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Simplified Adaptive IIR  Filters Based 
on Optim ized O rthogonal Prefiltering 

August N. Kaelin, Allen G . Lindgren, Senior Member, IEEE, and George S. Moschytz, Fellow, IEEE 

Abstract-In order to reduce the circuit complexity associated 
with the estimation of echoes coming from systems with a long 
impulse response, we consider an estimator which is based on 
prefiltered input data. We propose a design of this prefilter 
which is optimal for a given system environment. In doing so, 
we represent the unknown discrete-time system by a set of 
characteristic impulse responses, which adequately describe the 
variety of the system. For such an environment we determine 
the optimum poles of a recursive prefilter. These poles are 
assumed to befied during the on-line LMS estimation process, 
which estimates the unknown echo by linearly weighting the 
prefilter states. An echo canceler for a typical European telephone 
subscriber-loop environment is used as a practical example. 
For this example the prefilter is optimized and realized with 
an orthogonal-state (lattice) filter. This not only reduces the 
computational costs-if compared to a conventional FIR filter 
design-but also permits a substantial speed-up of the on-line 
LMS adaptation process. 

I. INTRODUCTION 

I N many applications it is desired to estimate the response 
of a given but unknown system. Typical applications are in 

adaptive echo cancellation and system identification. While the 
results presented here are of general interest, our motivation 
for obtaining them was the problem of echo cancellation for 
systems with a very long impulse response such as echo 
paths in digital subscriber loop transmission systems. The 
conventional finite impulse response (FIR) filters used in such 
systems require filter lengths in the order of hundreds of 
taps. Adaptive infinite impulse response (IIR) filters introduce 
other problems, foremost among them being the requirement 
for stability. However, it has been shown, e.g., [l] and [2], 
that fixed (nonadaptive) recursive prefiltering can reduce the 
complexity of such echo cancelers considerably. This concept 
is expanded on in this paper by designing a simplified adaptive 
IIR filter which makes use of a prefilter which is optimized 
for a given system environment. We show that for classes 
of systems for which certain characteristics are known in a 
statistical sense, such a simplified adaptive IIR filter can obtain 
high performance. 
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Fig. 1. Linear echo cancelation with a simplified adaptive IIR filter. 

In Section II we introduce the proposed simplified adaptive 
IIR filter and state the associated prefilter design problem. In 
Section III we identify some fundamental relations relevant 
to the optimization problem. Section IV describes a method 
of representing the possible variations of the unknown system 
by (e.g., measured) impulse responses. An appropriate system 
space is then defined in terms of a minimal set of orthogonal 
impulse responses. We continue with the development of the 
optimization scheme (Section V), which is then illustrated 
by two examples (Section VI); a simple first-order example 
and the more practical design of an echo canceler for a 
European telephone subscriber-loop environment. In Section 
VII the optimized prefilter of the latter example is used to 
discuss so-called orthogonal filter realizations by means of 
the inverse lattice filter. Finally, Section VIII compares such 
a filter realization with nonorthogonal ones and verifies its 
superiority with the help of numerical simulations. We show, 
with the help of our echo canceler example, that an adaptive 
IIR filter which is based on such a prefilter not only reduces 
the computational costs-compared to the conventional FIR 
filter-but also speeds up the on-line adaptation process of 
the filter. 

II. STATEMENT OF THE PROBLEM 

Referring to the linear echo cancellation scheme depicted in 
Fig. 1, we assume the independent noise processes u[/c] and 
v[k] to be stationary and with zero mean. For any discrete time 
Ic, the available z[lc] represents the data v[k] disturbed by the 
unknown echo y[k]. The echo signal itself is assumed to be 
generated by a system with unknown impulse response h[lc] 
driven by the input u[IC]. To recover w[lC], the echo must be 
reconstructed and subtracted from z[k]. 
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In reconstructing the echo, the objective of the adaptive 
model is to match the impulse response h[lc] of the unknown 
system, subject to the following constraints. The model trans- 
fer function has a fixed denominator of degree n and an 
adjustable numerator of degree m 2 iz. In a general state-space 
model this means, that in 

