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and George S. Moschytz, Fellow, IEEE 

A&r-u& -A novel procedure that determines the capacitor 
values for a given integrator-based SC network with given ca- 
pacitor ratios is presented. The procedure optimally distributes 
a limited capacitance area among the individual circuit capaci- 
tors by minimizing the overall capacitor spread while simultane- 
ously minimizing either sensitivity or noise. Noise in SC circuits 
is a function of ideal SC design parameters such as capacitor 
ratios and capacitance levels and of the technology-dependent 
parameters describing the switches and amplifiers. In our de- 
scription of the noise performance, we have found a characteris- 
tic point which is only a function of SC design parameters and 
can thus serve as a measure for the noise performance. For its 
description a closed-form expression is used, which has the 
same form as the corresponding sensitivity measure. With these 
expressions an efficient capacitance assignment optimization 
procedure is derived, which is implemented in the computer- 
aided design and optimization program package SCSYN. 

I. INTRODUCTION 

SSUMING.that the filter to be realized is specified A by a given rational transfer function, the design 
process of a switched-capacitor (SC) filter may be divided 
into i) finding a suitable SC structure, ii> mapping the 
given polynomial coefficients onto the various capacitor 
ratios, which includes dynamic scaling, and iii) distribut- 
ing a limited capacitance area among the individual cir- 
cuit capacitors. In this contribution we concentrate on the 
third step: the capacitance assignment problem. We 
thereby restrict ourselves to the important class of two- 
phase SC structures that use integrators as building blocks, 
such as biquad cascades or ladder structures, and state 
the problem as follows: For an SC filter to be realized as a 
given integrator-based structure with given capacitor ratios, 
assign the fixed total capacitance to the various capacitors 
in the filter according to some optimization criterion. Since 
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the various integrator stages can be scaled individually, 
the problem has (n - 1) degrees of freedom for an nth- 
order filter. 

The conventional approach to this problem is to assign 
absolute values to the individual filter capacitors by 
choosing the smallest capacitors of every integrator stage 
to be equal to some unit capacitor. The remaining capaci- 
tors are then determined by the given capacitor ratios, cf. 
[l, p. 3461. This conventional procedure does not, how- 
ever, take into account the individual behavior of the 
integrator stages, e.g., their contributions to frequency- 
response errors and output noise. One recent approach 
[2] has been to optimize the noise performance of an SC 
biquad by using different unit capacitors for the two 
integrator stages. The capacitance spread is not consid- 
ered. This paper solves the problem of general nth-order 
filters (i.e., biquad and ladder networks) and shows that 
individual unit capacitors that are optimally adapted for 
each integrator stage can significantly improve both sensi- 
tivity and noise performance, while maintaining minimum 
capacitance spread. Thus, for example, an almost 9-dB 
output noise improvement was obtained in a lOth-order 
filter design, without increasing either the total capaci- 
tance area or the overall capacitor spread, both of which 
are important realizability criteria. Details of this example 
are discussed later in the text, where it is also shown that 
the improvements in noise performance directly translate 
into corresponding improvements in signal-to-noise ratio. 
It is finally noted that the problem of minimizing noise, 
assuming a limited capacitance area (as stated above), is 
equivalent to the problem of minimizing the capacitance 
area for a given, desired noise performance. 

The outline of this paper is as follows. In Section II our 
model for capacitor errors and noise sources, as well as 
our notation, are introduced. In Section III we investigate 
capacitance assignments that achieve minimum capaci- 
tance spread and show that not a unique capacitance 
assignment, but a whole assignment region, can achieve 
minimum spread. This permits an additional optimization 
to be carried out while maintaining minimum spread. In 
Section IV these points are illustrated by means of a 
second-order example: the frequency-response error as 
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well as noise is shown to be dependent on the capacitance 
assignment. For both performance measures, the mini- 
mum value is found to be located inside the assignment 
region with minimum spread. Motivated by this result, we 
propose an optimization strategy for general nth-order 
filters in Section V, which minimizes frequency-response 
errors, or, alternatively, output noise, and simultaneously 
realizes the minimum overall capacitance spread. The 
computer-intensive sensitivity and noise computations re- 
quired in Section IV reveal the need for a simplified 
analysis. However, whereas the frequency-response errors 
are computable in terms of SC design parameters only, 
the noise computations also involve technology-depen- 
dent parameters describing nonideal switches and ampli- 
fiers. Based on observations made for the second-order 
filter example of Section IV, we propose a new measure 
for the noise performance that depends only on SC design 
parameters, or in other words, is independent of technol- 
ogy parameters. We present an explicit closed-form ex- 
pression for this noise measure that closely resembles the 
corresponding expression for the magnitude-response er- 
ror. Using these formulas as objective functions, we ex- 
plicitly formulate the constrained optimization problem 
and derive an efficient algorithm for its solution in Sec- 
tion VI. This optimization algorithm is implemented as 
part of our SC-filter design program package SCSYN [3]. 
In Section VII, we use a lOth-order ladder filter to verify 
the usefulness of the optimization algorithm, and of our 
noise measure. We do this by comparing the sensitivity 
and true noise performance of our optimized design (i.e., 
also taking into account technology-dependent parame- 
ters) with that of the corresponding conventional design. 

II. ERROR MODELS AND NOTATION 

Error Models for Capacitor V3.lues: Two basically differ- 
ent error sources deteriorate the accuracy of capacitors in 
MOS integrated circuits; one is systematic, affecting all 
capacitors in the same way, and the other is purely 
random. Because the transfer functions of SC filters de- 
pend only on capacitor ratios, systematic errors that yield 
constant relative changes do not effect the filter perfor- 
mance. Since a major systematic error is caused by under- 
cutting of capacitor plates, i.e., during etching, a properly 
designed capacitor has a constant area/perimeter ratio, 
in order to obtain constant relative changes, A standard 
method of achieving this is to break up larger capacitors 
into parallel combinations of n identical small capacitors, 
so-called unit capacitors. Random errors are caused by 
global and local oxide and edge variations. According to 
[4], local variations generally result in errors which are 
uncorrelated, whereas global effects result in errors that 
are fully correlated between adjacent capacitors. Thus, if 
the unit capacitors realizing a specific capacitor ratio are 
placed adjacent to each other on a chip, the errors due to 
global variations can be neglected. 

According to [51, the remaining local errors result in a 
combined error for the unit capacitor C, described by 
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Fig. 1. Notation used for the numbering of the integrator stages and 

the individual capacitors of a filter. 

u = (K,,CA/* + K,0C0)1/2, where gcco denotes the stan- 
d?rd deviation of C,, K,, the local edge effect, and K,, 
the local oxide effect. For a parallel combination of IZ 
unit capacitors nC, A C,, we obtain, due to uncorrelated 
error terms, o,, = (K,,n ‘/2C1/2 + K,oCn)1/2. For a given 
capacitor C, the resulting ~1 is thus dependent on the 
chosen size of the unit capacitor C,. In [6] it has been 
shown that for most commonly used technologies the 
dominant error term is due to local oxide effects. Noting 
further that n1j4 is a slowly increasing function of n, it is 
reasonable to neglect the local edge effects. This leads to 
the following simple capacitor error model, which is inde- 
pendent of the chosen unit capacitor size. 

