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Abstract—Tree-based Gibbs sampling (proposed by Hamze and
de Freitas) is used to compute a Monte-Carlo estimate of the
partition function of factor graphs with cycles. The proposed
method can be used, in particular, to compute the capacity of
noiseless constrained 2-D channels.

I. INTRODUCTION

Let X1,X2, . . . ,XN be finite sets, let X be the Cartesian
product X 4= X1×X2× . . .×XN , and let f be a nonnegative
function f : X → R. We are interested in computing (exactly
or approximately) the quantity

Z
4=

∑
x∈X

f(x) (1)

(or, equivalently, 1
N logZ) for cases where

• X1, . . .XN are “small” sets (e.g., |X1| = |X2| = . . . = 2),
• N is large,
• and f has a “useful” factorization (as will be detailed

below).

Note that

p(x) 4=
1
Z
f(x) (2)

is a probability mass function on X . We will also need the set

Xf+
4= {x ∈ X : f(x) 6= 0}. (3)

The quantity (1) is known as the “partition function” in
statistical physics (where it is considered as a function of a
“temperature” parameter that is of no concern to us here). The
computation of (1) is also the key to computing information
rates of source / channel models with memory [1]–[3].

If f has a cycle-free factor graph with not too many states,
then the sum (1) can be computed by sum-product message
passing [1], [4]. In this paper, however, we consider the case
where no such cycle-free factor graph exists. In particular, we
are interested in examples of the following type.

Example 1 (Simple 2-D Constraint). Consider a grid of N =
M ×M binary (i.e., {0, 1}-valued) variables with the constraint that
no two (horizontally or vertically) adjacent variables have both the
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Fig. 1. Forney-style factor graph for Example 1. The unlabeled boxes
represent factors as in (4).

value 1. Let f be the indicator function of this constraint, which can
be factored into factors of the form

κ(xk, x`) =


0, if xk = x` = 1
1, else, (4)

with one such factor for each adjacent pair (xk, x`).
The corresponding Forney-style factor graph of f is shown in

Fig. 1, where the boxes labeled “=” are equality constraints [5].
(Fig. 1 may also be viewed as a factor graph as in [4] where the
boxes labeled “=” are the variable nodes.)

This example is known as the 2-D (1,∞) constrained channel [6].

Note that, in this example, Z = |Xf+ |. For this particular
example, limM→∞

1
M2 log2(Z) ≈ 0.5879 is known to nine

decimal digits [7], [8]. However, the method proposed in this
paper works also for various generalizations of this example
for which this limit is not known to any useful accuracy [6].

A number of Monte-Carlo methods to estimate Z have
been proposed, see [9], [10]. However, these methods assume
that f is strictly positive, which excludes applications as in
Example 1; more about this will be said in Section II.

In this paper, we propose a new Monte-Carlo method for
the computation of Z that works also for Example 1. In
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constrast to the method of [3], the proposed method converges
to the exact value of 1

N log(Z) in the limit of infinitely many
samples.

II. ESTIMATING 1/Z USING GIBBS SAMPLING

One method to estimate 1/Z (and thus Z itself) goes as
follows.

1) Draw samples x(1), x(2), . . . , x(K) from Xf+ according
to p(x) defined in (2).

2) Compute

Γ 4=
1

K|Xf+ |

K∑
k=1

1
f(x(k))

(5)

It is easily verified that E[Γ] = 1/Z. This method was
proposed in [11], see also [9].

However, there are two major issues with this method.
First, it is usually assumed (as in [9], [11]) that f is strictly
positive. In this case, Xf+ = X and |Xf+ | = |X | is
known. However, this assumption excludes applications as in
Example 1. (Indeed, in Example 1, we would have f(x(k)) = 1
for all samples x(k), and |Xf+ | = Z is the desired unknown
quantity.) We will see how this issue is resolved by an idea
from [12].

Second, there is the problem of generating the samples x(1),
x(2), . . . , x(K) according to p(x). A standard general method is
Gibbs sampling [9], [13], which, however, produces strongly
dependent samples. In consequence, the required number of
samples K is likely to exceed the limits of practicality. We
will see how this issue is eased by tree-based Gibbs sampling
as proposed by Hamze and de Freitas [14].

III. PROPOSED NEW METHOD

The proposed method combines tree-based Gibbs sampling
from [14] with an idea from [12].

