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Abstract -An approximate measure for the noise performance 
of integrator-based SC-filters of general order n is developed. 
The measure is dependent only on SC-design parameters like 
capacitor ratios and capacitance levels, but not on technology- 
dependent parameters describing the switches and amplifiers. A 
simple and explicit closed-form expression for this approximate 
noise measure is derived and compared with more complex-and 
accurate-measures. The comparison demonstrates extraordi- 
nary accuracy for our approximate noise computation. An im- 
portant application for our noise measure isfin the optimization 
of integrator-based SC-filters; it is used in the computer-aided 
design of sensitivity- and noise-optimized SC filters as described 
in the companion paper Ill. 

I. INTRODUCTION 

T HE main limitation for the application of switched- 
capacitor (SC) technology in signal processing tasks is 

the poor noise performance and the corresponding lim- 
ited dynamic range of SC filters. Therefore, noise analysis 
and optimization is crucial. Exact noise computations for 
SC filters are, however, generally involved and computer- 
intensive. This is not disturbing in an analysis context, 
where most often only a few noise computations have to 
be performed. It becomes troublesome, however, when 
synthesizing SC circuits, because, as mentioned above, 
dynamic range limitations generally make a design opti- 
mization necessary, and this in turn requires many noise 
analysis runs. It is therefore very desirable to have an 
easily computable measure that describes the noise per- 
formance accurately. Many proposals for the approximate 
computation of noise in SC circuits have already been 
made (e.g., [2]-[5]). However, their underlying models 
lead to noise approximations that are not sufficiently 
accurate or comprehensive to be interpreted in a more 
exact modeling environment. They also supply no infor- 
mation about the approximation errors to be expected. 
Finally, the previously published expressions for noise are 
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limited to small building blocks such as integrators or 
biquads, and cannot be readily generalized to nth-order 
filters. To overcome these shortcomings, we have devel- 
oped a new noise measure and derived an explicit closed- 
form expression for its computation for general nth-order 
integrator-based SC filters that use the well-known stray- 
insensitive two-phase integrators [6] as basic building 
blocks. These are the most common filters in practical use 
today. Based on the proposed noise measure, we develop, 
in a companion paper [l], an efficient optimization proce- 
dure that minimizes noise for a given capacitance area, 
and which is implemented in the computer-aided design 
and optimization tool SCSYN [7].l The noise perfor- 
mance and dynamic range of SC filters can thus be 
significantly improved as has been demonstrated by simu- 
lation, cf. [ll. 

The derivation of the new noise measure was stimu- 
lated by the following observations regarding noise prop- 
erties that turn out to be typical for SC filters. Beside 
their dependence on capacitors, the noise in such circuits 
is also influenced by the realization of the switches and 
amplifiers. In their ON-state, the switches can be modeled 
by finite, fixed conductances G in parallel with white-noise 
current sources with the (two-sided) spectral density 2kTG 
(kT is the product of Boltzmann’s constant and the 
absolute temperature), and in their OFF-state by open 
circuits. The amplifiers used in SC circuits are mostly of 
the operational transconductance amplifier (OTA) type, 
whose broadband noise contribution is modeled by a 
white-noise current source of spectral density 2kTgy, 
with g and y denoting the transconductance and noise 
factor, respectively. Based on these models, Fig. 1 shows 
the output noise performance* of a lOth-order bandpass 
ladder filter3 computed by the WATSCAD network anal- 
ysis package [8]. It illustrates the following properties, 
which are typical for all the filters we have investigated. 
The noise variance is linear in the noise factor y and 

‘SCSYN uses the novel noise measure also in structural optimization 
of biquad cascades in that it allows the fast selection of the best in a 
class of possible realizations. 

‘Only the predominant discrete-time noise is taken into account [8]. 
3The filter realizes a passband extending from 1.2 kHz to 1.54 kHz, a 

passband ripple of 0.2 dB, and a maximum pole Q of 48 with a clock 
frequency of 50 kHz. We refer to the companion paper [l] for further 
details and specifications. 