Each circuit capacitor Ci is assumed to be an indepen- 
dent, Gaussian distributed random variable with mean Ci,O 
being the ideal capacitor-value and variance E[(C, - Ci,,>*] 
= A a$. The corresponding standard deviation ac i is as- 
sumed to be u~,~ = caG with c, denoting a teihnology 
constant. 

Noise Models: In an SC circuit, noise is introduced by 
switches and amplifiers that are realized by noisy semi- 
conductor devices. We model switches in their ON-state by 
finite, fixed conductances G in parallel with white-noise 
current sources of (two-sided) spectral density 2kTG, 
where kT denotes the product of Boltzmann’s constant 
and the absolute temperature. In their OFF-state the 
switches are modeled by open circuits. The amplifiers too 
are assumed to introduce broadband noise, which, again, 
is modeled by white noise. The amplifiers are modeled by 
simple operational transconductance amplifiers (OTA’s) 
consisting of a voltage-controlled current source with 
transconductance g in parallel with a white-noise current 
source of spectral density 2kTgy, with y denoting the 
noise factor of the amplifier. This simple amplifier model 
describes the noise adequately for our purposes at some 
output terminal of the SC circuit, and serves to develop 
the ideas leading to our proposed noise optimization. 

Notation: The individual capacitors in a filter are num- 
bered as indicated in Fig. 1. The input capacitors to the 
ith integrator stage with integrating capacitor Ci are 
denoted by kijCi. They are connected to the surrounding 
circuitry by either switches or short circuits. The total 
capacitance of the ith integrator stage is (1-t C,k,,)C, and 
is denoted by Csi, and the ratio Csi /Ci = (1 + Xjkij> by 
pi. The numbering used within integrator stage i is such 
that ki, < ki2 < . . * ki,, if there are m, input capacitors 
in that stage, and the n’integrator stages of the filter are 
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numbered such that stage 1 has the largest stage spread 
among all stages followed by the one of stage 2, and so 
on. For SC filters with all capacitance ratios less than 
unity, this numbering scheme means that k,, < k,, < * . * 
< k,,. 

III. CAPACITANCE ASSIGNMENT AND MINIMAL 
SPREAD 

For an integrator-based SC-filter the individual input 
capacitances Cij = kijCi and the integrating capacitors Ci 
are related to the total capacitance per stage, Csi, by’ 
Cij = (kij/Pi)CSi. Since the kij are fixed, the stage capac- 
itances Csi uniquely determine the individual capaci- 
tances. We call the vector of stage capacitances c, A 
(Csl,Cs2,~~ -7 C,JT the capacitance assignment. Denoting 
the available capacitance area for the whole filter by Cot, 
we have the obvious constraint CiCsi G C,,,. We may 
relate c, to C,,, by 

c, A AC,,, (1) 

where the parameter vector A ~((hl,h2;. *,&jr is an 
alternative formulation of the capacitance assignment. 

Note that the constraint Y&Csi < C,,, has no influence 
on the capacitor spread of the filter realization. As will be 
shown in Section VI, the constraint always holds with 
equality for minimum magnitude-response errors and 
minimum noise. Thus the total available capacitance 
should be used, i.e., CiCsi = C,,,, or 

2 A,=l. (2) 
i=l 

Using the abbreviations2 Ci,,,= 2 maxj Cij and ki,,,= A 
maxi k,,, and correspondingly Ci,min and ki+,, the spread 
of stage i is given by pi P Ci,max /Ci min = ki,,, / ki,,i,. 
Note that, in contrast to the overall circuit spread p, the 
stage spreads pi are independent of the assignment pa- 
rameters hi and are given by the specified capacitor ratios 
k,,. With our numbering scheme, stage 1 has the largest 
stage spread, namely kl,,,ax /k,,. Since this spread is 
fixed by the capacitor ratios k,, to be realized by stage 1, 
the overall spread in the circuit cannot be less than this 
stage spread, which then represents the minimum achiev- 
able circuit spread. The circuit spread, however, can 
become larger, depending on the capacitance assignment. 
This is the case when considering the ratio of maximum 
and minimum capacitors that belong to different integra- 
tor stages. Thus we obtain the conditions for minimum 
achievable circuit spread: 

Ci,max G C1,max7 ‘i,min a ‘l,min, for 2GiGn. 

‘The notation introduced in the previous section has been generalized 
in the sense that each capacitor is described by two indices, with the 
integrating capacitors denoted by C,,. In a similar way the capacitor 
ratios have been generalized by introducing ki, 2 1. 

‘Note that the maximum (or minimum) is taken over all capacitors in 
the stage, including the integrating capacitor. 

m, 1 

/ \ 

X2 = P2,minXl x2 = P2,nmJl 

Fig. 2. Minimum spread region for a third-order filter. 

With 

‘i,max =(ki,maxAi/Pi)Ctot and Ci,min = (ki,minAi/Pi)Ctot 

we obtain the minimum spread conditions for the assign- 
ment parameters: 

Pi,min’l G Ai G Pi,maxAl> for 26iGn (3) 

where we have defined pi,max 2 Pikl+= /(/3,k,,,,,>, and 
Pi,min g Pikl,min /(Plki,min)e 

Equation (3) is illustrated for a third-order example in 
Fig. 2. The region with constant total capacitance Cot, or 
equivalently &hi = 1, is given in a three-dimensional A- 
space. Equation (3) defines a polyhedron achieving mini- 
mum capacitor spread, which, with our notation, is given 
by the spread of stage 1. Outside this region, the spread 
increases “l/A-like” [7]; see also the illustrative example 
in Section IV. 

The important point to note is that the minimum spread 
pmin is not restricted to a single value of A (corresponding 
to a single capacitance assignment), but to a range of A 
values. This permits an additional optimization such as 
minimum sensitivity or minimum noise to be carried out, 
in which case the corresponding optimum A-value is to be 
found within the minimum spread range. The resulting 
optimized circuit is then guaranteed to have the minimum 
capacitance spread pmin. This is illustrated by the example 
in the following section and discussed in detail in Sec- 
tion V. 

IV. ANILLUSTRATIVE EXAMPLE 

As an illustrative example we use the biquad circuit 
shown in Fig. 3. With k,, = k,, = 0.0314, and k13 = k,, = 
0.314, this bandpass filter has a nominal center frequency 
of 100 kHz at a clock rate of 2 MHz and a Q-value of 10. 
For the minimum achievable circuit spread we find pmin 
= k l,mau/kl,min = k,,/k,, = l/k,, = 31.85. Using (2) we 
replace A, by A and A, by (l- A). With (3), the minimum 
spread is found in the interval A, < A < A, with A, = 0.512, 
and A, = 0.913. In Fig. 4, the overall spread p as a 
function of the assignment parameter A is shown. Outside 
the minimum spread range, it increases as l/A and l/ 
(1 - A) as shown in [7]. 
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Fig. 3. Circuit diagram of second-order bandpass filter example. 
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Fig. 4. Spread p(h), magnitude-response error max,{u&;o)) and 
noise S,,,(h;wJ as functions of the assignment h. The dots represent 
numerical values computed by SCANAL and WATSCAD. 

