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Abstract —A novel procedure that determines the capacitor
values for a given integrator-based SC network with given ca-
pacitor ratios is presented. The procedure optimally distributes
a limited capacitance area among the individual circuit capaci-
tors by minimizing the overall capacitor spread while simultane-
ously minimizing either sensitivity or noise. Noise in SC circuits
is a function of ideal SC design parameters such as capacitor
ratios and capacitance levels and of the technology-dependent
parameters describing the switches and amplifiers. In our de-
scription of the noise performance, we have found a characteris-
tic point which is only a function of SC design parameters and
can thus serve as a measure for the noise performance. For its
description a closed-form expression is used, which has the
same form as the corresponding sensitivity measure. With these
expressions an efficient capacitance assignment optimization
procedure is derived, which is implemented in the computer-
aided design and optimization program package SCSYN.

I. INnTRODUCTION

SSUMING that the filter to be realized is specified

by a given rational transfer function, the design
process of a switched-capacitor (SC) filter may be divided
into 1) finding a suitable SC structure, ii) mapping the
given polynomial coefficients onto the various capacitor
ratios, which includes dynamic scaling, and iii) distribut-
ing a limited capacitance area among the individual cir-
cuit capacitors. In this contribution we concentrate on the
third step: the capacitance assignment problem. We
thereby restrict ourselves to the important class of two-
phase SC structures that use integrators as building blocks,
such as biquad cascades or ladder structures, and state
the problem as follows: For an SC filter to be realized as a
given integrator-based structure with given capacitor ratios,
assign the fixed total capacitance to the various capacitors
in the filter according to some optimization criterion. Since
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the various integrator stages can be scaled individually,
the problem has (n — 1) degrees of freedom for an nth-
order filter. ’

The conventional approach to this problem is to assign
absolute values to the individual filter capacitors by
choosing the smallest capacitors of every integrator stage
to be equal to some unit capacitor. The remaining capaci-
tors are then determined by the given capacitor ratios, cf.
[1, p. 346]. This conventional procedure does not, how-
ever, take into account the individual behavior of the
integrator stages, e.g., their contributions to frequency-
response errors and output noise. One recent approach
[2] has been to optimize the noise performance of an SC
biquad by using different unit capacitors for the two
integrator stages. The capacitance spread is not consid-
ered. This paper solves the problem of general nth-order
filters (i.e., biquad and ladder networks) and shows that
individual unit capacitors that are optimally adapted for
each integrator stage can significantly improve both sensi-
tivity and noise performance, while maintaining minimum
capacitance spread. Thus, for example, an almost 9-dB
output noise improvement was obtained in a 10th-order
filter design, without increasing either the total capaci-
tance area or the overall capacitor spread, both of which
are important realizability criteria. Details of this example
are discussed later in the text, where it is also shown that
the improvements in noise performance directly translate
into corresponding improvements in signal-to-noise ratio.
It is finally noted that the problem of minimizing noise,
assuming a limited capacitance area (as stated above), is
equivalent to the problem of minimizing the capacitance
area for a given, desired noise performance.

The outline of this paper is as follows. In Section II our
model for capacitor errors and noise sources, as well as
our notation, are introduced. In Section III we investigate
capacitance assignments that achieve minimum capaci-
tance spread and show that not a unigue capacitance
assignment, but a whole assignment region, can achieve
minimum spread. This permits an additional optimization
to be carried out while maintaining minimum spread. In
Section 1V these points are illustrated by means of a
second-order example: the frequency-response error as
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well as noise is shown to be dependent on the capacitance
assignment. For both performance measures, the mini-
mum value is found to be located inside the assignment
region with minimum spread. Motivated by this result, we
propose an optimization strategy for general nth-order
filters in Section V, which minimizes frequency-response
errors, or, alternatively, output noise, and simultancously
realizes the minimum overall capacitance spread. The
computer-intensive sensitivity and noise computations re-
quired in Section IV reveal the need for a simplified
analysis. However, whereas the frequency-response errors
are computable in terms of SC design parameters only,
the noise computations also involve technology-depen-
dent parameters describing nonideal switches and ampli-
fiers. Based on observations made for the second-order
filter example of Section IV, we propose a new measure
for the noise performance that depends only on SC design
parameters, or in other words, is independent of technol-
ogy parameters. We present an explicit closed-form ex-
pression for this noise measure that closely resembles the
corresponding expression for the magnitude-response er-
ror. Using these formulas as objective functions, we ex-
plicitly formulate the constrained optimization problem
and derive an efficient algorithm for its solution in Sec-
tion VI. This optimization algorithm is implemented as
part of our SC-filter design program package SCSYN [3].
In Section VII, we use a 10th-order ladder filter to verify
the usefulness of the optimization algorithm, and of our
noise measure. We do this by comparing the sensitivity
and true noise performance of our optimized design (i.e.,
also taking into account technology-dependent parame-
ters) with that of the corresponding conventional design.

II. ERROR MODELS AND NOTATION

Error Models for Capacitor Values: Two basically differ-
ent error sources deteriorate the accuracy of capacitors in
MOS integrated circuits; one is systematic, affecting all
capacitors in the same way, and the other is purely
random. Because the transfer functions of SC filters de-
pend only on capacitor ratios, systematic errors that yield
constant relative changes do not effect the filter perfor-
mance. Since a major systematic error is caused by under-
cutting of capacitor plates, i.e., during etching, a properly
designed capacitor has a constant area/perimeter ratio,
in order to obtain constant relative changes. A standard
method of achieving this is to break up larger capacitors
into paralle]l combinations of »n identical small capacitors,
so-called wunit capacitors. Random errors are caused by
global and local oxide and edge variations. According to
[4], local variations generally result in errors which are
uncorrelated, whereas global effects result in errors that
are fully correlated between adjacent capacitors. Thus, if
the unit capacitors realizing a specific capacitor ratio are
placed adjacent to cach other on a chip, the errors due to
global variations can be neglected.

According to [5], the remaining local errors result in a
combined error for the unit capacitor C, described by
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Fig. 1. Notation used for the numbering of the integrator stages and

the individual capacitors of a filter.

0.0=(K,.C;/* + K,,Cy)'?, where o, denotes the stan-
dard deviation of Cy, K|, the local edge effect, and K|,
the local oxide effect. For a parallel combination of n
unit capacitors nC, = C, we obtain, due to uncorrelated
error terms, o, = (K, ,n'/?Cy/* + K,,C,)'/%. For a given
capacitor C, the resulting o, is thus dependent on the
chosen size of the unit capacitor C,. In [6] it has been
shown that for most commonly used technologies the
dominant error term is due to local oxide effects. Noting
further that n'/* is a slowly increasing function of #, it is
reasonable to neglect the local edge effects. This leads to
the following simple capacitor error model, which is inde-
pendent of the chosen unit capacitor size.