Let (A,B) be a partition of the index set {1, . . . , N} such
that, (i) for fixed xA, the factor graph of f(x) = f(xA, xB)
is a tree and (ii) for fixed xB , the factor graph of f(x) =
f(xA, xB) is also a tree. An example of such a partition is
shown in Fig. 2.

A. Tree-Based Gibbs Sampling [14]

Starting from some initial configuration x(0) = (x(0)
A , x

(0)
B ),

the samples x(k) = (x(k)
A , x

(k)
B ), k = 1, 2, . . ., are created as

follows. First, x(k)
A is sampled according to

p(xA|xB = x
(k−1)
B ) ∝ f(xA, x

(k−1)
B ); (6)

then x(k)
B is sampled according to

p(xB |xA = x
(k)
A ) ∝ f(x(k)

A , xB). (7)

The point is that the sampling can be done very efficiently
in both cases since the corresponding factor graphs are cycle-
free; see the appendix for details.

Tree-based Gibbs sampling mixes much faster than naive
Gibbs sampling [14].
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Fig. 2. Partition of Fig. 1 into two cycle-free parts (one part inside the two
ovals, the other part outside the ovals).

B. Tree-Based Estimation of 1/Z [12]

Let
fA(xA) 4=

∑
xB

f(xA, xB) (8)

and
fB(xB) 4=

∑
xA

f(xA, xB). (9)

Since ∑
xA

f(xA) =
∑
xB

f(xB) =
∑

x

f(x) = Z, (10)

we can estimate Z by applying the algorithm of Section II to
fA or to fB (as noted in [12]). Specifically, an estimate ΓA

of 1/Z is formed as follows:

1) Draw samples x(1)
A , x(2)

A , . . . , x(K)
A from (XA)f+

A
ac-

cording to p(xA) 4=
∑

xB
p(xA, xB) = fA(xA)/Z.

2)

ΓA
4=

1
K|(XA)f+

A
|

K∑
k=1

1

f(x(k)
A )

(11)

where
(XA)f+

A

4= {xA : fA(xA) 6= 0}. (12)

By symmetry, we also have an analogous estimate ΓB . The
computation of

f(x(k)
A ) =

∑
xB

f(x(k)
A , xB), (13)

which is required in (11), is easy since the corresponding
factor graph is a tree.
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Fig. 3. Estimated capacity (in bits per symbol) vs. the number of samples K
for a 10× 10 grid with a (1,∞) constraint (Example 1). The plot shows 10
independent sample paths, each with two estimates, one from ΓA and one
from ΓB .

The quantity |(XA)f+
A
| in (12) may be easy to determine

even if f is not strictly positive. This applies, in particular, to
Example 1 (and many similar examples) where

(XA)f+
A

= {xA : f(xA, 0) 6= 0}. (14)

In this case, |(XA)f+
A
| =

∑
xA
f(xA, 0) is easily computed by

sum-product message passing in the (cycle-free) factor graph
of f(xA, 0).

C. A Happy Combination

It is now obvious to create the required samples x(1)
A , x(2)

A ,
. . . , x(K)

A in (11) by means of tree-based Gibbs sampling as
in Section III-A. The marginals (13) may then be obtained as
a by-product of the tree-based sampling (see the appendix).

We thus obtain two estimates, ΓA and ΓB , as a by-
product of tree-based Gibbs sampling with virtually no extra
computations.

IV. NUMERICAL EXPERIMENTS

Some experimental results with the proposed method are
shown in Figures 3 through 6. All figures refer to f as in
Example 1 and show the quantity (the “capacity”) 1

N log2(Z).
Figures 3 and 4 use a factor graph partition as in Fig. 2. In

Fig. 3, we have N = 10 × 10 and the estimated capacity is
about 0.6082. In Fig. 4, we have N = 60 × 60; for this size
of grid there are issues with slow convergence.

To improve the convergence and to speed up the mixing, we
can partition the factor graph (the extension of Fig. 1 to N =
60 × 60) into “thicker” vertical strips. Such thick strips have
cycles, but exact sum-product computation is still possible,
e.g., by converting the strip into an equivalent cycle-free factor
graph. The computation time is exponential in the thickness of
the strip, but the faster mixing (as shown in Figures 5 and 6)
results in a substantial reduction of total computation time for
strips of moderate width.

From Fig. 6, the estimated capacity is about 0.5914.