$c] = cTs[k] + dT?L[k] (1) 
with input data vector u[lc] & (U[kl, u[k-11, , ~[lc-m+n])~ and 
nth-order state vector z[IC] L (~,[k],~~[lcl,... ,z,,-~[~c])~ propagated 
as 

z[k + l] = Arc[lc] f bu[k - m + n], (2) 

only the output vectors CA(CO, cl, ... , c,-i)r and 
d& (do, di, . . . , dm-,)T are adjustable. In combining 
these vectors into the weight vector wT G  (cT, dT), the 
estimation of the echo is written as $[lc] = wTp[lc], where the 
augmented state vector cp’[Ic] 2 (u[IC]~, z[IC]~) denotes the 
state of the complete model. A fixed nth-order prefilter (2) is 
used to generate the state of the complete mth-order model. 
It should be noted that d allows h[O], h[l], . . . , h[m - n] to 
be matched exactly, whereas the remaining part of h[/c] may 
only be matched approximately with the help of c. 

The system environment, i.e., the space of possible systems 
which the adaptive model must cope with, is represented by 
a set of M characteristic responses h;[lc]. For each system i, 
the model response k[k] can be optimized over the adjustable 
coefficient vectors c and d. In measuring the matching quality, 
we introduce the vector notation 

h;A((hi[m-n+l],h;[m-n+2],... ,hi[m-n+N])T, (3) 

for i = 1, 2, ... , M and with N sufficiently large in order 
to describe the relevant part of the system response. The 
appropriate relevant part of the model response will be denoted 
by r;. 

In matching a measured impulse response, Steiglitz [3] 
considered the minimization of a sum-square error to be the 
“ideal problem.” In generalizing this error criterion for our 
environment, we introduce the error measure 

(4) 

where for every system i the possibility of assigning a weight 
p; has been considered. As usual, ]I I] denotes the 2-norm 
of a vector. It is noted that if pf is equal to the prob- 
ability pi that system i is identified, the error measure J 
corresponds-assuming u[lc] to be a white noise process with 
variance gi---to the echo return enhancement (ERE) in the 
mean, i.e., 

J = -$ 5 pi y[(yi[k] - g[r~])~]. 
“i=l 1 

Again, the index i refers to the appropriate system. Now, the 
optimum prefilter design problem is stated as follows:Given 
the system environment (3)-with appropriate weights p&ind 

for the mth-order model (1) the optimum nth-order prejilter (2) 
which minimizes the error criterion (4). 

In Section VIII, we will apply the well-known Least Mean 
Square (LMS) algorithm [4], a stochastic gradient algorithm, 
for the real-time adjustment of w. We will use the adjustment 
rule 

w[k + l] = w[lc] + Crcp[k]e[lc] (5) 

where cp[lc]e[lc] is the stochastic gradient of the Mean Squared 
Error (MSE) E[e2[Ic]] with respect to the weight vector w and 
e[Ic] = .z[k] - cpT[k]w[k], th e error signal according to Fig. 1. 
The diagonal step-size matrix p allows a tradeoff between the 
speed of the adaptation process and its misadjustment. For 
details see, e.g., [4]. 

Referring to our adaptive model (see Fig. l), it is noted’ 
that, as an alternative, the input vector b could be adjusted 
with A and c fixed. However, our system configuration has 
the advantage that with the stochastic gradient vector being 
equal to the complete state vector cp[k] times the error e[lc], 
all the quantities required for the above adjustment rule are 
readily available. 

It is well known that for the form of the LMS algorithm 
defined by (5), the best performance results if the covariance 
matrix E[cp[k]cpTIIc]] is diagonal, i.e., if the states are orthog- 
onal. Such an orthogonal realization of the prefilter will be 
discussed in more detail in Sections VII and VIII. In what 
follows we identify some relations which are relevant to our 
optimization problem. 

III. SOME FUNDAMENTAL RELATIONS 
We start by denoting the error for the ith system as 

Ji L mint ~lhi-hl/~. (6) 

In reformulating this expression, we write the model response 
as 

I; = CTc = Gc (7) 

where the n x N matrix 

C G  (b, Ab, A2b, . . . , AN-lb) 

is the controllability matrix and 

GACCT 

its transpose. Equation (6) can then be rewritten as 

where hi is the optimized model response for system i. The 
solution to this linear least-square (LS) problem, in which the 
coefficient vector c is optimized for system i, is given as 

Q  = (GTG)-lGThi. 