Each circuit capacitor C; is assumed to be an indepen-
dent, Gaussian distributed random variable with mean C, ,

being the ideal capacitor-value and variance E[(C, - C; ,)*]

£ 02, The corresponding standard deviation o, ; is as-
sumed to be o, ;=c,/C; , with c, denoting a technology
constant.

Noise Models: In an SC circuit, noise is introduced by
switches and amplifiers that are realized by noisy semi-
conductor devices. We model switches in their on-state by
finite, fixed conductances G in parallel with white-noise
current sources of (two-sided) spectral density 2kTG,
where kT denotes the product of Boltzmann’s constant
and the absolute temperature. In their orr-state the
switches are modeled by open circuits. The amplifiers too
are assumed to introduce broadband noise, which, again,
is modeled by white noise. The amplifiers are modeled by
simple operational transconductance amplifiers (OTA’s)
consisting of a voltage-controlled current source with
transconductance g in parallel with a white-noise current
source of spectral density 2kTg+vy, with y denoting the
noise factor of the amplifier. This simple amplifier model
describes the noise adequately for our purposes at some
output terminal of the SC circuit, and serves to develop
the ideas leading to our proposed noise optimization.

Notation: The individual capacitors in a filter are num-
bered as indicated in Fig. 1. The input capacitors to the
ith integrator stage with integrating capacitor C; are
denoted by k;,C;. They are connected to the surrounding
circuitry by either switches or short circuits. The total
capacitance of the ith integrator stage is (1+ X,k ,,)C; and
is denoted by C,;, and the ratio C; /C,=(1+Xk;;) by
B;. The numbering used within integrator stage i is such
that k; <k, < ---k;,, if there are m; input capacitors
in that stage, and the n integrator stages of the filter are
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numbered such that stage 1 has the largest stage spread
among all stages followed by the one of stage 2, and so
on. For SC filters with all capacitance ratios less than
unity, this numbering scheme means that k; <k, < --
< knl'

ITII. CAPACITANCE ASSIGNMENT AND MINIMAL
SPREAD

For an integrator-based SC-filter the individual input
capacitances C;; = k,;C; and the integrating capacitors C;
are related to the total capacitance per stage, C,;, by’
C,;=(k;;/B)C,. Since the k,; are fixed, the stage capac-
itances C,; uniquely determine the individual capaci-
tances. We call the vector of stage capacitances ¢, =
(Cy,Cyy, 7, C,, )T the capacitance assignment. Denoting
the available capacitance area for the whole filter by C,,,
we have the obvious constraint Y,C,; < C,,. We may
relate ¢, to C,,, by

€2 ACyy (1)
where the parameter vector A =(A,A,, - AT is an
alternative formulation of the capacitance assignment.

Note that the constraint 3,C; < C,,, has no influence
on the capacitor spread of the filter realization. As will be
shown in Section VI, the constraint always holds with
equality for minimum magnitude-response errors and
minimum noise. Thus the total available capacitance
should be used, ie., X,C,; = C,,, or

Z A=1 (2)
i=1
Using the abbreviations® C, ., £ max;C; and k; .. =
max; k,;, and correspondingly C; .. and k; .., the spread

of stage iis given by Pi = Ci,max /Ci,min = ki,max /ki,min'
Note that, in contrast to the overall circuit spread p, the
stage spreads p; are independent of the assignment pa-
rameters A; and are given by the specified capacitor ratios
k;;. With our numbering scheme, stage 1 has the largest
stage spread, namely k; .. /k,;. Since this spread is
fixed by the capacitor ratios k;; to be realized by stage 1,
the overall spread in the circuit cannot be less than this
stage spread, which then represents the minimum achiev-
able circuit spread. The circuit spread, however, can
become larger, depending on the capacitance assignment.
This is the case when considering the ratio of maximum
and minimum capacitors that belong to different integra-
tor stages. Thus we obtain the conditions for minimum
achievable circuit spread:

C <C

i,max ~~ “~1,max> Ci,minzcl,min’ for 2<l<n'

1The notation introduced in the previous section has been generalized
in the sense that each capacitor is described by two indices, with the
integrating capacitors denoted by C;,. In a similar way the capacitor
ratios have been generalized by introducing k,, = 1.

Note that the maximum (or minimum) is taken over all capacitors in
the stage, including the integrating capacitor.
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Fig. 2. Minimum spread region for a third-order filter.

With
Ci,max = (ki,max/\i /Bi)ctot and Ci,min = (ki,min/\i /Bi)ctot

we obtain the minimum spread conditions for the assign-
ment parameters:

Di minA1 S A < D maxArs 2<ign

(3)
where we have defined p; . = BiK | max /(B1K; max)> and
pi,min = Bikl,min /(Blki,min)‘

Equation (3) is illustrated for a third-order example in
Fig. 2. The region with constant total capacitance C,,, or
equivalently ¥,A, =1, is given in a three-dimensional \-
space. Equation (3) defines a polyhedron achieving mini-
mum capacitor spread, which, with our notation, is given
by the spread of stage 1. Outside this region, the spread
increases “1/A-like” [7]; see also the illustrative example
in Section 1V.

The important point to note is that the minimum spread
Pmin 18 DOt restricted to a single value of N (corresponding
to a single capacitance assignment), but to a range of A
values. This permits an additional optimization such as
minimum sensitivity or minimum noise to be carried out,
in which case the corresponding optimum A-value is to be
found within the minimum spread range. The resulting
optimized circuit is then guaranteed to have the minimum
capacitance spread p,;,. This is illustrated by the example
in the following section and discussed in detail in Sec-
tion V.

IV. AN ILLUSTRATIVE EXAMPLE

As an illustrative example we use the biquad circuit
shown in Fig. 3. With k,;, =k, =0.0314, and k3 =k, =
0.314, this bandpass filter has a nominal center frequency
of 100 kHz at a clock rate of 2 MHz and a Q-value of 10.
For the minimum achievable circuit spread we find p_;,
=Ky, max / K1, min = k10 / k11 =1/k,; = 31.85. Using (2) we
replace A, by A and A, by (1— A). With (3), the minimum
spread is found in the interval A, < A < A, with A, = 0.512,
and A,=00913. In Fig. 4, the overall spread p as a
function of the assignment parameter A is shown. Outside
the minimum spread range, it increases as 1/A and 1/
(1— A) as shown in [7].
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Fig. 3. Circuit diagram of second-order bandpass filter example.
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Fig. 4. Spread p(A), magnitude-response error max ,{o,(A;®)} and
noise S,,(A;®,) as functions of the assignment A. The dots represent
numerical values computed by SCANAL and WATSCAD.