0098-4094/91/$01.00 01991 IEEE 



12.50 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 1991 

lSOO-+ 

1500 - 

1400 - 

I&,, = 20kR; g = 80~s 

/ 

loooOW, 
8-7 

4.0 5.0 6.0 

Fig. 1. Noise performance of lothorder bandpass ladder filter. Noise 
variance in a l-Hz band at upper passband edge as a function of the 
amplifier noise factor y for various :switch on-resistance and amplifier 
transconductance combinations. 

there seems to be a crossing point where all linear charac- 
teristics, which differ by R,, = l/G and g, meet. Whereas 
the linearity in y is found to hold for SC filters in general 
[9], a true crossing point exists only for undamped SC 
integrators [lo]. For practical SC filters there is, instead 
of a crossing point, a small region through which the 
linear characteristics pass. This crossing property is inves- 
tigated in detail in Section 2.1 for a first-order filter. 
There we show that the crossing region is, in fact, very 
small and can be approximated by a point that is exactly 
defined and designated crossing point. With increasing 
amplifier transconductance g, the noise dependence on y 
becomes flatter. In the limit, as g -+m, the noise is no 
longer a function of the noise factor y because the 
amplifier is ideal (infinite transconductance and vanishing 
noise contribution). Thus the remaining noise is due to 
switch noise for which the dependence on the switch 
oii-conductance G vanishes as well. This limiting behavior 
specifies the magnitude of the crossing point and depends 
only on SC-filter design parameters such as capacitor 
ratios and capacitance levels, but not on technological 
parameters describing the switch and amplifier realiza- 
tions (e.g., R,, = l/G, and g ). Thus the magnitude of the 
crossing point can serve as a useful measure for the noise 
performance, which is dependent only on SC-filter design 
parameters. Whereas this noise measure can efficiently be 
used to optimize the design parameters of an SC filter 111, 
the above discussion of the true noise performance can 
guide the amplifier and switch design. 

For the first-order filter mentioned above the intro- 
duced noise measure is approximated by a simple closed- 
form expression in Section 2.1. In Section 2.2 we use a 
signal-flow graph interpretation to postulate the general- 
ization of the derived formula to SC filters of any order. 
An empirical verification by simulation of the true noise 
performance is discussed in Section 2.3. The excellent 
agreement with the simulation demonstrates the useful- 
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Fig. 2. Circuit diagram of a first-order filter example. 

II. DERIVATION OF THE &PROXIMATE 

NOISE FORMULA 

2.1. Crossing Point Noise of First-Order Circuit 

The discrete-time noise in SC circuits is generated by 
the interaction of two basic phenomena [8]. One phe- 
nomenon involves the sampling of random voltages in 
each of the noisy continuous-time networks correspond- 
ing to the switching phases of the SC filter; the other 
phenomenon is related to a linear discrete-time filtering 
of these samples. We shall now investigate these two 
phenomena using the first-order SC filter in Fig. 2 as an 
example. 

Discrete-Time Filtering: For a phase-2 to phase-2 opera- 
tion (i.e., phase 2 at input and output), and taking noise 
into account, the filter in Fig. 2 is described by4 

+ A,(n) + A*(n) (1) 

where the voltage samples with index n are taken at the 
end of phase 2 in the time interval (nT,,(n + l)T,], T, is 
the sampling period, k,, =C,, /C, and k,, = C,,/C, 
denote capacitor ratios according to Fig. 2, and the uncor- 
related stationary white noise sequences A,( .) and A2(. > 
represent the effect of the noise sampled in phase 1 and 
phase 2, respectively. The expression in (1) is written such 
that a signal-flow graph interpretation is possible. This 
will be required later in Section 2.2. A,(n) and A,(n) are 
given in terms of the random capacitor-voltage samples 
Au,,,(n) (j l {l, 11,12} denotes the capacitor index and 
k = 1,2 the phase index, respectively) as follows: 

Phase 1: Ai A Avcl,i(n) 

- kll A~cll,IW - k,* A%1*,1W (2a) 

Phase2: A2(n)A(l+k,,)Av,,,,(n). (2b) 

The (co-)variances of the individual capacitor-voltage 
samples are determined by the continuous-time RC net- 
works realized by the SC circuit in each of its two phases. 

