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Abstract—The context of this paper are cycle-free factor
graphs such as hidden Markov models or linear state space
models. The paper offers some observations and suggestions
on “localizating” such models and their likelihoods. First, it is
suggested that a localized version of the model likelihood, which
is easily computed by forward sum-product message passing, may
be useful for feature extraction and detection. Second, the notion
of a “local” model (local factor graph) is introduced. A first class
of local models arises from exponential message damping and
scale factors as in recursive least squares. A second class of local
models arises from the problem of estimating the moment of a
model switch from some known model A to some known model B.
This problem can be solved by forward sum-product message
passing in model A and backward sum-product message passing
in model B. It is pointed out that this method is applicable to
pulse position estimation for any pulse with a (deterministic or
stochastic) state space model.

I. INTRODUCTION

We consider sum-product message passing in cycle-free
factor graphs of state space models such as hidden Markov
models or linear Gaussian models [1], [2]. In this classical
setting, we make some observations and point out some
new applications, all of which revolve around some form of
“localization”.

Specifically, we consider models

p(x0, x1, . . . , xn, y1, y2, . . . , yn) = p(x0)
n∏
k=1

p(xk, yk |xk−1)

(1)
where X0, X1, . . . , Xn are “hidden” variables (state variables)
and Y1, . . . , Yn are observable variables. The factor graph of
(1) is shown in Fig. 1. We use Forney-style factor graphs where
nodes / boxes represent factors and edges represent variables
[1], [2].
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Fig. 1. Factor graph (Forney-style) of state space model.

We are mainly interested in the case where n is large. We
will use the notation of discrete variables, but the translation
to continuous variables is straightforward.

In section II, we review several ways to compute the model
likelihood p(y1, . . . , yn), a “localization” of which is proposed
in section III. In section IV, we consider exponential message
damping and scale factors as in RLS (recursive least squares)
algorithms, which leads us to the notion of a “local” model
(local factor graph). Another class of local models appears
in Section V, where we show that the position of a model
change—the position of a switch from some known model A
to some known model B—can be estimated from forward
sum-product message passing in (the factor graph of) model A
and backward sum-product message passing in (the factor
graph of) model B. Finally, we point out that this method
can be used for pulse position estimation for any pulse with
a determistic or stochastic state space model.

II. COMPUTING THE MODEL LIKELIHOOD

Let us recall the computation of p(y1, . . . , yn) for given
observations y1, . . . , yn. In a first version, we have

p(y1, . . . , yn) =
∑
xn

∑
x0,...,xn−1

p(x0, . . . , xn, y1, . . . , yn) (2)

=
∑
xn

−→µXn(xn), (3)

where −→µXn
is the forward (left-to-right) sum-product message

along the edge Xn. This method has probably been used most
often.

In a second version, we have

p(y1, . . . , yn)

=
∑
xk−1

∑
xk

−→µXk−1(xk−1)p(xk, yk |xk−1)←−µXk
(xk) (4)

=
∑
xk

−→µXk
(xk)←−µXk

(xk) (5)

where ←−µXk
is the backward sum-product message along Xk.

This method will be used in section V.
In actual implementations, proper scaling of the messages

−→µXk
and←−µXk

is required for numerical stability. The compu-
tation of p(y1, . . . , yn) by means of (3)–(5) then amounts to



X0

-

y1

X1

-

y2

-
X2

Y3

?

X3

. . .

Fig. 2. Computing p(yk |y1, . . . , yk−1) (for k = 3) for known Y1 = y1,
. . . , Yk−1 = yk−1 (but unknown Yk, Yk+1, . . .) according to (8).

keeping track of the scale factors (preferably in the logarithmic
domain), cf. [3].

In a third version, we have

log p(y1, . . . , yn) = log p(y1) +
n∑
k=2

log p(yk |y1, . . . , yk−1)

(6)
and

p(yk |y1, . . . , yk−1) ∝
∑

x0,...,xk

p(x0, . . . , xk, y1, . . . , yk) (7)

= −→µYk
(yk) (8)

as is illustrated in Fig. 2. Note that the missing scale factor in
(8) can be recovered from

∑
yk
p(yk |y1, . . . , yk−1) = 1. This

method will be used in the next section.