Magnitude-Response Errors: Capacitor errors introduce
errors both in the magnitude- and phase-response of a
given SC circuit. However, here we consider only magni-
tude-response errors because these are of more practical
importance. Five hundred Monte Carlo simulations were
carried out with the SC analysis program SCANAL [8]
using our capacitor error model with ¢, =10"%/pF and
Ciot = 2.69 pF. The maximum value of the standard devia-
tion o (w) of the magnitude response in the frequency
range of 80 kHz to 120 kHz is used as a frequency
independent measure for the magnitude-response error.
As shown in Fig. 4, max_{o (w)} is a function of the
assignment parameter A with the minimum located within
the minimum capacitance-spread interval [A,, A, ]. Thus
the filter can be designed to be optimum with respect to
capacitance spread as well as to magnitude-response er-
TOr.

Output Noise: Using an extended version of the
WATSCAD SC-network analysis package [9], [10], the
discrete noise at the node “out” in our second-order
filter example caused by noisy switches and amplifiers has
been numerically evaluated, based on the noise models
described in Section II. The noise spectral density at the
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Fig. 5. Noise spectral value at center frequency as a function of the
noise factor y for various combinations of switch oN-resistances and
amplifier transconductances. The different pairs (R, £1/G;g) are
selected to maintain approximately equal charge transfer levels.

filter’s center frequency w,,, S, (@), is shown in Fig. 5 as
a function of the amplifiers noise factor y for various
combinations of parameters R, =1/G and g and A =
0.5.3 Fig. 5 illustrates the following typical characteristics:
The noise S,,(w,) is linear in the noise factor y and
there is a point P where all the linear characteristics
(which differ according to R, and g) meet. Such a point
P has been observed in all other SC-filter examples.
Although a more exact analysis reveals that the linear
characteristics do not exactly meet in a point (except for
undamped integrators [11]), but in a small region, it is
found in the companion paper [12] that, for practical
designs, this region is very small and can be approximated
by a point. Furthermore, [12] shows that the magnitude of
this so-called crossing point is dependent only on SC
design parameters. It is therefore reasonable to use this
magnitude as a measure for the true noise performance,
which is independent of technology parameters. In Fig. 4,
this function, S,,(A;®,), is shown for the example at
hand as evaluated by WATSCAD. It is seen that the
noise measure achieves its minimum value at an assign-
ment A that lies within the interval [A,, A, ] where mini-
mum capacitance-spread is achieved. It is therefore possi-
ble to realize the filter in our example with a design that
is optimum with respect both to spread and noise.

As this example also shows, the design optimum with
respect to noise is nearly optimum with respect to magni-
tude-response errors, a behavior which has been found to
be typical. Because noise is usually the critical perfor-
mance measure, it is advisable to optimize a circuit with
respect to noise in the knowledge that the resulting mag-
nitude-response error will also be small.

V. OpriMuM CAPACITANCE ASSIGNMENT

5.1. Strategy for an Optimization

The conventional method for the computation of abso-
lute capacitor values in a given SC-filter circuit is to
choose the minimum capacitance of each stage i,C; ., to

3For a fair comparison, the pairs (R, 8) are selected such that the
magnitude response errors caused by incomplete charge transfers are in
the same order of magnitude for the various combinations and negligible
in the present context.
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be equal to the unit capacitance C, [1]. This results in the
stage capacitances C; = (B; /k; i,)Co. Thus a fixed total
capacitance area C,, leads to the unit capacitance Cy=
Cior /EiBi / ki min- Since C; ., =C, for all stages i, we
obtain A;=p; .i,A;, for 2<i<n. In view of (2) this
results in the following assignment parameters for the
conventional method:

n
A= D; min (1+ ij’min), for 2<i<n.
j=2

In our second-order example, with A; and A, replaced
by A and 1— A, respectively, we obtain A = A, which is
the upper bound of the minimum spread region as shown
in Fig. 4. However, this figure shows that a capacitance
assignment that minimizes either magnitude-response er-
rors or noise, say A*, could considerably improve the
corresponding performance, compared to the conven-
tional assignment A = A,. We emphasize that A and A*
require the same total capacitance C,,, and realize the
same minimum capacitor spread 1/ k.

In general, the optimum assignment vector X* may not
lie within the minimum-spread region. As mentioned ear-
lier, outside the minimum-spread region the spread grows
very fast, which means that for a given C,,, assignments
outside this minimum-spread region lead to some capaci-
tors that are extremely small. As is well known, this
situation is to be avoided for practical reasons. It is
therefore reasonable to limit the capacitance assignments
to the minimum-spread region specified in the A-space by
(3). Thus we can formulate the optimization problem as
follows: Find the assignment N¥ that minimizes either
magnitude-response error or noise and simultaneously
achieves a minimum overall capacitor spread.

In order to obtain an efficient optimization procedure,
we next present explicit closed-form expressions for the
magnitude-response error and the noise measure intro-
duced above, which avoid computer-intensive evaluations
as performed for the illustrative example in Section IV.
The optimization procedure itself is developed in Section
VI.

5.2. Magnitude-Response Errors

Seeking an analytical expression for the magnitude-
response error that permits efficient computation, we
apply a first-order approximation, Aw, to the amplitude-
response error. Thus we use only the linear terms of the
corresponding Taylor-series expansion with respect to the
capacitance ratio errors Ak;;:

i da (w
ra(w)= ¥ 3 2 g

i=1j=1 ij

where da (w)/dk;; denotes the partial derivative of the
magnitude response a(w) evaluated at the nominal k.

the above equation we again use a first-order approx1ma-
tion for Ak;;; with k;;=C;; /C,, and hence Ak;;=1/C;-
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(AC;; — k;;AC)), we obtain
Aa(w) = i { % %k(i)ACij
i=11j=1 ij
m g 1
_(El_a;k—(:lk“)/xci}a.

Using our capacitance-error model (random, independent
capacitance errors AC;; with standard deviation o, =
c r ), we find for the variance of the magmtude-
response error E[(Aa)?]£ o2

n i da (w 2
‘Taz(‘”)= Z Z (‘%)’) kij

i=1|j=1 ij

i da,(w)

+(Z ok N

j=1 ij

2 e .

o @
For our second-order example, the evaluation of (4) is
plotted in Fig. 4. The curve actually looks like an interpo-
lation of the simulated (dotted) values. This excellent
agreement with the Monte-Carlo simulation indicates the
correctness of our expression (4) for practical capacitor
errors and corresponding capacitor-ratio errors which are
usually on the order of less than 1%. Even if larger
capacitor errors are assumed (e.g., if the unit capacitors
are small, or the process uses quantized values with poor
capacitor matching), expression (4) is still a sufficiently
good approximation because, in the considered optimiza-
tion, only the assignment achieving a minimum is sought.