4As usual and justified in practice, full charge transfer is assumed. 
Furthermore, finite gain effects are neglected. ness of our noise measure. 
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(hj 
Fig. 3. Continuous-time circuit diagrams for the noise computation of 
the first-order SC-filter shown in Fig. 2. (a) Phase 1. (b) Phase 2. The 
conductances Gi correspond to the switches Si and model the active 
switches together with the white noise current sources I, with spectral 
density 2kTGi. The amplifier noise source I, has a white noise spectral 
density of 2kTgy. 

Using the switch and amplifier models,’ the resulting 
networks are shown in Fig. 3(a) (phase 1) and (b) 
(phase 2). 

Phase-l Noise: The phase-l network (Fig. 3(a)) shows 
that there is no current flow through the integrating 
capacitor Cl, and consequently no noise generated on this 
capacitor in phase 1. Furthermore the capacitors C,, and 
C,, are part of a simple passive RC network, which 
contains neither capacitor-only loops nor capacitor-only 
cutsets. The detailed analysis given in [ll] shows that for 
this class of circuits the capacitor voltages are uncorre- 
lated with variances of the form kT/C. This results here 
in corresponding variances kT/C,, and kT/C,,, respec- 
tively. Thus, according to (2a), the phase-l induced white 
noise sequence A,(. > is described by 

E[A;] =(k,,+k,,$. 
1 

(3) 

Phase-2 Noise: Fig. 3(b) shows that the phase-2 noise is 
generated in an active continuous-time RC network. This 
means that, in this phase, the technology-dependent pa- 
rameters G, g, and y do enter into its description. This 
dependency, and its characterization by our crossing point, 
is discussed next. From (2b) it is seen that the phase-2 
noise is fully described by the variance of the integrating 
capacitor voltage, E[Av:, ,I. This variance may be deter- 
mined using one of the’ approaches given in [8]. It is 
useful to represent the variance in the form 

-qw-1,21 =f$ 
1 

where the normalized variance f(*) is a function of the 
continuous-time circuit parameters G,, G4, and G, (which 
are all equal to the switch ON-conductance G), the ampli- 
fier transconductance g, the noise factor y, and the 

‘For the present discussion the OTA is modeled as a voltage-con- 
trolled current source in parallel with a white noise current source. 

Fig. 4. Normalized integrating capacitor voltage variances f(.) (not 
true to scale): fai(kll, k,,) 2 lim, jm f(.) represents the ideal amplifier 
limiting behavior whereas fJ-y, k,,, k,,) = limo jm f( .) symbolizes the 
ideal switch limiting situation. Also shown is a representative general 
normalized variance f(r, .) together with the definitions of the displace- 
ment variables Ay and Af. 

capacitor ratios k,, and k,,. Using a “symbolic mathe- 
matics” program [12], it is straightforward to determine 
f(. 1, a rather unwieldy expression which is, fortunately, 
not explicitly needed in the following. 

In order to obtain an exact definition of the crossing 
point, we investigate the limiting behavior of f( . > when 
either the amplifier or the switches are assumed to be 
ideal. Firstly, the limit of f(.> for an ideal amplifier (i.e., 
g *cc) is found to be independent of amplifier-induced 
noise and therefore independent of the noise factor y (as 
well as independent of G): 

lim f( .) = 
2kf* + (2k;, +4k,,)k12 +2k;, 

g-m (k~,+3k,,+2)kl,+2k;,+2k,, 

(5) 
This expression has the desirable feature that it depends 
only on the SC design parameters k,, and k12, or in other 
words, it is independent of the noise factor y, cf., Fig. 4. 
Secondly, the limiting behavior as the switches are as- 
sumed to be ideal (i.e., the conductances become very 
large, or G -co> leads to (cf., Fig. 4) 

lim f(e)= 
G+m 

A fsi(Y,kll,kl2)* 

(6) 
Note that beside y, this function is again dependent only 
on the design parameters k,, and k,,. 