Magnitude-Response Errors: Capacitor errors introduce 
errors both in the magnitude- and phase-response of a 
given SC circuit. However, here we consider only magni- 
tude-response errors because these are of more practical 
importance. Five hundred Monte Carlo simulations were 
carried out with the SC analysis program SCANAL [8] 
using our capacitor error model with c, = 10P4m and 
C,,, = 2.69 pF. The maximum value of the standard devia- 
tion a,(w) of the magnitude response in the frequency 
range of 80 kHz to 120 kHz is used as a frequency 
independent measure for the magnitude-response error. 
As shown in Fig. 4, max,{(rJm)) is a function of the 
assignment parameter A with the minimum located within 
the minimum capacitance-spread interval [A,, A,]. Thus 
the filter can be designed to be optimum with respect to 
capacitance spread as well as to magnitude-response er- 
ror. 

Output Noise: Using an extended version of the 
WATSCAD SC-network analysis package [9], [lo], the 
discrete noise at the node “OUT” in our second-order 
filter example caused by noisy switches and amplifiers has 
been numerically evaluated, based on the noise models 
described in Section II. The noise spectral density at the 

0.0 1 I -7 
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Fig. 5. Noise spectral value at center frequency as a function of the 
noise factor y for various combinations of switch on-resistances and 
amplifier transconductances. The different pairs (R,, G l/G; g) are 
selected to maintain approximately equal charge transfer levels. 

filter’s center frequency wp, S,,,(o,), is shown in Fig. 5 as 
a function of the amplifiers noise factor y for various 
combinations of parameters R,, A l/G and g and A = 
0.5.3 Fig. 5 illustrates the following typical characteristics: 
The noise Sout(tip) is linear in the noise factor y and 
there is a point P where all the linear characteristics 
(which differ according to R,, and g) meet. Such a point 
P has been observed in all other SC-filter examples. 
Although a more exact analysis reveals that the linear 
characteristics do not exactly meet in a point (except for 
undamped integrators [ll]), but in a small region, it is 
found in the companion paper [12] that, for practical 
designs, this region is very small and can be approximated 
by a point. Furthermore, [12] shows that the magnitude of 
this so-called crossing point is dependent only on SC 
design parameters. It is therefore reasonable to use this 
magnitude as a measure for the true noise performance, 
which is independent of technology parameters. In Fig. 4, 
this function, S,,,(h; w,), is shown for the example at 
hand as evaluated by WATSCAD. It is seen that the 
noise measure achieves its minimum value at an assign- 
ment A that lies within the interval [A,,A,] where mini- 
mum capacitance-spread is achieved. It is therefore possi- 
ble to realize the filter in our example with a design that 
is optimum with respect both to spread and noise. 

As this example also shows, the design optimum with 
respect to noise is nearly optimum with respect to magni- 
tude-response errors, a behavior which has been found to 
be typical. Because noise is usually the critical perfor- 
mance measure, it is advisable to optimize a circuit with 
respect to noise in the knowledge that the resulting mag-‘ 
nitude-response error will also be small. 

V. OPTIMUM CAPACITANCE ASSIGNMENT 

5.1. Strategy for an Optimization 

The conventional method for the computation of abso- 
lute capacitor values in a given SC-filter circuit is to 
choose the minimum capacitance of each stage i, Ci,min, to 

3For a fair comparison, the pairs (R,,,g) are selected such that the 
magnitude response errors caused by incomplete charge transfers are in 
the same order of magnitude for the various combinations and negligible 
in the present context. 
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be equal to the unit capacitance C, [ll. This results in the 
stage capacitances Csi = (pi /ki,min)CO. Thus a fixed total 

(AC,, - kijAC,), we obtain 

capacitance area C,,, leads to the unit capacitance Co = 
C,,, /Y&pi /ki,min. Since Ci,min = C, for all stages i, we 

Aa = 5 5 wACij 
i=l i j=l akij 

obtain hi = pi,min A,, for 2 <i G n. In view of (2) this 
results in the following assignment parameters for the 
conventional method: 

ii=P.,i.,/(1+~2Pj,~i~), for 2GiGn. 

In our second-order example, with A, and A, replaced 
by A and 1- A, respectively, we obtain h’ = A,, which is 
the upper bound of the minimum spread region as shown 
in Fig. 4. However, this figure shows that a capacitance 
assignment that minimizes either magnitude-response er- 
rors or noise, say A*, could considerably improve the 
corresponding performance, compared to the conven- 
tional assignment i = A,. We emphasize that i and A* 
require the same total capacitance Cot, and realize the 
same minimum capacitor spread l/k,,. 

In general, the optimum assignment vector A* may not 
lie within the minimum-spread region. As mentioned ear- 
lier, outside the minimum-spread region the spread grows 
very fast, which means that for a given Cot, assignments 
outside this minimum-spread region lead to some capaci- 
tors that are extremely small. As is well known, this 
situation is to be avoided for practical reasons. It is 
therefore reasonable to limit the capacitance assignments 
to the minimum-spread region specified in the A-space by 
(3). Thus we can formulate the optimization problem as 
follows: Find the assignment A* that minimizes either 

Using our capacitance-error model (random, independent 
capacitance errors AC,, with standard deviation ucij = 
c,fi), we find for the variance of the magnitude- 
response error E[(Aa)‘] A a:: 

For our second-order example, the evaluation of (4) is 
plotted in Fig. 4. The curve actually looks like an interpo- 
lation of the simulated (dotted) values. This excellent 
agreement with the Monte-Carlo simulation indicates the 
correctness of our expression (4) for practical capacitor 
errors and corresponding capacitor-ratio errors which are 
usually on the order of less than 1%. Even if larger 
capacitor errors are assumed (e.g., if the unit capacitors 
are small, or the process uses quantized values with poor 
capacitor matching), expression (4) is still a sufficiently 
good approximation because, in the considered optimiza- 
tion, only the assignment achieving a minimum is sought. 

5.3. The Noise Measure 
magnitude-response error or noise and simultaneously 
achieves a minimum overall capacitor spread, 

In the companion paper [12], a formula for the approxi- 

In order to obtain an efficient optimization procedure, mative computation of the noise measure introduced 

we next present explicit closed-form expressions for the above (i.e., the magnitude of the crossing point noise) has 

magnitude-response error and the noise measure intro- been derived. For an nth-order integrator-based SC-filter 

duced above, which avoid cornmiter-intensive evaluations this discrete-noise (two-sided) spectral density is given by 

as performed for the illustrative example in Section IV. 
The optimization procedure itself is developed in Section 
VI. 

5.2. Magnitude-Response Errors 

Seeking an analytical expression for the magnitude- 
response error that permits efficient computation, we 
apply a first-order approximation, Aa, to the amplitude- 
response error. Thus we use only the linear terms of the 
corresponding Taylor-series expansion with respect to the 
capacitance ratio errors A kij: 

Aa = 2 5 FAkij 
i=l j=l LJ 

where aa,(o)/ak,, denotes the partial derivative of the 
magnitude response (Y(W) evaluated at the nominal kij. In 
the above equation we again use a first-order approxima- 
tion for Akij; with kij = Cij/Ci, and hence Akij = l/Ci. 