Note that this requires GTG to be invertible, which can be 
guaranteed if G  or, equivalently, C has its full rank n, i.e., 
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if the prefilter (2) is controllable [5]. Substituting q into (7) 
results in the optimized model response with 

n 
hi = PGhi (9) 

where the orthogonal projection 

PG A G(GTG)-lGT (10) 

projects ii into the space spanned by the columns of our model 
space, G. 

To proceed, we note that our objective is to select the 
prefilter (2) such that G  optimally matches the given system 
environment. This depends only on the eigenvalues of A or, 
equivalently, on the coefficients of the characteristic equation. 
This is shown next. 

The characteristic equation, i.e., the nth-order denominator 
of our model, is denoted by D(Z) = l+oi~-l,. . . , +a,.~-~. 
With the Cayley-Hamilton theorem (see, e.g., [5, p. 658]), A 
satisfies its own characteristic equation, i.e., 

A” + alAn-l +, CQA~-’ + . . . + a,1 = 0. (11) 

Hence, we have 

dTG=O (12) 

with the (N - n) x N matrix 

i 

Qn (Y,-1 ... cl1 1 0 

ATA 
Qn a,-1 .‘. a1 1 

. . . . . . . . . . 
0 an a,-1 ... cl!1 1 1. 

Equation (12) implies 

PdPG = 0, 

where PA is the orthogonal projection based on A. For a 
controllable prefilter (2), rank (PG) = co-rank (PA) = n and 
we conclude that: 

P,gd(dTd)-ldT =I-PG. 

Now, (8), together with (9), becomes 

(13) 

Ji = IIPdhil12 = hTPdhi 

since PA is a projection (i.e., PA = PAPA). 

(14) 

Note that the coefficients of the characteristic equation (1 l), 
combined in the parameter vector 

(I-(l,cXi,Qa,... ,cK,)T, (15) 

define A and its associated orthogonal projection PA and, 
with (14), the error in matching system i. Furthermore, since 
J = Cz, p:Ji, it also defines the measure of matching the 
whole environment. Hence, any prefilter (2) having the same 
a (i.e., the same pole locations) is equivalent in the sense that 
it yields the same error. A prefilter optimization will therefore 
not involve the input vector b. As far as the prefilter remains 
controllable, it can be selected arbitrarily. We will use this 
flexibility later when looking for an orthogonal realization 
that has better convergence properties for the on-line LMS 
adaptation algorithm than nonorthogonal ones (see Sections 
VII and VIII). 

IV. THE SYSTEM ENVIRONMENT 

In what follows, we discuss a description of an appropriate 
system environment. Such a system environment has to be 
sufficiently large in order to “train” the prefilter. The goal is 
a performance which is sufficient for any system the adaptive 
filter will encounter (not only the supplied “training” systems.) 
To start with, we assume that a “large” number (1M) of 
impulse responses hi, together with appropriate weights pi, 
or equivalent information about the variety of the system, 
is available to the designer. In reducing this environment to 
a tractable number of systems, we will show that linearly 
dependent hi’s can be eliminated, since they do not contribute 
additional information with regard to the variety of the system. 

In doing so, we condense the weighted environment (3) 
into the matrix 

E~((plhl,Pzhz,,,.,p~h~) (16) 

and combine the Ji’s according to (14) into the error measure 
for the total environment. This gives’ 

J(E, d)=tr{ETPAE} (17) 

with PA the orthogonal projection as defined in (13). 
We proceed by carrying out a singular-value decomposition 

(SVD) of E. With the unitary matrices (Ui, Uz, Us) and 
(Vl, V2), E can be written as 

E = (ul, U2r u3) (T :2) (;f), 

where the diagonal matrices JYi and Z2 contain the singular 
values in decreasing order, weighting Ui and Ua, respectively. 
With PA a projection, such an SVD allows the error measure 
(17) to be partitioned into 

J(E, A) = Jb% , A) + J(Ez, 4, (18) 

where J(Ei, d) = tr {ETPd&} is based on the transformed 
(orthogonal) sub-environment Ei 2 EVi=U;Ei. 

Since the projection PA is orthogonal, the measures of the 
sub-environments are bounded by 

0 2 J(Ei,d) 5 tr{Zf}. 

With this bounds, the following relation can be obtained from 
(18): 

J(&,d) 5 J(E,d) I J(&,d) +Qz;). (19) 

Hence, any prefilter (2) yielding the error J(El, d) in the 
sub-environment El achieves in the original environment E 
an error which is upper bounded by J(E1, d) + tr (22:). 