We now define the intersection of the two limiting 
characteristics fai(.> and fJ.> to be the crossing point P 
as indicated in Fig. 4. Unfortunately, with finite switch 
conductances G and amplifier transconductance g, the 
normalized variance characteristic f(y, kl,, k12, G, g) will 
not pass exactly through P. To describe the deviation 
from the crossing point P, the measures Ay and Af are 
introduced as indicated in Fig. 4. In what follows, we 
discuss the upper bounds for these measures. For Ay 
corresponding to the circuit in Fig. 2 we find the expres- 
sion 



1252 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 1991 

0.08- 

0.06- 

h 

Fig. 5. Contours of the maximum relative deviation cy in the k,, - kr2 
plane for values 0 < k,,, k,, < 0.1. 
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Fig. 6. Contours of the maximum relative deviation cf in the k,, - k,, 
plane for values 0 4 k,,, k,, d 1.0. 

where n,,( * >, d,,( . ), and do,( *> are all functions only of 
k,, and k,, and are all non-negative. This leads to a 
non-negative Ay, which is upper bounded by 

AY Q km 
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0.00 0.02 0.04 0.06 0.08 0.10 

kll 

Fig. 7. Relative phase-2 noise approximation error capp(kll, k,,) as a 
function of the feedback capacitor ratio k,, for various values of the 
input capacitor ratio k,,. 

sponding measure for the phase-2 noise is 

‘[A:] =(l+k,,)‘f,,(k,,,k,2)~. 
1 

As anticipated, this measure depends only on SC de- 
sign parameters; see (5). However, the expression is still 
too complicated to be simply interpreted and generalized 
for SC circuits of higher complexity. In order to obtain a 
linear approximation in k,, and k,,, we note that both 
capacitor ratios are positive and small in practical situa- 
tions.6 Furthermore, since k,, is strictly positive in prac- 
tice (i.e., k,, > 01, (5) is defined for all k,, > 0. This 
allows us to approximate ,?[A;] by the linear terms of its 
Taylor series expansion at (k,,, k,,) = (0, k,,,) with kiZO 
small but positive, i.e., 

E[A”z] =(k,,+k,,);. (7) 
1 

The contours of the relative quantity cy defined by 
Ey(k,,, k,,) A Ay,,, / yP with yP denoting the abscissa of 
the crossing point P are plotted in the k,, - k,, plane 
shown in Fig. 5. This contour plot clearly indicates that 
the range of the crossing region in the y-direction is very 
small for practical values of k,, and k,,. Analyzing Af in 
a similar way, the corresponding error quantity cf is 
plotted in Fig. 6. Again, the contour plot indicates the 
small range of the crossing region in the f-direction. 

Denoting the resulting approximation error by r(k,,, k,,), 
we consider the relative error c,pp(kll, k,,) A 
dk,,, k&/W;1 in order to estimate the quality of the 
above approximation. This relative error is plotted in Fig. 
7 as a function of the damping parameter kll, for various 
values of the feed-in parameter k,,. We find that for k,, 
values in the range 0 < k,, G 0.1, the relative approxima- 
tion error is less than 10% for a wide range of k,, values. 
Taking into account the fact that the noise in phase 1 is 
described by the exact expression (3), the proposed phase- 
2 noise approximation (7) is expected to produce errors of 
less than about 5% in the overall noise measure. 

2.2. Signal-Flow Graph Interpretation and Generalization 
for Higher Order Filters 

Having shown that the linear characteristics of the 
normalized variance f(y, . > all cross in the close vicinity 
of the crossing point P, we use the magnitude of P as a 
measure for the variance in (4). With (2b), the corre- 

Recalling that the noise samples from different phases 
are uncorrelated, we obtain with (3) and the approxima- 

6This is especially true for high clock frequencies. 
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TABLE I 
CROSSING POINT NOISE OF ROTH-ORDER BANDPASS LADDER FILTER FOR VARIOUS DESIGNS AS COMPUTED BY 

WATSCAD AND PREDKTED BY OUR FORMULA (A); OUTPUT NOISE VARIANCES a:,,, 
IN A l-Hz BAND AT THE FILTER’S UPPER PASSBAND EDGE 

design 

5kHz 
10 kHz 
20 kHz 
50 kHz 

%$3”JCLV21 error 
by WATSCAD by formula [%I 

4849.37 4709.21 2.9 
2010.47 2036.56 -1.3 
2024.86 2043.86 -0.94 
2253.43 2262.69 - 0.41 

Fig. 8. Signal-flow graph interpretation taking noise into account. 
N,,(z) and N,,(z) are the z-transforms of the uncorrelated discrete-time 
noise sources n&a) and n&z) respectively, and H,,(z) and Ht2(z) 
denote the transfer functions from these noise sources to the filter’s 
output. 