5.3. The Noise Measure

In the companion paper [12], a formula for the approxi-
mative computation of the noise measure introduced
above (i.e., the magnitude of the crossing point noise) has
been derived. For an nth-order integrator-based SC-filter
this discrete-noise (two-sided) spectral density is given by

S @) =

1-1

2kT
T |H ,(exp(JwT))| il ®
JEN; U i

Here, n denotes the number of integrator stages in the
filter, the set N, contains the indices j of the switched
input capacitors C;; of integrator stage i, and H;(z) is
the transfer function from capacitor C,; to the filter
output. Note that, as desired, the above explicit expres-
sion for our noise measure depends only on SC design
parameters, or in other words, it is independent of tech-
nology parameters. For our second-order example this
expression is used in Fig. 4 to interpolate the simulated
(dotted) values of S,,(A,w,). The excellent agreement
with the WATSCAD simulation indicates the correctness
of (5). Excellent agreement has also been found for higher
order filters as reported in [12].

Referring to step ii) of the filter design procedure
outlined in Section 1, we note that the capacitor ratios are
usually obtained by a scaling process which causes the
signal levels of all filter nodes to be maximum (scaled for
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maximum undistorted output). It is important to note that
this scaling process not only maximizes the achievable
output swing, but simultaneously minimizes our noise
measure (5) for a given capacitance assignment. A de-
tailed discussion of this interesting fact is given in Ap-
pendix A which, besides proving the statement, makes
clear that the result is not at all obvious. We conclude
that an SC circuit scaled for maximum undistorted output
achieves a maximum signal-to-noise ratio if the given capac-
itance area is distributed such as to minimize our noise
measure.

VI. OrPTIMIZATION PROCEDURE

6.1. Problem Formulation

As motivated by the discussion in Section 5.1, we con-
sider only those designs as “good” that achieve the mini-
mum possible capacitance spread. Thus, we restrict our-
selves to the region in the A-space that is given by (3).
Within this A-region, either the magnitude-response error
(4), or our noise measure (5), may be minimized. With
C; =1, /B,)C,,, the objective function for each case can
be written in the form

frsay= 3 )

i=1 i

The frequency dependence may be eliminated by use of
F(A) = max_ .o f(A; ), which is useful for the magni-
tude-response error, or by F(A) = [, . o f(N; w)dw, which
is useful for our noise measure with F(A) corresponding
to the noise power in the frequency range (). In this way,
the frequency-dependent coecfficients a,(w) are trans-
formed into positive constants b;, and for A;’s satisfying
(3), the following constrained minimization problem can
be formulated: Minimize F(A)=Xb, /A; subject to LA,
=1 and the inequality constraints p; ... A <A; < Pp; 1.
for 2<i<n and A, >0 for all i.

The above formulation inherently proves the fact that
the minimum of the objective function is obtained using
the entire available capacitance C,,, as claimed in Sec-
tion III: Assume there exists a minimum of F(A), which
uses less capacitance than C,,, meaning 2;A; <1. Increas-
ing any parameter A; to utilize the entire available capaci-
tance will decrease F(A) because the coefficients b, are
positive, as is seen from (4) and (5). Therefore, the
minimum demands that 2;A; =1.

To emphasize that the constraints are linear in the
above optimization problem we define the n X 1 vector p;;
as

T
pilé (pil’o’. -, (_1)1—1 ’0’.. -,0)

ith place

A

with p;, = p; .., for I=0and p,;, = — p; ..., for I=1, and
the nx1 vector h=(1,1,---,1)7, and rewrite the opti-
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mization problem as

L s
minimize F(N) =) = (6a)
i=1 M
subjectto  ATA=1 (6b)
and  piA<0, 2<i<n, 1€{0,1}. (6¢)

Note that the physical constraints A; > 0 for all i are not
included in (6) because these requirements will automati-
cally be fulfilled by the algorithm to be developed.

6.2. Discussion of the Problem

With a simple and fast algorithm in mind, we next
discuss the special properties of our optimization problem
(6). First, we note that we are faced with a separable
programming problem, ie., F(A) = X,F(A;). Conse-
quently, the gradient vector of our objective function
F(\) is given by VF(A) =(—b, /X%, — by /25, -,
—b,/X)T and the Hessian matrix by VZF(A) =
2diag{b, /X3,b, /A3, -, b, /A3}. Thus V2F(N) is posi-
tive definite for every relevant point A because 1> A, >0
and b,>0 for all i, meaning that F(A) is convex. To-
gether with the linear equality and inequality constraints
(6b) and (6¢) which define a polyhedron, our problem is a
convex programming problem with the fundamental prop-
erty that any local minimum is a global minimum. Fur-
thermore, since V2F(N) is strictly positive definite, the
obtained minimum X* is also unique, cf., [13, p. 257].

Denoting by 4 the set of those inequality constraints
that are active (i.e., that hold with equality) at the mini-
mum A*, the first-order necessary conditions for our
problem (6), the so-called Kuhn-Tucker conditions, cf.,
[14, pp. 314 ff., p. 327], are found to be

VF(X")+ Z MiPy+ph=0 (7).
iled

RTA: =1 (7b)

pPIN =0, iled ()

PIN <0, ded (7d)

n; =0, iled. (7e)

Note that (7a), (7b), and (7¢) are the necessary conditions
for the equality-constrained problem that result from the
objective function (6a) together with the equality con-
straint (6b), and the active constraints of (6¢c). To verify
that A contains the proper set of active constraints, (7d)
ensures that A* also fulfills the inactive inequality con-
straints. A point A* that fulfills all constraints is called
feasible. Violating (7d) indicates that further constraints
must be made active to guarantee that N* is located
within the feasible assignment region. Finally, (7e) en-
sures that removing a constraint from 4 does not further
decrease the objective function

If the set A were known a priori, we would merely have
0 solve an equality constrained problem. Because we do
not know A, however, a solution procedure for (6) con-
sists of two components: i) an algorithm for finding the
correct set of active inequality constraints, and ii) a vehi-
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cle to determine the solution of the corresponding equal-
ity constrained problem. For i), we use the so-called
active set method, which is adequate for convex program-
ming problems [14, ch. 11.3]. This is outlined in more
detail in Section 6.3. Because ii) has to be solved several
times in the course of the active set algorithm, we take
advantage of the simple structure of our objective func-
tion and the linear constraints, and derive a closed-form
solution for the equality-constrained problem; see Section
6.4.