If tr {J$} is zero, the neglected E2 contains only linearly 
dependent impulse responses, which do not contain additional 
information with respect to the variety of the unknown system. 
For an environment which is based on real measurements, 
we collect in tr {.Xi} the smallest singular values of E 
until the design accuracy of the filter is reached. Within this 
design accuracy, the reduced environment El is equivalent to 

1 The trace operator is denoted by tr { .}. 
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the original environment E. Based on such an environment 
description, we now develop our optimization scheme for the 
prefilter. 

V. DEVELOPMENT OF THE OPTIMIZATION SCHEME 

We start by defining the response matrix for the ith impulse 
response hi as 

\ hi,N hi,N-1 ‘.. hi,N-n/ 

with hi, j denoting the jth component of hi and by introducing 
with 

HT A (Pl@, P2HT,. . . , PA/lgg 

an appropriately weighted collection for the whole environ- 
ment. 

where (1) refers to the previous estimate of a. It is noted that 
the minimum of the Steiglitz-McBride algorithm is always 
very close to the global minimum, but not identical [7]. 
This was confirmed as discussed in the next section. This 
“global” convergence allows one to initialize the algorithm 
with a(O) = (1, 0, . . . , O)T. The accuracy of the iterative 
refinement can be measured by 

J@)  = IIL(1)Ha(l)l12, (24) 

which is the error measure for a (1) . 
It should be noted that the weighted LS problem (22) 

considered here is very sensitive to roundoff errors when Q  
weights high-order prefilters with poles close to the unit circle. 
For high-order prefilters, we found an iterative algorithm 
which is based on an explicit computation of Q(l) to become 
numerically unstable. However, in making use of the special 
structure of A [cp. (13)], a robust solution can be derived 
which computes L (l) directly from d(l). This will be discussed 
next. For convenience, we will thereby drop the iteration index 

We now substitute in (14) the identity 

dThi =Hia 

1. 
Consider the following partitioning of A: 

dT=N-n 
and obtain for the error measure J = CE1 pf Ji the weighted 
2-norm 

J = IlW& (20) 

where 11 . 116 A (.)TQ(.). Here the weight matrix is block- 
diagonal and given as 

f 

Q I 0 
Q= . . . (21) 

n 
a, ... a!1 1 

N-n 
0’ 

\O Qd Note that the (N - n) x (N - n) Matrix d2 has the inverse 

with (N - YZ) x (N - n) block entries QiA(dTd)-'. Mini- 
mizing the error measure J with respect to the prefilter poles 
or, equivalently, with respect to a, we obtain a weighted LS 
problem, stated by 

d;l = (1 ‘t ‘I: ‘y---l) (25) 

Jmin = rn$ llHti]]Q. (22) with coefficients /3i related to c~j by the filter process 

Since Q  is positive definite, the factorization Q  = LTL is 
guaranteed, which in turn allows the optimization problem 

pi = - 2 Pi-jCljp fori > 0, 

(22) to be restated as 
j=o 

Jmin = m$ IILHal(2. 
and initialized with pa = 1, p-1 = 0, p-2 = 0,. . . . With this 

_’ (23) partitioning we express the block entries of Q  as 

Since the filter matrix L is dependent on a, the minimization (dTd)-l=(dTdl +d;dz)-l. 
problem (23) is nonlinear. However, in applying the idea of 
the Steiglitz-McBride algorithm [6] to our “multi-system” Noting2 that (dTd2)-1 
environment, we may first estimate the filter matrix L. An a good approximation 

for = (dT2;Ld;T is already 
1 we use the 

estimate of the parameter vector a is then obtained by solving Sherman-Morrison-Woodbury formula (eyg., [8, p. 511) 
the remaining linear LS problem. Iterating this procedure to express the exact inverse as 
results in a refinement of (2. This iterative procedure is 
summarized as following: (dTd)-' =&l[I-d,Td~(I+dld,l 

1) Compute L (l) defined by Q  (1) = L(VL(Q, then .d,Td~)-ld~d,l]d,T. 
2) find a(‘+‘) such that mina I] L(1)Hal12 *For brevity we use the notation dyT S (d;l)T 
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To continue we substitute dldgl, a n x (N - n) matrix, by 
its singular-value decomposition 

dldgl= USVT (26) 

and finally obtain 

(dTd)-' = d,lV(I+STS)-lVTd,T. 

