 128)
picks up a noisy and heavily filtered superposition of
all these sources. Specifically, electrode j picks up the
signal Yj

4= (Yj,1, Yj,2, Yj,3, . . .) with

Yj,k =
Nsrc∑
i=1

M∑
`=0

Xi,k−` · hi,j,` + Wj,k (1)

where hi,j,` ∈ R are the filter coefficients, where M ≈
100 is the maximal memory of all the FIR filters and
where Wj = (Wj,1,Wj,2,Wj,3, . . .) is white Gaussian
noise. A (simulated) example of such a signal with
Nsrc = 8 and Nchn = 1 is shown in Fig. 3.

A basic task in electromyography is to estimate the
source signals Xi from the measured signals Yj . We will
assume here that the filter coefficients hi,j,` are known;
in reality, they have to be estimated as well (and we
will address this problem in future work).
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Fig. 1. Model of EMG signals for Nsrc = Nchn = 2.
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Fig. 2. The time-k section of a factor graph (in the
style of [2]) corresponding to Fig. 1.

The maximum-likelihood (or MAP) estimate of Xi,k

appears to be computationally untractable. Linear es-
timators will not work well: the individual FIR fil-
ters are highly non-orthogonal, and the finite-alphabet
constraint of the sources cannot be exploited by lin-
ear methods. In fact, the algorithms described in the
survey article [3] fail wherever more than two (or, with
extreme effort, more than three) source signals overlap.

A factor graph of the system model is shown in
Fig. 2. The variables Si,k in this figure represent the
vector (Xi,k, Xi,k−1, . . . , Xi,k−M )—the state of the FIR



Fig. 3. Single-channel EMG signal annotated with the “firing times” of the Nsrc = 8 sources (top) and the impulse
responses of the sources (bottom).

filters fed by Xi—which we assume to contain at most
one “1”. (EMG experts1 tell us that this assumption is
innocent.) Due to this assumption, we can define the
range of Si,k as the set {0, 1, 2, . . . ,M+1}; Si,k = n
means Xi,k−n = 1 if 0 ≤ n ≤ M and Xi,k = . . . =
Xi,k−M = 0 if n = M + 1.

In Fig. 2, the boxes labeled h1 represent the func-
tion p(si,k+1|si,k) defined in Table 1, where the param-
eter ε ≈ 10−2 models the sparseness of the sources.
The variables

Zi,j,k
4=

M∑
`=0

Xi,k−` · hi,j,` (2)

(the output of the FIR filters) are deterministic func-
tions of Si,j,k, which is represented by the boxes labeledh2 . The nodes labeled h3 represent Gaussian distribu-
tions.

By iterative sum-product message passing (cf. [1],
[2]), we obtain a practical algorithm to estimate Xi,k

(simultaneously for all i and k) with a computational
complexity that is roughly linear in the number of sour-
ces Nsrc, in the number of electrodes Nchn, and in the
maximal filter memory M . Message passing through
the sum-constraint node h4 (involving Nsrc + 1 vari-
ables) is handled as outlined in [4, Section 3.5].

1Specifically, Thomas Läubli and Daniel Zennaro from IHA,
ETH Zurich, with whom we have been collaborating.

si,k si,k+1 p(si,k+1|si,k)

n ∈ {0, 1, . . . ,M} n + 1 1
M + 1 M + 1 1− ε
M + 1 0 ε

everything else 0

Table 1. State transition probabilities p(si,k+1|si,k)
(nodes h1 in Fig. 2).

Although straightforward in principle, the develop-
ment of the specific algorithm involves many design
choices: details of the system model and of the factor
graph, quantization issues, the scheduling of the mes-
sage updates, etc. Much experimentation was neces-
sary to make the algorithm work well (and fast), and we
expect further improvements as our experience grows.
The message passing algorithm now allows to decom-
pose heavily superimposed EMG signals (such as the
example in Fig. 3) that appear to be far beyond the
reach of other published methods.