6.3. Active Set Method

The idea of an algorithm based on the active set
method is to define a set of active constraints at each
step, termed a working set W. The working set W, a subset
of the given inequality constraints (6¢), defines the so-
called working surface S by the A-values that fulfill pJA =
0 for il € W.* Since the constraints are linear, the surface
S in our convex program is a hyperplane. On this hyper-
plane, the algorithm searches for the point A which has a
minimum objective function. If this point is not feasible,
constraints are added to the working set W until a feasi-
ble minimum is obtained. If, at this stage, the removal of
a constraint from the current working set allows a further
decrease of the objective function, the algorithm contin-
ues with the search on the hyperplane given by the new
reduced working set. Otherwise the algorithm terminates.

Since the number of different working sets W is finite,
the algorithm terminates in a finite number of steps if a
decrease of the objective function is guaranteed from step to
step. This decrease of F(A) is a key point of the algorithm
since, otherwise, the same working set W could be chosen
a second time, causing the algorithm to cycle. As will be
shown for the convex program at hand, a proper choice of
the working set W will decrease the objective function at
each step. This guarantees the successful termination of
the algorithm.

To be more precise, assume that step (k —1) has ob-
tained the feasible point Ay, on the hyperplane S, _,
defined by the working set W, _,. Further assume that in
step k the new working set W, is obtained from W,_; by
either dropping a constraint or by adding a new con-
straint.” The search on the hyperplane S, then corre-
sponds to the following equality-constrained problem:

. b
minimize F(\M =Y = (8a)
i=1 %
subjectto  hTA=1 (8b)
and pIA=0, ilew, (8¢c)

for which the solution is denoted by )\";,,k. On the working

“Note that constraints il for /=0 and /=1 are related to the lower
and upper bound of the assignment parameter A;, respectively, and can,
therefore, not be active simultaneously. Thus at most one of the indices
{0 and i1 can be in the set W.

Note the feasible point Ay, | belongs to both hyperplanes S, _; and
S, defined by W, _, and W,, respectively.
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hyperplane §, the obtained minimum may, or may not, be
feasible.
If N}, is not feasible, meaning that pﬁ)\";,,k> 0 for one
of the free constraints i/ & W,, we proceed by modifying
%, to a feasible point A, that fulfills F(Ay,) <F Ay, _)-
Since F(-) is strictly convex, this can be done in the same
way as is normally done in quadratic programming, cf.,
[14, p. 425]. The idea is to move as far as possible on the
line from Ay, to N}, while maintaining feasibility. The
feasible boundary point denoted by Ay, decreases the
objective function: F(Ay, )< F(Ay, ). To show this we
first note that N3, is different from A,  because other-
wise )\*Wk would be feasible, violating the present assump-
tion. Since F(-) is strictly convex, it follows that F(X},) <
F(Ay) < F(Ay, ) aslong as® Ay, # Ny, . With d, = X},
— Ay, _, we write for the improved point Ay =Xy,  +
a,d,, with a €(0,1] as large as possible while maintain-
ing feasibility: pjAy, <0, for il & W,. This leads to

. PilAw, _
a, = min 1, ————1.
A &W,,pid, >0 piid;

If @, <1 is found, a new constraint i/ becomes active and
has to be added to W, leading to the new working set
W, By contrast «, =1 means that A, =X}, which
leads to the second situation, meaning that X}, 1is feasi-
ble.

With N}, being feasible, we have to decide whether
dropping an active constraint may further decrease the
objective function F(-). The solution Xj, of the equality
constrained problem (8) is given by the following first-
order condition

VF(XX;V,()"' Y wipy+ph=0.
ilew,

®)

(10)

If the Lagrange multipliers w; in (10) are nonnegative for
all il €W, then, with X%, , our working set W, fulfills the
Kuhn-Tucker conditions ( ), and therefore solves the con-
vex program (6). On the other hand, if a specific Lagrange
multiplier u; with jI € W, is negative, F(-) can further be
decreased by dropping the corresponding constraint jl.
To verify this, we relax constraint jl, obtaining the new
working set W, . ;, and the corresponding hyperplane S , ;.
Since our constraint vectors p;, are linearly independent,
there exists a AX; for amove on Sy, 5, XWk+1 = Ay + AN,
such that

¢

0, fori=+j,ilew,

_ fori=j,ilew,
ngwk+1=pi€AAj=

(11)

_because pjjXj, =0 for the active constraints (il € W,).

Note that, except for constraint jl, all other constraints of
W, are still active in W, ;. It can easily be shown (cf,,
[14, ch. 10.7]) that the move with AX; on this new

®The degenerated case Aw,= Aw,_, is not interesting because here
the new constraint is just added, but no move is performed in the
A-space. This is not considered to be an optimization step, meaning the
present step number is still (k —1).
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hyperplane S, yields AF(X}, )= —pu,c; Therefore,
choosing a AA; that satisfies (11) such that a negative c;
results (as is needed for feasibility) will decrease the
objective function F(-) if and only if u; <0. This proves
the claim that dropping a constraint decreases F(-).

What we now need for the final formulation of our
optimization algorithm is the solution of (8), which con-
sists of closed-form expressions for the minimum point
)\";,,k and for the corresponding Lagrange multipliers u; of
(10).

0.4. Analytic Solution of the Equality Constrained Problem

For notational simplicity, we drop the step index k in
the following presentation of the general closed-form
solution for the equality constrained problem (8). This
solution is derived by first reformulating the original
problem by eliminating the equality constraints (8c). This
leads to a similar problem with a reduced set of variables,
which can be solved in a straightforward manner. A back
transformation to the original problem finally produces
the desired solution. Leaving the details to Appendix B,
we thus find for the components of the minimum point
Ay

n
Nw,i = Pw,i )y P, ic> I<i<n (12)
k=1
where the terms p}, ; are given by
1, fori=1
pk = { Vb H(W), fori+l,ileW  (13)
Dirs forilew

and where the auxiliary expression H(W) is defined as

1+_Z (_1)1171'1

H(W) 2 4 5 (14)
b1+ Z (_1) -
lew Pi

The required Lagrange multipliers u;, il €W are also
determined in Appendix B. Since only the signs of these
Lagrange multipliers are needed to decide whether a
constraint i/ has to be dropped or not, it is sufficient to
use the normalized Lagrange multipliers &;= ;LiA’t,fl,
given with (B.10) by

1 b;
ﬂl=(—1)l(m—p—;’), lew. (15)

6.5. Optimization Algorithm

With the expressions (9), (12), (13), (14), and (15) we
are ready to formulate the optimization algorithm for the
convex program (6). This algorithm consists of a main
procedure Minmvize shown in Fig. 6, and the two auxil-
iary procedures FEASIBLE and MINIMAL given in Figs. 7
and 8, respectively. Here we use a programming-like
language with self-explanatory structure elements; com-
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PROCEDURE Minimize
BEGIN
{*Initialize working set by activating all upper bounds.*}
Wo = {22,32,...n2}
k=0
<compute initial point Aw,, ¢f. Egs.(12) and (13)>
REPEAT
REPEAT
k=k+1
<compute Hy(Ws), cf. Eq.(14)>
UNTIL feasible
UNTIL minimal
END Minimize

Fig. 6. Procedure MINIMIZE.