III. SIGNAL CLASS LIKELIHOOD FILTER

A “localized” version of the model log-likelihood (6) is
obtained by defining the instantaneous log-likelihood

Lk = γLk−1 + log p(yk |y1, . . . , yk−1) (9)

for some positive real γ < 1 (typically γ ≈ 1). The
computation of L1, L2, . . . from y1, y2, . . . using (8) and (9)
may be viewed as a nonlinear filter.

For example, consider questions of the type “Is the tele-
phone ringing”? How likely are the recent observations
yn, yn−1, . . . up to time n (= now) under some given signal
model? Note that the (backwards) time horizon has not been
specified. (The telephone may have been ringing for a minute
or just for a second.) A practical solution to such detection
problems may be obtained by testing the instantaneous log-
likelihood Ln against some threshold.

(Note that there is no claim for optimality—there is not even
a fully defined problem. Optimal solutions to similar, but well-
defined problems are available in the literature on “quickest
detection” [4].)

More generally, such “signal class likelihood filters” may be
used for model-based feature extraction. A two-sided version
of (9) may be used for off-line applications.

IV. FORGETTING FACTORS AND LOCAL MODELS

The “damping” of messages by raising them to some power
γ < 1 (γ > 0) is a practical device that has been used in
many applications. In particular, if some message −→µX(x) is
a Gaussian probability distribution with covariance matrix V ,
then −→µX(x)γ is a Gaussian distribution with covariance matrix
V/γ. In this way, the scale factor in RLS (recursive least
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Fig. 3. Recursive damping of remote factors.
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Fig. 4. Factor graph with a model switch.

squares) algorithms may be viewed as an example of such
exponential message damping [2].

Sum-product message passing with such damping may be
viewed as exact (undamped) sum-product message passing in
a modified model / factor graph as in Fig. 3, which expresses
decreasing confidence in, or reliance on, remote parts of the
model.

An unusual feature of this modified factor graph is that it
depends on the variable / edge in the focus; each variable, when
focussed on, has its own “local” model. Another example of
such a local model is given in the next section.

V. DETECTION OF MODEL SWITCHES
AND PULSE POSITIONS

Consider a situation in which y1, . . . , yk are generated by
some given model A while yk+1, . . . , yn are generated by
some given model B. Assume that we do not know the
moment k of the model switch and we wish to estimate it.

Let Hk be the hypothesis that the model switch occurs
between the observations yk and yk+1. Then

p(y1, . . . , yn|Hk)

=
∑

x0,...,xk

∑
x′k,...,x

′
n

p(x0, . . . , xk, y1, . . . , yk |A)

g(xk, x′k) p(x
′
k, . . . , x

′
n, yk+1, . . . , yn|B) (10)

where the “glue factor” g(xk, x′k) expresses the constraints
on the final state Xk of model A and the inital state X ′k of
model B. The factor graph of (10) is shown in Fig. 4. Based
on this factor graph, the likelihood p(y1, . . . , yn|Hk) can be
computed according to (4) or (5) by forward message passing
in model A and backward message passing in model B as
indicated in Fig. 4.

Note that p(y1, . . . , yn|Hk) can be computed for all k
simultaneously by a single forward sum-product sweep in
model A and a single backward sum-product sweep in
model B; only the final computation according to (4) or (5)
needs to be done individually for each k.
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Fig. 5. Pulse position estimation: one-sided pulse.

As an example of such a problem, consider the estimation
of the unknown position of a pulse as in Fig. 5 or 6 in additive
white Gaussian noise (AWGN). In Fig. 5, model A is white
Gaussian noise and model B is a second-order linear system
observed with AWGN; in Fig. 6, both model A and model B
are second-order linear systems observed with AWGN. In both
cases, the glue factor g(xk, x′k) is required to enforce the
proper initial / final conditions of the linear systems. (Sum-
product message passing through these linear systems amounts
to Kalman filtering [2], but the message computation tables in
[2] neglect the scale factors that are here required; details will
be given elsewhere.) More generally, we note that this method
for pulse position estimation can be used for any pulse-with-
noise model in state space form.
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Fig. 6. Pulse position estimation: two-sided pulse.
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