Here, n denotes the number of integrator stages in the 
filter, the set Ni contains the indices j of the switched 
input capacitors Cij of integrator stage i, and H,,(z) is 
the transfer function from capacitor C, to the filter 
output. Note that, as desired, the above explicit expres- 
sion for our noise measure depends only on SC design 
parameters, or in other words, it is independent of tech- 
nology parameters. For our second-order example this 
expression is used in Fig. 4 to interpolate the simulated 
(dotted) values of S,JA, w,). The excellent agreement 
with the WATSCAD simulation indicates the correctness 
of (5). Excellent agreement has also been found for higher 
order filters as reported in [12]. 

Referring to step ii> of the filter design procedure 
outlined in Section I, we note that the capacitor ratios are 
usually obtained by a scaling process which causes the 
signal levels of all filter nodes to be maximum (scaled for 
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maximum undistorted output). It is important to note that 
this scaling process not only maximizes the achievable 
output swing, but simultaneously minimizes our noise 
measure (5) for a given capacitance assignment. A de- 
tailed discussion of this interesting fact is given in Ap- 
pendix A which, besides proving the statement, makes 
clear that the result is not at all obvious. We conclude 
that an SC circuit scaled for maximum undistorted output 
achieves a maximum signal-to-noise ratio if the given capac- 
itance area is distributed such as to minimize our noise 
measure. 

VI. OPTIMIZATION PROCEDURE 

6.1. Problem Formulation 

As motivated by the discussion in Section 5.1, we con- 
sider only those designs as “good” that achieve the mini- 
mum possible capacitance spread. Thus, we restrict our- 
selves to the region in the A-space that is given by (3). 
Within this A-region, either the magnitude-response error 
(41, or our noise measure (51, may be minimized. With 
Ci = (Ai /pi)C,,,, the objective function for each case can 
be written in the form 

The frequency dependence may be eliminated by use of 
F(h) 2 max,,, f(A; w), which is useful for the magni- 
tude-response error, or by F(A) 2 1, En f(A; w)do, which 
is useful for our noise measure with F(A) corresponding 
to the noise power in the frequency range R. In this way, 
the frequency-dependent coefficients ai are trans- 
formed into positive constants bi, and for hi’s satisfying 
(31, the following constrained minimization problem can 
be formulated: Minimize F(A) = C,b, /hi subject to &hi 
= 1 and the inequality constraints pi,minAI G hi 6 pi,maxAI 
for 2 G i Q n and Ai > 0 for all i. 

The above formulation inherently proves the fact that 
the minimum of the objective function is obtained using 
the entire available capacitance Ctot, as claimed in Sec- 
tion III: Assume there exists a minimum of F(A), which 
uses less capacitance than C,,, meaning &hi < 1. Increas- 
ing any parameter Ai to utilize the entire available capaci- 
tance will decrease F(A) because the coefficients bi are 
positive, as is seen from (4:) and (5). Therefore, the 
minimum demands that CiAi =: 1. 

To emphasize that the constraints are linear in the 
above optimization problem we define the n X 1 vector pil 
as 

( ) 

T 

&,A pi*,o,~~~,(-l)~-l,o,~~~,o 
-- 

ith place 

with pir 4 pi,min for I= 0 and pil A - pi,max for I= 1, and 
the n x 1 vector h 8 (1,l; . . , l)‘, and rewrite the opti- 

mization problem as 

minimize F(A) = igl ; (6a) 
I 

subject to hTA = 1 (6b) 
and p;A < 0, 2<iGn, &{O,l}. (6~) 

Note that the physical constraints hi > 0 for all i are not 
included in (6) because these requirements will automati- 
cally be fulfilled by the algorithm to be developed. 

6.2. Discussion of the Problem 

With a simple and fast algorithm in mind, we next 
discuss the special properties of our optimization problem 
(6). First, we note that we are faced with a separable 
programming problem, i.e., F(A) = CiFi(Ai). Conse- 
quently, the gradient vector of our objective function 
F(A) is given by VF(A) = (- b, /A\:, - 6, /A;; * ., 
- b,,/AijT and the Hessian matrix by V2F(A) = 
2diag{b, /Ai, b, /A;; . . , b,/A:}. Thus V2F(A) is posi- 
tive definite for every relevant point A because 1 > A, > 0 
and 6, > 0 for all i, meaning that F(A) is convex. To- 
gether with the linear equality and inequality constraints 
(6b) and (6~) which define a polyhedron, our problem is a 
convex programming problem with the fundamental prop- 
erty that any local minimum is a global minimum. Fur- 
thermore, since V2F(A) is strictly positive definite, the 
obtained minimum A* is also unique, cf., [13, p. 2571. 

Denoting by A the set of those inequality constraints 
that are active (i.e., that hold with equality) at the mini- 
mum A*, the first-order necessary conditions for our 
problem (6), the so-called Kuhn-Tucker conditions, cf., 
[14, pp. 314 ff., p. 3271, are found to be 

VF(A*)+ c jqil+pIh=O Pa) 
il E A 

hTA* = 1 ml 
p$A* = 0, ilEA (7~) 

pLyA* < 0, il E A (7d) 
Fi a OY ilEA. (7e) 

Note that (7a), (7b), and (7~) are the necessary conditions 
for the equality-constrained problem that result from the 
objective function (6a) together with the equality con- 
straint (6b), and the active constraints of (6~). To verify 
that A contains the proper set of active constraints, (7d) 
ensures that A*’ also fulfills the inactive inequality con- 
straints. A point A* that fulfills all constraints is called 
feasible. Violating (7d) indicates that further constraints 
must be made active to guarantee that A* is located 
within the feasible assignment region. Finally, (7e) en- 
sures that removing a constraint from A does not further 
decrease the objective function 

If the set A were known a priori, we would merely have 
LO solve an equality constrained problem. Because we do 
not know A, however, a solution procedure for (6) con- 
sists of two components: i) an algorithm for finding the 
correct set of active inequality constraints, and ii) a vehi- 
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cle to determine the solution of the corresponding equal- 
ity constrained problem. For i), we use the so-called 
active set method, which is adequate for convex program- 
ming problems [14, ch. 11.31. This is outlined in more 
detail in Section 6.3. Because ii) has to be solved several 
times in the course of the active set algorithm, we take 
advantage of the simple structure of our objective func- 
tion and the linear constraints, and derive a closed-form 
solution for the equality-constrained problem; see Section 
6.4. 

4.3. Active Set Method 

The idea of an algorithm based on the active set 
method is to define a set of active constraints at each 
step, termed a working set IV. The working set IV, a subset 
of the given inequality constraints (6c), defines the so- 
called working surface S by the A-values that fulfill plTA = 
0 for il E W.4 Since the constraints are linear, the surface 
S in our convex program is a hyperplane. On this hyper- 
plane, the algorithm searches for the point A which has a 
minimum objective function. If this point is not feasible, 
constraints are added to the working set W until a feasi- 
ble minimum is obtained. If, at this stage, the removal of 
a constraint from the current working set allows a further 
decrease of the objective function, the algorithm contin- 
ues with the search on the hyperplane given by the new 
reduced working set. Otherwise the algorithm terminates. 

Since the number of different working sets W is finite, 
the algorithm terminates in a finite number of steps if a 
decrease of the objective function is guaranteed from step to 
step. This decrease of F(A) is a key point of the algorithm 
since, otherwise, the same working set W could be chosen 
a second time, causing the algorithm to cycle. As will be 
shown for the convex program at hand, a proper choice of 
the working set W will decrease the objective function at 
each step. This guarantees the successful termination of 
the algorithm. 