3. PHASE ESTIMATION IN A
COMMUNICATION RECEIVER

Consider a communication channel of the form

Yk = Xk eiΘk + Nk (3)
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Fig. 4. Phase estimation: time-k section of factor
graph of (3) and (5).

where Xk is the complex channel input symbol at time
k, Yk is the corresponding received symbol, Θk is the
unknown phase, and Nk is white Gaussian noise with
known variance σ2

N . In [5] and [6], three different mod-
els for the phase Θk are considered:

Constant Phase: Θk = Θ, an unknown constant.

Random Walk:

Θk = Θk−1 + Wk, (4)

where Wk is white Gaussian noise with known
variance σ2

W .

Random Walk with Unknown Drift:

Θk = Θk−1 + Wk + Ω (5)

with an unknown drift parameter Ω and with Wk

as above.

A factor graph of the last case is shown in Fig. 4.
The node labeled h5 represents the deterministic func-
tion Θk 7→ eiΘk . As described in [6], we obtain various
message passing algorithms suitable for joint iterative
channel estimation and decoding. (For the random
walk phase models, no such estimator seems to have
been proposed before.) The proposed message passing
algorithms consist of various combinations of quantized
messages, gradient methods, Kalman filters (cf. [7]),
generalizations of Kalman filters that work with Gaus-
sian mixtures, and particle-filter methods.

4. AR MODEL PARAMETER ESTIMATION

Let X1, X2, . . . be real-valued random variables defined
by

Xk =
M∑

`=1

Xk−` · a` + Uk (6)
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Fig. 5. AR parameter estimation: time-k section of
the factor graph.

with a` ∈ R and where U1, U2, . . . is white Gaussian
noise with variance σ2

U . We observe the process Y1, Y2, . . .
with

Yk = Xk + Wk, (7)

where W1,W2, . . . is white Gaussian noise with variance
σ2

W , and we wish to estimate the unknown coefficients

a
4= (a1, . . . , aM )T . (8)

In a first version of the problem, the parameters σ2
U and

σ2
W are known; in a second version, they are unknown

and need to be estimated as well.
It is convenient to write (6) and (7) in state-space

form as

Sk = ASk−1 + bUk (9)

Yk = cT Sk + Wk (10)

with

Sk
4= (Xk, . . . , Xk−M+1)T (11)

A
4=

(
aT

I 0

)
(12)

b
4= c

4= (1, 0, . . . , 0)T . (13)

The factor graph corresponding to (9)–(10) is shown
in Fig. 5. Using the recipes from [2], we obtain mes-
sage passing algorithms for the simultaneous estima-
tion of Sk, a, σ2

U , and σ2
W . The estimation of Sk

amounts to Kalman filtering (and smoothing), which



uses a hard-decision estimate â of the coefficient vector
a. The estimation of a itself may be carried out either
by another Kalman filter of by an LMS-type gradient
method. Note that, if σ2

U is known and σ2
W = 0 (i.e.,

without observation noise), the problem reduces to the
classical LPC parameter estimation problem; in this
case, the message passing algorithms reduce to stan-
dard gradient methods or RLS algorithms. The esti-
mation of the variances σ2

U and σ2
W is accomplished by

particle filters. The message passing algorithms may
thus be roughly described as two coupled Kalman fil-
ters (or a Kalman filter coupled with an LMS-type
algorithm) coupled with two particle filters. A more
detailed description of the algorithms and some simu-
lation results are given in [8] (and a full report is in
preparation). The extension of the message passing al-
gorithms to time-varying model parameters should be
straightforward.

5. DISCUSSION

We have outlined three examples of ongoing work in
signal processing with factor graphs. Using the gen-
eral recipes described in [2] and [4], we have obtained
practical algorithms for complex detection/estimation
problems; these algorithms either outperform previ-
ously published algorithms or are actually the first work-
ing estimators for the respective problem. It should
be noted, however, that the design of such algorithms
involves a large number of design choices; much ex-
perimentation is usually necessary to obtain the best
performance or to make the algorithm work at all.
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