PROCEDURE feasible: BOOLEAN
BEGIN
=¢
<compute Ay, , cf. Eqs.(12) and (13)>
di = A}y, - Aw,_,
<find o and associated constraint g, f. Eq.(9)>
Aw, = Aw,_, +apdy
IF ¢ # ¢ THEN
{* Add constraint ¢ *}
Wit = Wi + g, feasible = FALSE
ELSE
{* No change in working set *}
Wiy1 = W, feasible = TRUE
END feasible

Fig. 7. Procedure FEASIBLE.

PROCEDURE minimal: BOOLEAN
BEGIN
{*Compute most negative normalized Lagrange multiplier:
fig < i dLEW. %}
B=0,g=¢
FOR il e W, DO
<compute ji;, cf. Eq.(14) >
IF ji; < ji, THEN f, = i, ¢ = {il}
END
{*Check for minimality.*}
IF ¢ # ¢ THEN
{* Drop constraint ¢ *}
Wi41 = Wi — ¢, minimal = FALSE
ELSE
{* No change in working set *}
Wi41 = Wi, minimal = TRUE
END minimal

Fig. 8. Procedure MINIMAL.

ments are given in {* *}-brackets, and “pseudo’-state-
ments use { )-brackets. The above algorithm has been
implemented in the design program SCSYN [3].

VII. A Design ExaMpLE

As an example of practical relevance we consider the
design optimization of a bandpass filter of order 10 with
specifications as given in [15). These specifications define
a passband extending from 1.2 kHz to 1.54 kHz, a pass-
band ripple of 0.2 dB, and a maximum pole Q of 48.
Using the programs FILSYN [16], and LADNET and
SCSYN [3], an SC ladder filter was generated that uses 50
kHz as clock frequency. The SC circuit was derived ex-
actly from the corresponding z-domain transfer function,
cf., [17], which, in turn, was obtained by FILSYN by
prewarping and bilinearly transforming the corresponding
s-domain transfer function. The SC circuit is shown Fig.
9. It is noted that the corresponding capacitor ratios were
obtained by scaling the circuit for maximum undistorted
output in the passband. In comparing different capaci-
tance assignments, we assume a given total capacitor area
of 100 pF. The magnitude response error is assumed to be
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Fig. 9. Circuit diagram of 10th-order bandpass ladder filter.

TABLE 1

GLOBAL VERSUS CONSTRAINED OPTIMIZATION

Minimum MR-error Noise

criterion Spread (dB) (uv?)
MR-error, global 4236 0.074 333
MR-error, constrained 362 0.082 354
Noise, global 1462 0.081 270
Noise, constrained 362 0.087 293

critical at the upper passband edge, at 1.54 kHz, where
also the discrete-time noise spectral density of our noise
measure is evaluated. Thus the magnitude-response error
o,, as well as the noise variance ”nzom in a 1-Hz band, both
at 1.54 kHz, are taken as performance measures, which
are computed by our formulas (4) and (5), respectively.

In Table I we compare unconstrained-optimized (glob-
ally optimized) designs with constrained-optimized de-
signs, that is, designs with capacitance assignments achiev-
ing the minimum overall capacitor spread, which, in our
example, is 362. If the magnitude response error is taken
as the optimization criterion, we see that an uncon-
strained optimization can decrease the error by only about
10% compared to the corresponding constrained opti-
mization, whereas the spread increases by a factor of
almost 12. Likewise, we find with the minimum noise
criterion that an unconstrained optimization can decrease
the output noise by less than 8%, whereas the spread is
increased by a factor of 4. This example is typical in that
it demonstrates the desirability (and feasibility) of restrict-
ing the optimization to designs that result in a minimum
capacitance spread.

Next, we compare these minimal spread designs’ with
the conventional solution discussed in Section III, which
assumes the same minimum capacitance value C;, for

"The resulting magnitude-response error-optimal capacitance assign-
ment is A = (0.0666, 0.1163, 0.1460, 0.1383, 0.1813, 0.1930, 0.0265,
0.0714,0.0191,0.0416)7, whereas the noise-optimal assignment is A =
(0.0366, 0.0942, 0.1183, 0.1320, 0.1497, 0.1563, 0.0655, 0.1500, 0.0234,
0.0741)7.

TABLE 1II
STANDARD ASSIGNMENTS VERSUS OPTIMUM ASSIGNMENTS.
SPREAD Is 362

MR-error Noise

Assignment (dB) (uv?)
Standard 0.226 2263
MR-optimal 0.082 354
Noise-optimal 0.087 293

each integrator stage. It is seen from Table II that the
output noise variance ‘Tnzou of our circuit is improved by
almost 9 dB compared with that of the conventional
design. Note that such improvements are also observed if
the noise is taken in larger frequency bands; thus, for
example, from 0.1 kHz to 10 kHz, an improvement of 8.1
dB is obtained. Using the magnitude error criterion simi-
lar improvements result. It should be emphasized that all
three designs feature the same overall capacitor spread of
362, and the same total capacitor area of 100 pF. The
difference between the two approaches is that in the
conventional design the individual capacitors consist of
multiples of a unit-capacitor that is equal to the minimum
capacitance occurring in the filter (i.e., C,,), whereas in
the improved designs each integrator stage incorporates
optimally adapted unit-capacitors.

Note that in contrast to our noise measure, which is
dependent only on SC design parameters, and is used in
the synthesis context (computer-efficient optimization),
the true noise performance is also dependent on technol-
ogy parameters (noise factor v, amplifier transconduc-
tance g, and switch conductance G). To verify our final
designs, we compared the true noise performance of the

8The transconductance resistance combinations used are selected
such that the magnitude-response errors caused by charge transfer errors
are in the same order of magnitude as the presently treated magnitude-
response errors, which are due to inexact capacitances—that is, they are
less than about 0.08 dB. The required analysis was carried out using the
program SWAP [18].
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Fig. 10. True noise performance of 10th-order bandpass ladder filter
for various combinations of switch on-resistances and amplifier
transconductances. Noise in a 1-Hz band at upper passband edge
f.=1.54 kHz. The upper curves are related to the conventional design,
the lower curves to the noise-optimized design.