To be more precise, assume that step (k - 1) has ob- 
tamed the feasible point Arrml on the hyperplane S,- i 
defined by the working set IV,-,. Further assume that in 
step k the new working set W, is obtained from W,-, by 
either dropping a constraint or by adding a new con- 
straint.’ The search on the hyperplane S, then corre- 
sponds to the following equality-constrained problem: 

minimize fwgl; 
I 

(8a> 

subject to hTA = 1 (8b) 

hyperplane S, the obtained minimum may, or may not, be 
feasible. 

If A*wk is not feasible, meaning that P$A*~~ > 0 for one 
of the free constraints il QG W,, we proceed by modifying 
A*wk to a feasible point A, that fulfills F(Awk) < F(Awk-,). 
Since F( .) is strictly convex, this can be done in the same 
way as is normally done in quadratic programming, cf., 
[14, p. 4251. The idea is to move as far as possible on the 
line from A,-1 to A*wk while maintaining feasibility. The 
feasible boundary point denoted by Awk decreases the 
objective function: F(Awk) < F(Aw,-,). To show this we 
first note that A*w, is different from Awkml because other- 
wise A*w, would be feasible, violating the present assump- 
tion. Since F(.) is strictly convex, it follows that F(A*Tk) < 
F(Awk) < F(A,+,,-,) as long as6 Awk# A,k-l. With d, = Ask 
-A w,-, we write for the improved point Arrk= Awkml+ 
akdk, with (Y E (0, l] as large as possible while maintain- 
ing feasibility: plyAwk< 0, for il G W,. This leads to 

If (Ye < 1 is found, a new constraint il becomes active and 
has to be added to W, leading to the new working set 
W k+l. By contrast CX~ = 1 means that A,= A*, which 
leads to the second situation, meaning that A*w, is feasi- 
ble. 

With A*wk being feasible, we have to decide whether 
dropping an active constraint may further decrease the 
objective function F(v). The solution A*w, of the equality 
constrained problem (8) is given by the following first- 
order condition 

VF(Akk) + C PiPi + Plh = 0. (10) 
il E w, 

If the Lagrange multipliers pLi in (10) are nonnegative for 
all il E W,, then, with A*w , our working set W, fulfills the 
Kuhn-Tucker conditions (i), and therefore solves the con- 
vex program (6). On the other hand, if a specific Lagrange 
multiplier pj with jl E W, is negative, F(s) can further be 
decreased by dropping the corresponding constraint jl. 
To verify this, we relax constraint jl, obtaining the new 
working set W, + 1, and the corresponding hyperplane Sk+ i. 
Since our constraint vectors pil are linearly independent, 
thereexistsaAAjforamoveonS,+,,h,~+l~AX,Z+AAj, 
such that 

for i = j, il E W, 

fori#j,ilEWk (11) 

and p;A = 0, il E W, (8~) because PilAwk T * = 0 for the active constraints (il E W,). 

for which the solution is denoted by Akk. On the working 
Note that, except for constraint jl, all other constraints of 
w, are still active in w,,,. It can easily be shown ccf 
[14, ch. 10.71) that the move with AAj on this ne6 

4Note that constraints il for I= 0 and I= 1 are related to the lower 
and upper bound of the assignment parameter A,, respectively, and can, 
therefore. not be active simultaneouslv. Thus at most one of the indices 6The degenerated case A ,,,&= A,,,-, is not interesting because here 
i0 and il’can be in the set W. . the new constraint is just added, -but no move is performed in the 

‘Note the feasible point hWk-, belongs to both hyperplanes Sk-, and A-space. This is not considered to be an optimization step, meaning the 
Sk defined by W-r and W,, respectively. present step number is still (k - 1). 
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hyperplane S k+l yields A1”(A*wJ = - pjcj. Therefore, 
choosing a Ahj that satisfies (11) such that a negative cj 
results (as is needed for feasibility) will decrease the 
objective function F(. > if and only if pi < 0. This proves 
the claim that dropping a constraint decreases F(e). 

What we now need for the final formulation of our 
optimization algorithm is the solution of (8), which con- 
sists of closed-form expressions for the minimum point 
A*wk and for the corresponding Lagrange multipliers ki of 
(10). 

4.4. Analytic Solution of the Equality Constrained Problem 

For notational simplicity, we drop the step ‘index k in 
the following presentation of the general closed-form 
solution for the equality constrained problem (8). This 
solution is derived by first reformulating the original 
problem by eliminating the equality constraints (8~). This 
leads to a similar problem with a reduced set of variables, 
which can be solved in a straightforward manner. A back 
transformation to the original problem finally produces 
the desired solution. Leaving the details to Appendix B, 
we thus find for the components of the minimum point 
A*,: 

hTV,i = P*w,i 

I 

n 
c P’zv,,, l<i<n (12) 

k=l 

where the terms P$,~ are given by 

p*w,i = 

i 

)Gw), 

for i = 1 
for i#l, iZGW (13) 

Pi1 7 for il E W 

and where the auxiliary expression H(W) is defined as 

PROCEDURE Minimire 
BEGIN 

{*Initialize working set by activating all upper bounds:) 
w, = {22,32,. n2) 
k=O 
<compute initial point Xw., cf. Eqs.(IZ) and (I.?)> 
REPEAT 

REPEAT 
k=k+I 

<compute Ht(Wh), cf. Eq.(14)> 
UNTIL feasible 

UNTIL minimal 
END Mini&e 

Fig. 6. Procedure MINIMIZE. 

PROCEDURE feasible. BOOLEAN 
BE:GIN 

r=m 
<compute A;, , cf. Eqs.(I2) and (13)> 
4 = & - Aw._, 
<find oli and associated constraint q. cf. Eq.(9)> 
hv. = bv., + ardt 
IFq#O THEN 

{* Add constraint q l ) 
Wb+, = Wt + q, feasible = FALSE 

ELSE 
{’ No change in working set l ) 
WL+~ = W,. feasible = TRUE 

END feasible 

Fig. 7. Procedure FEASIBLE. 

PROCEDURE minimd: BOOLEAN 
BEGIN 

{*Compute most negative normalized Lagrange multiplier: 

fiq < j&: il E W. l ) 
i*=O,s=6 
FOR il E Wi DO 

<compute fi,, cf. Eq.(14) > 
IF iii < 9, THEN & = ji;. q = (ii) 

END 
(*Check for minimality.‘) 
IFq#d THEN 

{* Drop constraint q *) 
Wt+l = Wt -9, minimal = FALSE 

ELSE 
{* No change in working ret l ] 
Wh+l = Wt. minimal = TRUE 

END minimal 

Fig. 8. Procedure MINIMAL. 