Hence, the singular-value decomposition of dldyl, a n x 
(N - n) matrix, allows Q, a M(N - n) x M(N - n) matrix, 
to be factorized as LTL with 

L= 
i 

Ll 0 
. . 

. ) 
(27) 

0‘ L&f 

and block entries Li = (I + STS)-112VTd,T. 
To summarize, the SVD (26) together with (27) allows 

to compute the filter matrix L directly from A (cp. (13)). 
This is step 1 of the proposed iterative procedure. Step 2 
is nothing more than a conventional linear LS problem. The 
reader is referred to [8] for a suitable LS solver. In using 
the standard built-in LS-solver of the numeric computational 
program MATLAB, we found accurate prefilters for n up 
to approximately 12 (with a floating point relative accuracy 
of lOem.) A MATLAB program with the complete design 
procedure is available from the authors. 

VI. EXAMPLES 

In order to provide some insight into the proposed prefilter 
design, we apply it, in the following, i) to a simple first- 
order environment and ii) to the more practical design of 
an echo canceler for the European telephone subscriber-loop 
environment. 

Example I. A First-Order Environment: The system envi- 
ronment is given by 

hi = (l,Xi,Xs,... ,XN)T, i = 1,2,3, (28) 

where X1 = 0.9, X2 = 0.8 and X3 = 0.7. We assumed N = 40, 
which allows the corresponding exponentials to be modeled 
with a coefficient error of less than 1%. In order to equally 
weight the three cancelation levels, we use p: = l/(3(] hi 112) 
resulting in 

J = & 1 Ilk - Ll12 

i=l 3 IlklIZ ’ 

Note that with three prefilter poles located at 0.9, 0.8, and 
0.7, the three exponentials would be exactly matched. Here we 
assume a reduced-order adaptive filter with two fixed prefilter 
poles and a total of 3 adjustable coefficients, i.e., n = 2 
and m = 2. Starting w(itha (O) = (1, 0, O)T, the proposed 
iterative algorithm, according to Section V, yields the optimum 
prefilter with JcDo) = -35.39 dB in about 4 iterations, as 
shown in Table I. This table contains the coefficients of the 
characteristic equation and the obtainable error measures J(‘) 
for every iteration 1. The optimum prefilter poles pi and pa, 

3A trademark of MathWorks, Inc. 

index k 

Fig. 2. Example I. Obtained impulse-response errors if h; [ICI, i = 1, 2, 3, 
are estimated with the prefilter poles at 0.8845 and 0.7446 (worst-case 
optimization). 

TABLE I 
EXAMPLE I. ITERATIVE PREFILTER DESIGN 

i.e., the roots of the characteristic equation .a2 + (~12 + (~2 = 0, 
are given as 0.8955 and 0.7436, respectively, whereas the 
error measures for the individual exponentials are obtained 
as -40.4 dB, -28.53 dB, and -29.56 dB. Furthermore, it is 
noted that p1 = 0.9285,pz = 2.5191, and p3 = 2.8126 
results (with the prefilter poles at 0.8845 and 0.7446) in a 
worst case optimization with all errors at -30.0 dB. With 
optimally adjusted da, CO and cl (using (8) and (9)), the n 
obtained errors in the impulse responses, i.e., hi[k] - hi[k], 
are shown in Fig. 2. The figure shows an exact match of the 
first value h;[O] and a close approximation of the remaining 
values hi[l]y hi[2], . . . hi[40]. 

Referring to Table I, it is finally noted that Jc2) = -35.41 
dB is slightly smaller then the iteratively found “minimum” 
(J(“) = -35.39 dB). However, in all our examples we 
found the obtained “minimum” always very close to the global 
minimum. This coincides with what has been reported in [7] 
(for the comparable single-system case.) 

Example II. A Telephone Subscriber-Loop Environment: As 
a more practical example, we consider the design of an echo 
canceler for digital data transmission systems in a typical 
telephone subscriber-loop environment. The considered char- 
acteristic impulse responses are taken from measurements 
on a test hybrid circuit [9] terminated with a HDSL-loop 
simulator (ILS-2) from Wandel & Goltermann realizing the 
ETSI (European Telecommunications Standards Institute) test 
loops DRT/TM-3002 sampled at 58 4kHz. The first 80 of the 
200 samples considered are depicted in Fig. 3. 