 0.58

 0.585

 0.59

 0.595

 0.6

 0.605

 0.61

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

b
it
s
/s

y
m

b
o

l

Number of Samples

Fig. 4. Estimated capacity (in bits per symbol) vs. the number of samples K
for a 60× 60 grid with a (1,∞) constraint (Example 1). The plot shows 10
independent sample paths, each with two estimates, one from ΓA and one
from ΓB .
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Fig. 5. Same conditions as in Fig. 4, but with strips of width two.
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Fig. 6. Same conditions as in Fig. 4, but with strips of width three.
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Also shown in the figures (as a horizontal dotted line) is
the infinite-grid limit limM→∞

1
M2 log2(Z) ≈ 0.5879, which

is known for this simple example (see Section I).
All figures show the estimates from ΓA and from ΓB for

several independent experiments.

V. BOUNDS FOR INFINITE GRID

Let CM
4= 1

M2 log2(Z) be the capacity of a constraint as
in Example 1 for an M ×M grid. It is clear (from tiling the
whole plane with M ×M squares) that C∞ ≤ CM for any
finite M .

On the other hand, by tiling the plane with M ×M squares
separated by all-zero guard rows and all-zero guard columns,
we obtain C∞ ≥ CM ( M

M+1 )2.
In the example of Figures 4–6 (with M = 60), we thus

obtain 0.5721 ≤ C∞ ≤ 0.5914.

VI. CONCLUDING REMARKS

We have shown that tree-based Gibbs sampling (as proposed
by Hamze and de Freitas) can be used to compute an estimate
of the partition function with virtually no extra computational
cost. The proposed method can be used, in particular, to
compute (a Monte Carlo estimate of) the capacity of noiseless
constrained 2-D channels. Our preliminary numerical experi-
ments are encouraging.

APPENDIX: SAMPLING FROM MARKOV CHAINS

We recall some pertinent facts about the simulation of
Markov chains and cycle-free factor graphs. Let p(x) =
p(x1, . . . , xn) be the probability mass function of a Markov
chain. If p(x) is given in the form

p(x) = p(x1)
n∏

k=2

p(xk|xk−1), (15)

then it is obvious how to create i.i.d. samples according to
p(x). Now consider the case where p(x) is not given in the
form (15), but in the more general form

p(x) ∝
n∏

k=2

gk(xk−1, xk) (16)

with general factors gk. It is then still easy to create i.i.d.
samples according to p(x), which may be seen as follows.
First, a probability mass function of the form (16) can be
rewritten in the form (15) (which allows efficient simulation).
Second, this reparameterization of p(x) may be efficiently
carried out by backward sum-product message passing, as
will be detailed below. The resulting algorithm is know as
“backward-filtering forward-sampling” (or, in a time-reversed
version, as “forward-filtering backward-sampling”) [15].

Specifically, let←−µXk
be the backward sum-product message

along the edge Xk in the factor graph of (16), as is illustrated

Xk−2

gk−1
Xk−1

gk
Xk

�

gk+1
Xk+1

�

Fig. 7. Forney-style factor graph of (16) with messages ←−µXk
(17).

in Fig. 7 (cf. [5]). We then have ←−µXn(xn) = 1 and

←−µXk
(xk) 4=

∑
xk+1

gk+1(xk, xk+1)←−µXk+1(xk+1) (17)

=
∑

xk+1,...,xn

n∏
m=k+1

gm(xm−1, xm) (18)

for k = n− 1, n− 2, . . . , 1. Then

p(x1) =
∑

x2,...,xn

p(x1, . . . , xn) (19)

∝ ←−µX1(x1) (20)

and
p(xk|xk−1) =

gk(xk−1, xk)←−µXk
(xk)

←−µXk−1(xk−1)
(21)

for k = 2, . . . , n. The proof of (21) follows from noting that

p(xk−1) = γ−→µXk−1(xk−1)←−µXk−1(xk−1) (22)

and

p(xk−1, xk) = γ−→µXk−1(xk−1)gk(xk−1, xk)←−µXk
(xk) (23)

where −→µXk−1 is the forward sum-product message along the
edge Xk−1 and where γ is the missing scale factor in (16).

We also note that∑
x1

←−µX1(x1) =
∑

x

g(x) (24)

where g(x) is defined as the right-hand side of (16). In this
paper, this fact is used to compute the marginals (13) as a
by-product of the sampling.

The generalization of all this to arbitrary factor graphs
without cycles is straightforward.
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