J 1+ c W)‘P,l 

H(W) A 
if E w 

lbi ’ 
(14) 

ments are given in {* *)-brackets, and “pseudo”-state- 

b,+ c W)E 
ments use ( )-brackets. The above algorithm has been 
implemented in the design program SCSYN [3]. 

if E w I 

The required Lagrange muMpliers pi, il E W are also VII. A DESIGN EXAMPLE 
determined in Appendix B. Since only the signs of these 
Lagrange multipliers are needed to decide whether a 

As an example of practical relevance we consider the 

constraint il has to be dropped or not, it is sufficient to 
design optimization of a bandpass filter of order 10 with 

use the normalized Lagrange multipliers fii G ~ih~~,, 
specifications as given in [15]. These specifications define 

given with (B.lO) by 
a passband extending from 1.2 kHz to 1.54 kHz, a pass- 
band ripple of 0.2 dB, and a maximum pole Q of 48. 

il E W. (l5) 
Using the programs FILSYN [161, and LADNET and 
SCSYN [3], an SC ladder filter was generated that uses 50 
kHz as clock frequency. The SC circuit was derived ex- 

6.5, Optimization Algorithm 

With the expressions (91, (12), (131, (141, and (15) we 
are ready to formulate the optimization algorithm for the 
convex program (6). This algorithm consists of a main 
procedure MINIMIZE shown in Fig. 6, and the two auxil- 
iary procedures FEASIBLE and MINIMAL given in Figs. 7 
and 8, respectively. Here we use a programming-like 
language with self-explanatory structure elements; com- 

actly from the corresponding z-domain transfer function, 
cf., [17], which, in turn, was obtained by FILSYN by 
prewarping and bilinearly transforming the corresponding 
s-domain transfer function. The SC circuit is shown Fig. 
9. It is noted that the corresponding capacitor ratios were 
obtained by scaling the circuit for maximum undistorted 
output in the passband. In comparing different capaci- 
tance assignments, we assume a given total capacitor area 
of 100 pF. The magnitude response error is assumed to be 
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k,, k,, = = 0.0324 0.0324 kz, kz, = = 0.0039 0.0039 ks, ks, = = 0.0028 0.0028 k,, k,, = = 0.1365 0.1365 k5, k5, = = 0.1977 0.1977 ks, ks, = = 0.0321 0.0321 k,, k,, = = 0.2081 0.2081 km km = = 0.0349 0.0349 kg1 kg1 = = 0.2848 0.2848 km,, km,, = = 0.0658 0.0658 
k12 k12 = = 0.0547 0.0547 kzz kzz = = 0.1436 0.1436 k,, k,, = = 0.1026 0.1026 k.2 klz = = 0.2433 0.2433 kss kS1 = = 0.4093 0.4093 k61 kel = = 0.0874 0.0874 k,z k,2 = = 0.4118 0.4118 ksz km = = 0.0417 0.0417 kg? kg? = = 1.2547 1.2547 = = 0.0836 0.0836 

k,s k,s = = 0.2066 0.2066 kz3 kz3 = = 0.2679 0.2679 ka ka = = 0.1646 0.1646 k.3 k.3 = = 0.6392 0.6392 km km kgl kgl 

klo,? klo,? 
= = 0.1803 0.1803 = = 0.1786 0.1786 km.3 km.3 = = 0.0893 0.0893 kw kw = = 0.3789 0.3789 kM kM = = 0.5855 0.5855 

Fig. 9. Fig. 9. Circuit diagram of lOth-order bandpass ladder filter. Circuit diagram of lOth-order bandpass ladder filter. 

TABLE I 
GLOBAL VERSUS CONSTRAINED OPTIMIZATION 

Minimum 
criterion 

MR-error, global 
MR-error, constrained 
Noise, global 
Noise, constrained 

Spread 

4236 
362 

1462 
362 

MR-error Noise 
(dB) (FV2) 

0.074 333 
0.082 354 
0.081 270 
0.087 293 

critical at the upper passband edge, at 1.54 kHz, where 
also the discrete-time noise spectral density of our noise 
measure is evaluated. Thus the magnitude-response error 
CT a, as well as the noise variance ~~t,, in a l-Hz band, both 
at 1.54 kHz, are taken as performance measures, which 
are computed by our formulas (4) and (51, respectively. 

In Table I we compare unconstrained-optimized (glob- 
ally optimized) designs with constrained-optimized de- 
signs, that is, designs with capacitance assignments achiev- 
ing the minimum overall capacitor spread, which, in our 
example, is 362. If the magnitude response error is taken 
as the optimization criterion, we see that an uncon- 
strained optimization can decrease the error by only about 
10% compared to the corresponding constrained opti- 
mization, whereas the spread increases by a factor of 
almost 12. Likewise, we find with the minimum noise 
criterion that an unconstrained optimization can decrease 
the output noise by less than 8%, whereas the spread is 
increased by a factor of 4. This example is typical in that 
it demonstrates the desirability (and feasibility) of restrict- 
ing the optimization to designs that result in a minimum 
capacitance spread. 

Next, we compare these minimal spread designs7 with 
the conventional solution discussed in Section III, which 
assumes the same minimum capacitance value Ci, for 

7The resulting magnitude-response error-optima1 capacitance assign- 
ment is A = (0.0666, 0.1163, 0.1460, 0.1383, 0.1813, 0.1930, 0.0265, 
0.0714,0.0191,0.0416)T, whereas the noise-optima1 assignment is h = 
:;42,.0.0942, 0.1183, 0.1320, 0.1497, 0.1563, 0.0655, 0.1500, 0.0234, 

TABLE II 
STANDARD ASSIGNMENTS VERSUS OPTIMUM ASSIGNMENTS. 

SPREAD IS 362 

Assignment 

Standard 
MR-optima1 
Noise-optimal 

MR-error Noise 
(dB) (pV2) 

0.226 2263 
0.082 354 
0.087 293 

each integrator stage. It is seen from Table II that the 
output noise variance a,2”, of our circuit is improved by 
almost 9 dB compared with that of the conventional 
design. Note that such improvements are also observed if 
the noise is taken in larger frequency bands; thus, for 
example, from 0.1 kHz to 10 kHz, an improvement of 8.1 
dB is obtained. Using the magnitude error criterion simi- 
lar improvements result. It should be emphasized that all 
three designs feature the same overall capacitor spread of 
362, and the same total capacitor area of 100 pF. The 
difference between the two approaches is that in the 
conventional design the individual capacitors consist of 
multiples of a unit-capacitor that is equal to the minimum 
capacitance occurring in the filter (i.e., C,,), whereas in 
the improved designs each integrator stage incorporates 
optimally adapted unit-capacitors. 

Note that in contrast to our noise measure, which is 
dependent only on SC design parameters, and is used in 
the synthesis context (computer-efficient optimization), 
the true noise performance is also dependent on technol- 
ogy parameters (noise factor y, amplifier transconduc- 
tance g, and switch conductance G). To verity our final 
designs, we compared the true noise performance of the 

*The transconductance resistance combinations used are selected 
such that the magnitude-response errors caused by charge transfer errors 
are in the same order of magnitude as the presently treated magnitude- 
response errors, which are due to inexact capacitances-that is, they are 
less than about 0.08 dB. The required analysis was carried out using the 
program SWAP [18]. 
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A design procedure for the optimum assignment of a 
given overall capacitance area to the various integrator 
stages in integrator-based SC filters is proposed. The 
underlying optimization criterion employed throughout is 
the requirement for minimum capacitance spread. This is 
reasonable, because we have found that minimum spread 
is realized in a whole assignment region, whereas unac- 
ceptably large spread-values result for assignments slightly 
outside this optimum region. As a result, the remaining 
degrees of freedom can be used for an optimization with 
respect to other criteria. The two criteria investigated are 
minimum magnitude-response error and minimum noise. 