tion (7) for the variance of the total noise input A(n) 2 
A,(n>+ A,(n): 

E[A2]=2(k,,+k,,)F. 
1 

The discrete-time filtering process acting on A(n) = 
A,(n)+ A,(n) according to (1) can now be interpreted 
with the help of a signal-flow graph. If the noise input is 
attributed to two uncorrelated white noise sources, n,,(n) 
and y1i2(n), with variances 

E[&] =g-, E[n:,] =g 
11 1 12 1 

the signal flow-graph according to Fig. 8 is obtained. The 
discrete-time noise spectrum at the filter output is readily 
derived from this signal-flow graph: 

(8) 

This expression for the output noise spectrum of a 
first-order filter suggests the interpretation that the 
switched capacitors C,, and C,, each contribute uncorre- 
lated noise samples of variances 2kT/(k,jC1>, j = 1,2, to 
the integrator summing node. Neglecting loading effects 
we can generalize our noise measure, i.e., (8), for nth- 
order integrator-based SC filters for which, as mentioned 
above, a crossing point in the variance characteristic was 

Ci 

Gil = kilCi ---A+ --- - 

Ci2 = ki2Ci ----+-- -- 
5 

+ 

Cimi = kim; Cd ---#- -- 

Fig. 9. General stray-intensive integrator stage i and corresponding 
capacitor notation. The input capacitors kijC, are arbitrarily connected 
to their surrounding circuit by phase-l and phase-2 switches or by short 
circuits. 

also observed. We then postulate the following approxi- 
mate formula describing the discrete-time noise spectrum 
of the &h-order filter by the crossing point: 

Here n denotes the number of integrator stages in the 
filter, the set Ni contains the indices j of the switched 
input capacitors Cij (i.e., input capacitors connected to 
their surrounding circuit by switches) of integrator stage i 
(cf., Fig. 9), and Hii is the transfer function from 
capacitor Cij to the filter output. 

2.3. Verification 

We have empirically verified the generalized formula 
(9) for filters of order IZ > 1 for many examples by com- 
paring the crossing point magnitudes predicted by (9) with 
those obtained from a more exact noise analysis per- 
formed by WATSCAD, using the corresponding switch 
and amplifier models.’ For the lOth-order bandpass lad- 
der filter introduced in Section I, four different designs, 
adapted to their respective clock frequencies, lead to the 
results summarized in Table I.’ It is seen that (9) is quite 
realistic in describing the crossing point noise for each 
design. Since we have obtained similar results with nu- 
merous other examples, we have reason to believe that (9) 
is a good choice for the explicit analytic description of the 
noise performance of an integrator-based SC filter. As 

‘We note that the accuracy of WATSCAD noise computations has 
been verified in [8] by comparing computed and measured results, 
showing excellent correspondence. 

‘These results are based on a total of lOO-pF capacitance assigned to 
the individual circuit capacitors according to a commonly used proce- 
dure [13]. For further details see [l]. 
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such, it is well suited for the performance optimization of 
SC filters with regard to dynamic range and signal-to-noise 
ratio, as proposed in a companion paper [l]. 

III. CONCLUSIONS 

A measure for the noise performance of two-phase 
integrator-based SC-filters has been developed. Such SC 
filters are the most common in practical use today. The 
measure depends only on SC-design parameters, i.e., it is 
independent of technology parameters such as switch 
ON-conductances, amplifier transconductances, and noise 
factors. A simple closed-form expression has been derived 
that accurately estimates the noise measure and is well 
suited for use in SC-filter design, where it permits noise 
performance optimization in analytical form [l]. Further- 
more, in a more accurate noise modeling context involv- 
ing also the technology-dependent parameters, it permits 
design optimization also of the amplifiers and switches of 
SC filters. The expression for the noise measure is suffi- 
ciently concise and analytical as to be usable also in 
SC-filter design based on symbolical computations. A 
generalization of the proposed noise measure for other 
types of SC filters, such as FIR structures and time-multi- 
plexed filters, and to low-frequency dominant noise (e.g., 
flicker noise), is currently under investigation. 
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