Setting pp = l/M, the error measure Jis equal to the echo 
return enhancement (ERE) in the mean, if a white input u[lc] 
is assumed. Assuming the acceptable level at -60 dB, the 
adaptive IIR-filter models given in Table II are comparable. In 
order to meet these requirements, Table II gives the required 
model degree m for every optimized nth-order prefilter, along 
with a complexity measure C. This is defined by the number 
of multiplications per sample interval required for both the 



KAELIN ef al.: SIMPLIFIED ADAPTIVE IIR FILTERS 331 

0.25 

40 

index k 

60 80 

Fig. 3. Example II. European subscriber-loop environment; echo impulse 
responses for 11 ETSI test loops. 

TABLE II 
EXAMPLE II. COMPLEXITY OF VARIOUS ADAFTIVE FILTER 
MODELS WITH ERE OF AT LEAST -60 dB IN THE MEAN 

(a) 

(b) 
Fig. 4. (a) Structure of the inverse lattice filter. (b) Lattice section. 

variance assuming a stationary white noise input [lo, p. 4501. 

TABLE III 
EXAMPLE III. ITERATIVE DESIGN OF THE OITIMUM 
STH-ORDER PREFILTER FOR A 1 ~TH-ORDER MODEL 

iteration 1 1 . . . 4 . . . 6 7 
a1 -1.8053 -4.5854 -4.6317 -4.6318 
a2 0.5306 8.4152 8.5883 8.5888 
Ql3 0.3669 -7.7261 -7.9694 -7.9701 
(14 0.0233 3.5486 3.7009 3.7014 

-0.1056 -0.6523 -0.6881 -0.6882 
-41.22 -60.15 -60.05 -60.05 

filtering process and the corresponding LMS adaptation of the 
coefficient vectors c and d. The prefilter itself is assumed to be 
realized orthogonally, with an inverse lattice structure based 
on one-multiplier sections as discussed in Section VII. 

As an example of an orthogonal structure, which fulfills (30), 
we consider the inverse lattice structure [lo, p. 4761 shown 
in Fig. 4. 

Assume 

po 
D(z) 

= +I-A)-% 

As shown in Table II, a remarkable reduction in complexity 
can be obtained, compared to the conventional FIR-filter 
canceler. As an example, using an optimized prefilter with 
n = 5 poles; the degree of our adaptive model is reduced to 
m = 17, and the complexity to C = 39, compared to m = 96 
and C = 192 for the conventional FIR-filter model (n = 0). 
Comparing the corresponding complexity measures shows that 
a prefilter with 5 poles is optimum for this environment. It is 
noted that an increase to n = 6 prefilter poles does not further 
decrease the overall complexity of the model. It seems that 
5 poles can completely describe the “recursive” part of the 
corresponding impulse responses. 

to be the proper part of the model transfer function with the 
nth-order polynomials in 2-l 

9(z) = c p/ 
i=o 

i=o 

where 1 = n. The parameters of the lattice sections, 
kl A sin 01, can than be obtained-according to [ 1 l]-from 
P,(Z) and Dn(z) as 

The iterative design procedure is demonstrated with the help 
of this optimum model (n = 5, m = 17). As is shown in Table 
III, the algorithm converges in 6 iterations. Again, a slight 
derivation from the global minimum can be observed. 

zBl(z) = Dl(z-‘)d 

kl-1 = dl,l 

&-l(z) = [01(z) - h-lz&(z)l/(l - k,2_,) 

Referring to our system (l), this means 

(29) 

For our prefilter (2), with E[u[k]uT[k]] = 1, (29) is reduced to 

E 
K 

4N 
u[k - m + TL] ) (~T[4,4~ -m + n])] = I. (30) 

cz =m,o 

VII. AN ORTHOGONAL PREFILTER REALIZATION P,-,(z) = PI(Z) - c1.z -(“-‘)D@), 

As mentioned earlier, an orthogonal prefilter realization for 1 = n, n - 1, . . , 1 with CO = Pa, a. Note that only 
can increase the performance of the on-line LMS-adaptation the denominator D(z), or its equivalent lattice parameters Icl 
process. A filter structure is said to be orthogonal if, at any (A sin@l), are precomputed, whereas the numerator P(Z) is 
time, all internal variables are uncorrelated and have unit adapted on-line with the adjustable coefficient vector c. 
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(b) 
Fig. 5. One-multiplier lattice sections. 