constrained noise-optimal design with the conventional
design. For this comparison we rely on WATSCAD noise
computations, which have been shown to agree well with
measured results [9]. In Fig. 10, this comparison is illus-
trated for the noise variance in the 1-Hz band at 1.54
kHz, for various transconductance and switch on-resis-
tance combinations.® It is seen that not only the crossing
point noise (our noise measure) is far superior in the
design optimized according to our procedure, but also
that the true noise performance is significantly improved
compared to the conventional design; the linear noise
characteristics are much flatter in the optimized design,
which excludes the possibility that the standard design
could become superior in true noise performance for a
noise factor vy larger than that of the crossing point. Note
that these relations are true not only for the illustrated
noise variance, but over the whole frequency band. Be-
cause similar results have been obtained for numerous
other examples, we are confident that the crossing point
noise is a very useful measure for the noise performance
of SC filters. In a broader context, the above results
suggest the following design strategy in order to optimize
the crucial noise performance: Using our procedure,
choose the capacitance assignment that minimizes the
technology-independent crossing point noise. Then com-
pute the true noise performance of the obtained filter
design (cf., Fig. 10) to guide a sensible design for the
amplifiers and switches.
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VIII. CoNCLUSIONS

A design procedure for the optimum assignment of a
given overall capacitance area to the various integrator
stages in integrator-based SC filters is proposed. The
underlying optimization criterion employed throughout is
the requirement for minimum capacitance spread. This is
reasonable, because we have found that minimum spread
is realized in a whole assignment region, whereas unac-
ceptably large spread-values result for assignments slightly
outside this optimum region. As a result, the remaining
degrees of freedom can be used for an optimization with
respect to other criteria. The two criteria investigated are
minimum magnitude-response error and minimum noise.

Closed-form expressions are derived that express the
capacitance spread, the magnitude-response error due to
capacitor errors, and the output noise as functions of the
capacitance assignment. Based on these formulas, an op-
timization procedure is developed that either minimizes
the magnitude-response errors or the noise measure, while
maintaining the minimum possible capacitance spread.
This procedure is implemented in the SC-filter design and
optimization tool SCSYN [3]. This program also permits
the structural optimization of biquad cascades where the
same criteria for the optimization are used. Due to the
relative simplicity of our formulas, it is possible to deter-
mine the best in a class of possible realizations by an
exhaustive search within reasonable computation time.

While the expressions describing the capacitance spread
and the sensitivity of the magnitude response to capacitor
errors can readily be formulated in terms of capacitance
ratios and assignment parameters, this is not possible for
the noise minimization. Here, technology-dependent pa-
rameters such as switch onN-resistance and amplifier
transconductance also come into the analysis. This is why
it was necessary to develop a measure of noise perfor-
mance that excludes these technology parameters and
approximates the true noise in terms only of design pa-
rameters (such as capacitor ratios and capacitance levels).
The high accuracy of the newly introduced noise measure
is illustrated by various designs of a 10th-order ladder
filter.

The usefulness of this noise measure, as well as of the
optimization algorithm using it, has been demonstrated by
comparing the sensitivity and the noise performance of
the optimized designs of a 10th-order example filter with
the corresponding performance measures resulting from a
conventional design. We found that remarkable improve-
ments are achievable with the new designs, e.g., a de-
crease of almost 9 dB in output noise was obtained for a
filter using the same total capacitance and the same
capacitance spread as the one based on the conventional
design. Note that the decreasing noise directly translates
into a corresponding improvement in signal-to-noise ratio,
because the optimization does not change the dynamical
behavior of the filter (i.e., the optimization permits the
capacitor ratios to remain invariant). Finally, we note that
noise-optimum designs are preferable to sensitivity-opti-
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mum designs, because the critical feature of SC filters is
dynamic range and noise, and because, as we have empiri-
cally observed, the sensitivity performance of a noise
optimum design is not far from its sensitivity optimum.

APPENDIX A
S1GNAL-TO-NOISE RAaTIO AND NODE SCALING

We discuss here the changes in signal-to-noise ratios
that are obtained by node scaling. Intuitively, node scaling
that causes the signal levels of all filter nodes to be
maximum (scaling for maximum undistorted output) im-
proves the signal-to-noise ratio. The idea behind this is
that the various signals in the circuit (for example the
amplifier output voltages) are enlarged by this scaling
process, while the noise contribution remains unchanged.
The question concerning signal-to-noise ratio improve-
ment by scaling for maximum undistorted output of SC
filters is also treated in [1, pp. 339 ff.]. However, the
simple noise models assumed there are different from our
more accurate noise models in that ideal operational
amplifiers and fixed noise sources at the amplifier input
terminals are used in [1] to model amplifier noise. Switch
noise does not seem to be taken into account at all. If
more accurate noise models are assumed, it is not a priori
clear whether scaling for maximum undistorted output
will improve—or even deteriorate—the resulting signal-
to-noise ratio. Indeed, the approximate formula describ-
ing our noise measure (see Section 5.3) is seen to have
equivalent noise sources which are dependent on the
various capacitances. These noise sources have a variance
of the form 2kT /(k;;C)), where C; denotes the integrat-
ing capacitance of integrator stage i, and k; are the
capacitor ratios of the corresponding switched input ca-
pacitors. Because scaling for maximum undistorted output
adjusts these ratios, the variances of the noise sources are
also changed by this operation. This is in contrast to the
assumption in [1], and evokes the question whether scal-
ing for maximum undistorted output improves the signal-
to-noise ratio under all circumstances.

Consider the SC-filter section shown in Fig. 11(a) with
the accompanying signal-flow graph representation in Fig.
11(b). Node scaling applied to integratgr stage { modifies
the amplifier output-voltage V(z) to V,(z) by simultane-
ously multiplying the input branches to that stage i by p,
and dividing the branches leaving that stage by p,. Scaling
the node voltage Vj(z) of the integrator stage j means
repeating this process with p; replaced by p;. For the
section shown in Fig. 11 these operations are described by

Vi'—)I}izl/ipi
. p;

i

(A.1)

Note that the branch connecting the two stages { and j is
scaled twice, once as branch leaving stage i by 1/p;, and
once as an input branch to stage j, by p;. The transfer
function from the node voltage V;(z) to the output, H{(z)
2V, .(2)/VA(z), is equivalent to the noise transfer func-
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Fig. 11. SC filter section considered for signal-to-noise ratio computa-

tions.

tion from the noise source n; to the output, H,(z)=
Vou(2)/n;(2), which is thus scaled to

A 1
Hy(2) = Hy(2) = Hy(z) (A2)

Using (A.1) and (A.2), the contribution of the white noise
source n; with spectral magnitude E[n,z-,]= 2kT /(k;C))
to the output noise spectrum, S;(w), is seen to be scaled
to

2kT
k;C

il

Si(w) — §jl(w) =

A 2
Hjl(‘”)|

1 G

=S(w) (A3)

where éj denotes the integrating capacitance C; after
scaling. Clearly, the scaling operation only adjusts capaci-
tor ratios, but says nothing about absolute capacitance
values. To confine a constant total filter capacitance area,
we add the requirement that the total stage capacitances
remain unaltered by scaling. For integrator stage j we
have before scaling