Closed-form expressions are derived that express the 
capacitance spread, the magnitude-response error due to 
capacitor errors, and the output noise as functions of the 
capacitance assignment. Based on these formulas, an op- 
timization procedure is developed that either minimizes 
the magnitude-response errors or the noise measure, while 
maintaining the minimum possible capacitance spread. 
This procedure is implemented in the SC-filter design and 
optimization tool SCSYN [3]. This program also permits 
the structural optimization of biquad cascades where the 
same criteria for the optimization are used. Due to the 
relative simplicity of our formulas, it is possible to deter- 
mine the best in a class of possible realizations by an 
exhaustive search within reasonable computation time. 

1000 
I 
s RO, = 2OkR; g = 80/1S 

o! I -7 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 

Fig. 10. True noise performance of 10th.order bandpass ladder filter 
for various combinations of switch ON-resistances and amplifier 
transconductances. Noise in a l-Hz band at upper passband edge 
f, = 1.54 kHz. The upper curves are related to the conventional design, 
the lower curves to the noise-optimized design. 

constrained noise-optimal design with the conventional 
design. For this comparison we rely on WATSCAD noise 
computations, which have been shown to agree well with 
measured results [9]. In Fig. 10, this comparison is illus- 
trated for the noise variance in the l-Hz band at 1.54 
kHz, for various transconductance and switch or+resis- 
tance combinations.8 It is seen that not only the crossing 
point noise (our noise measure> is far superior in the 
design optimized according t.o our procedure, but also 
that the true noise performance is significantly improved 
compared to the conventional design; the linear noise 
characteristics are much flatter in the optimized design, 
which excludes the possibility that the standard design 
could become superior in true noise performance for a 
noise factor y larger than that of the crossing point. Note 
that these relations are true not only for the illustrated 
noise variance, but over the whole frequency band. Be- 
cause similar results have been obtained for numerous 
other examples, we are confident that the crossing point 
noise is a very useful measure for the noise performance 
of SC filters. In a broader context, the above results 
suggest the following design strategy in order to optimize 
the crucial noise performance: Using our procedure, 
choose the capacitance assignment that minimizes the 
technology-independent crossing point noise. Then com- 
pute the true noise performance of the obtained filter 
design (cf., Fig. 10) to guide a sensible design for the 
amplifiers and switches. 

While the expressions describing the capacitance spread 
and the sensitivity of the magnitude response to capacitor 
errors can readily be formulated in terms of capacitance 
ratios and assignment parameters, this is not possible for 
the noise minimization. Here, technology-dependent pa- 
rameters such as switch ON-resistance and amplifier 
transconductance also come into the analysis. This is why 
it was necessary to develop a measure of noise perfor- 
mance that excludes these technology parameters and 
approximates the true noise in terms only of design pa- 
rameters (such as capacitor ratios and capacitance levels). 
The high accuracy of the newly introduced noise measure 
is illustrated by various designs of a lOth-order ladder 
filter. 

The usefulness of this noise measure, as well as of the 
optimization algorithm using it, has been demonstrated by 
comparing the sensitivity and the noise performance of 
the optimized designs of a lOth-order example filter with 
the corresponding performance measures resulting from a 
conventional design. We found that remarkable improve- 
ments are achievable with the new designs, e.g., a de- 
crease of almost 9 dB in output noise was obtained for a 
filter using the same total capacitance and the same 
capacitance spread as the one based on the conventional 
design. Note that the decreasing noise directly translates 
into a corresponding improvement in signal-to-noise ratio, 
because the optimization does not change the dynamical 
behavior of the filter (i.e., the optimization permits the 
capacitor ratios to remain invariant). Finally, we note that 
noise-optimum designs are preferable to sensitivity-opti- 
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mum designs, because the critical feature of SC filters is 
dynamic range and noise, and because, as we have empiri- 
cally observed, the sensitivity performance of a noise 
optimum design is not far from its sensitivity optimum. 

APPENDIX A 
SIGNAL-TO-NOISE RATIO AND NODE SCALING 

We discuss here the changes in signal-to-noise ratios 
that are obbtained by node scaling. Intuitively, node scaling 
that caus,es the signal levels of all filter nodes to be 
maximuml (scaling for maximum undistorted output) im- 
proves the signal-to-noise ratio. The idea behind this is 
that the various signals in the circuit (for example the 
amplifier output voltages) are enlarged by this scaling 
process, while the noise contribution remains unchanged. 
The question concerning signal-to-noise ratio improve- 
ment by scaling for maximum undistorted output of SC 
filters is also treated in [l, pp. 339 ff.]. However, the 
simple noise models assumed there are different from our 
more accurate noise models in that ideal operational 
amplifier:3 and fixed noise sources at the amplifier input 
terminals are used in [l] to model amplifier noise. Switch 
noise does not seem to be taken into account at all. If 
more accurate noise models are assumed, it is not a priori 
clear whlether scaling for maximum undistorted output 
will improve-or even deteriorate-the resulting signal- 
to-noise :ratio. Indeed, the approximate formula describ- 
ing our noise measure (see Section 5.3) is seen to have 
equivalent noise sources which are dependent on the 
various capacitances. These noise sources have a variance 
of the form 2kT/(kijCi), where Ci denotes the integrat- 
ing capacitance of integrator stage i, and kij are the 
capacitor ratios of the corresponding switched input ca- 
pacitors. Because scaling for maximum undistorted output 
adjusts these ratios, the variances of the noise sources are 
also changed by this operation. This is in contrast to the 
assumption in [l], and evokes the question whether scal- 
ing for mlaximum undistorted output improves the signal- 
to-noise ratio under all circumstances. 

Consider the SC-filter section shown in Fig. 11(a) with 
the accompanying signal-flow graph representation in Fig. 
11(b). Node scaling applied to integrator stage i modifies 
the amplifier output-voltage l/l:(z) to vY,<z> by simultane- 
ously multiplying the input branches to that stage i by pi 
and dividing the branches leaving that stage by pi. Scaling 
the node voltage V&z) of the integrator stage j means 
repeating this process with pi replaced by pi. For the 
section shown in Fig. 11 these operations are described by 

kji-Lj,=kj,% 
Pi 

Note that the branch connecting the two stages i and j is 
scaled twice, once as branch leaving stage i by l/p,, and 
once as an input branch to stage j, by pj. The transfer 
function from the node voltage vj,(z) to the output, Hi(z) 
A Q,(z)/ K(z), is equivalent to the noise transfer func- 

(a) 

1 - z-1 kjl 1 - X-1 --- --- 
K(%) K(z) 

(b) 
/“jl 

Fig. 11. SC filter section considered for signal-to-noise ratio computa- 
tions. 

tion from the noise source nj, to the output, Hj,(z) A 
VO,t(z>/njl(z), which is thus scaled to 

Using (A.l) and (A.2), the contribution of the white noise 
source njr with spectral magnitude E[nTI] = 2kT/(kjlCj> 
to the output noise spectrum, Sjl(w), is seen to be scaled 
to 

where Cj denotes the integrating capacitance Cj after 
scaling. Clearly, the scaling operation only adjusts capaci- 
tor ratios, but says nothing about absolute capacitance 
values. To confine a constant total filter capacitance area, 
we add the requirement that the total stage capacitances 
remain unaltered by scaling. For integrator stage j we 
have before scaling 