Each lattice section represents a rotation which can be 
implemented very efficiently using look-up techniques (with 
the so-called CORDIC algorithm, see e.g., [12, pp. 3481). 
However, if the normalization requirement (to unity power) 
is eased, simple one-multiplier lattice sections can be used 
instead of the normalizing rotators. Fig. 5 gives two one- 
multiplier lattice sections [ 111, which-replacing the rota- 
tors-scale the (normalized) state variables to 

with Xi given as in Fig. 5. 

VIII. A COMPARISON OF DIFFERENT 
PREFILTER REALIZATIONS 

In investigating the influence of various prefilter realizations 
on the on-line LMS adaptation of the adaptive.model according 
to Fig. 1, we again consider Example II. We compare the 
conventional FIR filter (m = 96) with the optimized IIR- 
filter model (n = 5,m = 17) where two different prefilter 
realizations have been considered. These are an orthogonal 
filter realization utilizing the inverse lattice filter of Fig. 4, 
as discussed in Section VII, and a parallel filter realization 
(residue-only adjustment scheme) with first-order sections for 
the real poles and second-order sections for the complex- 
conjugate poles. 

In investigating the performance of the different adaptive 
filter structures, we use them as echo cancelers according to 
Fig. 1 in a 2BlQ HDSL transceiver [9] for a typical ETSI test 
loop according to Fig. 6. We set E[w’[k]] to 10P4, which is a 
worst-case level for the “far-end” signal w[lc] to be estimated. 
The misadjustment, defined by 

MA lim E[(YW - m)21 
k--too Eb2 [Nl 

is set to M  = 10e2 guaranteeing a reasonable accuracy of 
this estimation. These values allow for an excessive MSE, 
E[(Y[~] -~[W”l, of lO-6 which is within the design accuracy 
of the filters. The misadjustment M of the filter is related to 

0.05 - 

WI o-, 

-0.05 

-0.10 1 
20 40 60 80 
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Fig. 6. Example II. The echo impulse response for a typical ETSI test loop. 
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Fig. 7. Example II. Learning curve (excessive MSE, averaged over 100 
runs) for different echo-canceler structures: (a) a conventional FIR filter 
(m = 96, n = 0) and an optimum IIR filter (m = 17,n = 5) with the 
prefilter; (b) realized as a parallel structure; and (c) realized as an orthogonal 
structure. 

the p matrix (see, e.g., [4]) as follows: 
1 

%!- diag-’ (E[cp[k]cpT[k]]). 
‘=m+l l+M 

The performed simulations are based on white input noise 
~[k] with variance normalized to (T: = 1, and the excessive 
MSE obtained by averaging over 100 runs. The resulting 
learning curves are depicted in Fig. 7 for all three designs. It 
is emphasized that all three designs converge to the same final 
excessive MSE of -60 dB. Note, however, that the optimum 
IIR filter requires 18 coefficients to be adapted, which is far 
less than the 97 coefficients required for the comparable FIR 
filter. As shown in Fig. 7, this results in a correspondingly fast 
decay of the learning curves for the IIR-filter realizations, at 
least up to approximately -30 dB. To continue with this fast 
decay, either a more sophisticated adaptation algorithm than 
(5), or, alternatively, an orthogonal filter realization such as 
design c), must be used. 

IX. CONCLUSION 

A method has been presented of finding linearly adjustable 
IIR filters resulting in reduced computational costs and im- 
proved performance for a given system environment. A priori 
knowledge about the variety of the unknown echo path is 
used to find a set of fixed, but optimally placed poles for the 
IIR filter. For the pole optimization an iterative procedure is 
derived, which is based on the well-known Steiglitz-McBride 
algorithm. The sensitivity problem for high-order filter designs 
is discussed and a robust solution is derived. Furthermore, 
using the flexibility of the inverse lattice filters, an orthogonal 
filter realization is discussed which allows any desired stable 
pole placement. The use of such an orthogonal filter not 
only decreases the computational costs-when compared to a 
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conventional FIR filter solution-but also increases the speed 
of convergence of the on-line LMS adaptation process. 
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