C,= (1 + ij,)Cj (A4)
I
and after scaling
A ki \ 4
C,= 1+ij C. (AS)
1 Pm@

Note that as an input branch to stage j the signal-flow
graph branch with weight k; becomes p;k;, by scaling of
stage j; as a branch connecting stage m(l) to stage j it
becomes k; /p,,, when scaled by p,,,,. With unchanged
total _stage capacitances, i.e., with C;;=C;, the ratio
C;/C; required in (A.3) is found using (A.4) and (A.5).
The ratio of scaled to unscaled noise contribution of n
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therefore becomes
1 1+ pj;kjl/pm(l)

1+ Yk,
{

Sit_
Sjl PiPj

(A.6)

In the scaling process discussed here (scaling for maxi-
mum undistorted output), we must consider two separate
scaling steps, that of scaling up and that of scaling down.
An amplifier output-voltage V{(z) is scaled up if this
output voltage is not as large as distortionless amplifier
operation would allow. In this case, p, is larger than unity,
but the maximum allowable input signal to the filter does
not become larger, since the output voltage of some other
amplifier would then reach its limit of distortionless oper-
ation. In order to improve the signal-to-noise ratio by
scaling up, the contrlbutlon of the noise source n;; must
decrease; this means that 1/ Sy must be less than unity.
Assuming that in the present step only scaling up is
performed, we have p,; =1 from those stages that can-
not be scaled up and some p,,, > 1. Writing (A.6) as

1/(P5P,‘) + ijl/(pipm(l))
1 !
S, 1+ Yk,
l

\F’J >

(A7)

J

the numerator in the above formula is, with p_;, =1,
Pmax > 1, upper bounded by the expression in the denomi-
nator, leading to fj, /8 <1 as needed.

The situation where V(z) is scaled down, meaning that
p; is less than unity, is applied if stage i limits the overall
output level. Scaling down leads therefore to a larger
permissible input signal to the filter. Assuming only down
scaling in this step, we have p,,, =1 for those stages not
being scaled, and a p,,;, <1 for those stages being scaled
down. Noting that 1/p, . is exactly the factor by which
the maximum allowable filter input signal is being in-
creased, the signal-to-noise ratio will be improved if the
ratio S /S, does not growing as fast as 1/pkim, 1€,

j,/S], < 1/,0mm This is easily seen to hold by observmg
that the numerator of the right hand side in (A.7) is upper
bounded by 1/p2,. times its denominator.

Note that a circuit with all amplifier output levels as
large as distortionless operation permits, allows neither a
further scaling up, nor a further scaling down step, and
therefore no further improvement of the signal-to-noise
ratio. We thus state the following.

Assuming noise described by (5), an integrator-based SC
filter with fixed total capacitance area achieves the best
obtainable signal-to-noise ratio if, and only if, it is scaled
such that all its amplifier output voltages are at their
maximum permissible level (scaled for maximwm undis-
torted output).

APPENDIX B
SoLuTION OF THE EQUALITY-CONSTRAINED
ProBLEM

Here, we present in detail the general closed-form
solution for the equality-constrained problem (8). In sub-
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stituting the equality constraints (8c) in (8a), we obtain
the following objective function:
r

1
F(M)=|b+ ) (- 1)— —+
A t#l,iléWAl

ilew Dy 1
where the number of assignment parameters A; has been
reduced by the number of equality constraints in (8c) or,
equivalently, by the number of active constraints », in the
working set W. Using this reduced set of variables, we
reformulate (8), and obtain

An b,
minimize ~ F(A)= =
llfWAl (B.l)
subject to hTA =
with
A b+2(1)—( + T (-1'p),
bi= ilew ilew
fori=1
b;, fori+1,ileWwW

. /\1(1+ Y (—1)’p,.,), for i=1
A= lew

A, fori#1,il&W.

Here the vector h has (n— n.) unity components. The
reduced problem (B.1) is again a convex equality-con-
strained program with a unique local, and therefore also
global, minimum. The necessary first-order conditions for
the minimum X}, are given by

VF (N%) + y,h 0
hT)\”;V =1
where u denotes the Lagrange multiplier. For the compo-

nents of the minimum point A%,, these conditions yield:
w

. b,

* _’__’
A, Z \/[3J

JEWw

i1Ew. (B.2)

Since any realizable assignment parameter A; fulfills A; >
0, which also means A, >0, we consider only positive
square root values in (B.2).

In transforming (B.2) back to obtain the solution of the
original problem (8), we use the relations

A T’(H Y (-1) p,,) fori#1,id&W
—A_l_ i lew
Dip» forilew

given by the expressions below (B.1) for i # 1, il € W, and
by (8c) for il € W. With (B.2) these normalized A-values
yield for the minimum point A%

A":V,i_{\/EH(W), for i +1,il €W

B.3
N D> forilew (B3)
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where the auxiliary expression H(W) is defined by

1+ ) (_1)1Pi1

lew

b+ Y. (- 1)—.

ilew Pi

H(W) 2 (B.4)

With the notation pj, ; = /\";,, i / Ay, 1, we finally obtain for
the components of the minimum point X%, with (8b):

n
Nyi=p%i X P, 1<i<n. (B.5)
=1

In the proceeding, we calculate the Lagrange multipli-
ers u; corresponding to the active constraints (8c). First,

we expand (10) in the minimum point A%,, and obtain:
b .
A*Z + Z lu‘]p][+IvL1 0 fori=1 (B.6a)
w,i jlew
b "uitu, =0, forilew
bl . .
_—X,;V2_+#1=0, fori#1,il¢w. (B.6b)

Note that only (B.6a) and (B.6b) are needed to determine
the Lagrange multipliers u; for il € W. Using (B.6b), we
obtain

u;= )\";,,2, - (= 1) lew. (B.7)
Since the active constraints fulfill
AtV,i=(_1)lpilA>l;V,1’ ew
we rewrite (B.7) as
Wi = m m|(-D'7, iew (BS)

and thus obtain an equation for u,, if we substitute (B.8)
in (B.6a):

b, b,

*2
)‘W,l

M (_1)1_1171‘1'*‘#1:0-

jlew (Pﬂ/\ 1)

Solving the above equation for u; leads, in a first step, to

bi+ X (- 1)

jJew jl 1
:u‘lz 2
1+ ) (_1) P Awa

jlew
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and with (B.4) to

1

Inserting (B.9) into (B.8) finally yields for the Lagrange
multipliers

! 1)’ ! b") lew. (B.10)
; - — = i . .
Mz A*Z ( H(W)Z pIZI
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