C,j= (l+ Fkj/)C, 
and after scaling 

Note that as an input branch to stage j the signal-flow 
graph branch with weight kj, becomes pjkj, by scaling of 
stage j; as a branch connecting stage m(l) to stage j it 
becomes k, /pm(,) when scaled by pm([). With unchanged 
total *stage capacitances, i.e., with Csj = Csj, the ratio 
Cj/Cj required in (A.31 is found using (A.4) and (A.5). 
The ratio of scaled to unscaled noise contribution of nj, 
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therefore becomes 

3jl 1 l+ Pj C kjl /Pm(l) 

sjl- PiPj 1: xkj, ’ (A.61 
1 

In the scaling process discussed here (scaling for maxi- 
mum undistorted output), we must consider two separate 
scaling steps, that of scaling up and that of scaling down. 
An amplifier output-voltage y(z) is scaled up if this 
output voltage is not as large as distortionless amplifier 
operation would allow. In this case, pi is larger than unity, 
but the maximum allowable input signal to the filter does 
not become larger, since the output voltage of some other 
amplifier would then reach its limit of distortionless oper- 
ation. In order to improve the signal-to-noise ratio by 
scaling up, the contribution of the noise source njl must 
decrease; this means that ijr,/Sj, must be less than unity. 
Assuming that in the prese.nt step only scaling up is 
performed, we have pmin = 1 from those stages that can- 
not be scaled up and some plnax > 1. Writing (A.6) as 

'jI 
l/(PiPj>+ Ckjl/(PiPm(l)) 

-= 
‘jl 1 +‘c kj, (A.7) 

1 
the numerator in the above formula is, with pmin = 1, 
P max > 1, upper bounded by the expression in the denomi- 
nator, leading to ijI /Sj, < 1 as needed. 

The situation where l/;(z) is scaled down, meaning that 
pi is less than unity, is applied if stage i limits the overall 
output level. Scaling down leads therefore to a larger 
permissible input signal to the filter. Assuming only down 
scaling in this step, we have p,,, = 1 for those stages not 
being scaled, and a pmin < 1 for those stages being scaled 
down. Noting that l/p,,, is exactly the factor by which 
the maximum allowable filter input signal is being in- 
creased, the signal-to-noise ratio will be improved if the 
ratio Sj,/Sjl does not growing as fast as l/p&, i.e., 
Sj,/Sj, < l/p,&,. This is easily seen to hold by observing 
that the numerator of the right hand side in (A.7) is upper 
bounded by l/pi, times its denominator. 

Note that a circuit with all amplifier output levels as 
large as distortionless operation permits, allows neither a 
further scaling up, nor a further scaling down step, and 
therefore no further improvement of the signal-to-noise 
ratio. We thus state the following. 

Assuming noise described by (5), an integrator-based SC 
filter with fixed total capacitance area achieves the best 
obtainable signal-to-noise ratio if, and only if, it is scaled 
such that all its amplifier output voltages are at their 
maximum permissible level (scaled for maximum undis- 
torted output). 

APPENDIX B 
SOLUTION OF THE EQUALITY-CONSTRAINED 

PROBLEM 

Here, we present in detail the general closed-form 
solution for the equality-constrained problem (8). In sub- 

stituting the equality constraints (SC) in (8a), we obtain 
the following objective function: 

b,+ c (-I,$ 
il E w 

‘+ c ’ 
1 izl,ilPW*i 

where the number of assignment parameters Ai has been 
reduced by the number of equality constraints in (8~) or, 
equivalently, by the number of active constraints n, in the 
working set W. Using this reduced set of variables, we 
reformulate (8), and obtain 

A 

minimize S(i)= c ; 
ilZW i (B.1) 

with 
subject to i’i, = 1 

Li = 
b,+i~~w(-l)~~)(l+ii~~(-l)‘Pi~), 

1 
for i = 1 

bi, for i#l, iZ@ W 

/ii = i ( A, l+ilFw(-l)iPii). fori=1 

I hi, fori#l,iZGW. 

Here the vector h has (n - n,) unity components. The 
reduced problem (B.l) is again a convex equality-con- 
strained program with a unique local, and therefore also 
global, minimum. The necessary first-order conditions for 
the minimum A*, are given by 

Vf( A*,) + pi = 0 

where p denotes the Lagrange multiplier. For the compo- 
nents of the minimum point i*w, these conditions yield: 

Since any realizable assignment parameter Ai fulfills Ai > 
0, which also means hi > 0, we consider only positive 
square root values in (B.2). 

In transforming (B.2) back to obtain the solution of the 
original problem (8) we use the relations 

Ai- 

I 

/ii 

_ z l+ C (l)‘Pii)~ 
i 

fori#l,iZPW 

Al 1 il E W 

Pi1 9 for il E W 

given by the expressions below (B.l) for i # 1, il E W, and 
by (8~) for il E W. With (B.2) these normalized A-values 
yield for the minimum point i*w: 

‘*,,i _ fiH(W), for i#l,iZPW (B3) 
Ii* w, 1 i Pi1 ) for il E W 
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where the auxiliary expression H(W) is defined by 

1-r c (-l)‘P,, 
H(W) A il E w 

d 

rbi ’ P-4) 

b1+ c C-1) p.I 
il E W I 

With the notation pL,,i A A$,i /A$,,, we finally obtain for 
the components of the minimum point A*w with (Sb): 

and with (B.4) to 

1 

I-“ = (H( W)A-$,)’ * 
P.9) 

Inserting (B.9) into (B.8) finally yields 
multipliers 

for the Lagrange 

il E W. (B.lO) 

I 

n 

A*,,i = P*w,i c P*w,k, lGi<n. (B.5) 
k=l 

In the proceeding, we calculate the Lagrange multipli- 
ers pi corresponding to the active constraints (8~). First, 
we expand (10) in the minimum point A*w, and obtain: 

bi -h*2+ C j~,~p~~+p~=O, for i=l 
W,l jl E W 

bi -- 
A’“2. 

t-(-l)‘-l~i+~L=O, foriZEW 
W.1 

(B.6a) 

bi --+pl=O, for i#l,ilcZW. (B.6b) A*2. W,l 

Note that only (B.6a) and (B.6b) are needed to determine 
the Lagrange multipliers pi for il E W. Using (B.6b), we 
obtain 

pi= -g-p1 (-1)‘~‘, i, I 
Since the active constraints fulfill 

A*,,i= (-l)lPilA$,l, 

we rewrite (B.7) as 

il E W. (B.7) 

il E W 

( bi 
Vi = 

(PilAG.l)* 
-p1 (-q-‘9 

I 
iZE W (B.8) 

and thus obtain an equation for wcL1, if we substitute (B.8) 
in (B.6a): 

4 -*2+ c 
W,l ! 

bj 
A i[E W (Pjl’*,, 1)’ 

-pl (-l)‘-‘p,,+pl=o. 
I 

Solving the above equation for p1 leads, in a first step, to 

b,+ c (-1)‘: 
jl E W 

1 
~‘= I+ C (-l)‘pj, ‘*w” 

jl E W 
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