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Abstract — In this paper we investigate the dynamic
behuvior of the xirnplest anti-symmetric CNN. Stable
equilibria of the system ,for constant boundary values
are investigated. We provide a comparison with the
simplest symmetric CNN in terms of dynamics and sta-
ble equilibria.

1. introduction
In many modeling problems which utilize differential equa-
tions one is particularly interested in the stable equilibria of
the underlying system. For example, patterns emerging in
biological or chemical reactions maybe considered to be the
stable equilibria of such systems. In this work we consider
the conventional CNN as the underlying modeling system
and investigate its stable equilibria. We restrict our analysis
to one dimensional CNN arrays, described by

dxi

z=
-Xi +~ui,~f(X~) +~bi.~u~+~, (1)

kc ~ k~ ~

for given initial conditions xi(0). The nonlinearity in (1) is
the piecewise-linear function

f(4=; {lx+ 11-lx-11},

and ~ is the set of neighbors connected to the i-th cell.
The network parameters for space-invariant CNNS are given
by a template ser, consisting of the feedback template A,

control template B and the bias term 1. The CNN inputs
and outputs are defined to be ui and f (xi), respectively.
The operation of a CNN consists of mapping an input image
to its corresponding output at the equilibrium of the system.
A classification of the possible outputs in terms of network
parameters enables us to find the scope of patterns that can
be associated with a template set.

In the following sections we investigate the dynamics
and stable equilibria of the nearest neighbor anti-symmet-
ric CNN,

~j = ‘Xi+ Sf (X1– I) + p f (Xi) – Sf (Xi+l ) , (2)

for fixed boundary values, and provide a comparison with
the symmetric case,

ii = ‘Xj +Sf(Xi_l) +pf(X~) +.$ f(Xi+l) . (3)

2. Dynamic Behavior
The dynamic behavior of (2) and (3) differs in a number
of respects. In particular, the way in which some initial
state evolves is quite different. As pointed out in [l], in
the case of (3) the cells interact through a local di~usion
process, whereas the interaction implied by (2) gives rise to
wave-like propagating solutions. In many biological mod-
els, diffusion is used to describe locally and slowly interact-
ing units (cells). In contrast, models admitting propagating
behavior provide global and faster interaction among cells.
This modeling aspect holds also for the above examples.

The diffusion rate of (3) turns out to be smaller than the
propagation velocity of (2) by an amount on the order of
the grid size (spatial quantization step). Hence. in the anti-
symmetric case, the range of interaction and information
transmission is considerably higher than in the symmetric
case.

To elaborate on these ideas in some detail, let us derive
in each case the non-linear PDEthat gives rise to (2) and
(3), respectively. It is easily shown that the discretization of

d,u(x,t)= - U(x,t)+ (p+ 2s) f(u(x,t))

+Da:f(u(x,t)) , (4)

according to U(X,t) + xi(t) and

Xi+](t)‘Xi(f)
dxU(X,2) +dF~i(t) := h ,

leads to (3) if D = shz, where dF is the forward approxi-
mation to dx. Similarly, discretizing

a,u(x,t) +Ca.rf(u(x,f)) =

– U(x, t) +pf(u(x, t)) , (5)

by means of the centered approximation of the derivative,

dxu(~,t)+ dc~i(t) :=
.XiTl(t) -.X-l(l)

2h ‘

we obtain (2) if c = 2sh.
In the linear region of f (.), equation (4) corresponds to

a damped or amplified diffusion, depending on the sign of

p+2.s–1:

d,u(x,r) = –u(x, t) + (p+ 2s)u(x, r) +Dt$@,t) .
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This follows from the fact that by the substitution

U(x,f) = JP+2’!- ‘)1V(x,f) , (6)

V(X,t)satisfies the well known heat equation.
In [2] a rigorous classification of the stable equilibria of

(3) was given. Here we provide a heuristic explanation of
those results from the view point of (4). The analysis can
be done in terms of the parameter v = (p – 1)/2s. In the
simplest case, L = – I , equation (4) corresponds to the heat
equation with solutions converging to the boundary value.
For p < – 1 and zero or periodic boundary values, the origin
is the only (asymptotically) stable equilibrium as suggested
by (6). For u > 1, the diffusion process in (4) is domi-
nated by the contribution of self-feedback. To see this, note
that 2s in e(l’+z’-’ j‘ corresponds to the diffusion term D&
in (4). Hence, the condition u > 1, i.e., p – 1> 2s, implies
that the contribution due to the self-feedback exceeds that
of the diffusion in the exponential. In the discrete case this
corresponds to the fact that any sequence of bipolar inputs
is a stable equilibrium. Finally, for – 1 < ~ < 1, the diffu-
sion and the self-feedback are two competing processes and
the resulting equilibria are classified in [2].

Let us now consider (5) in the linear region of ~(),

afu(x,f)+~axu(x,t)= –U(x,t)+ ~u(x,f). (7)

By the substitution u(.x, t) = e@ 1)‘ V(X,t) and the coordi-
nate transformation # = x – ct, t’ = t, we obtain from (7)

affqx’,t’)= o. (8)

Solutions of (7) in terms of V(X,t) are then given by

u(x, t) = e(P–l)tv(x–ct, r) . (9)

The x – CI dependence of the solution (9) implies its propa-
gating nature and a propagation velocity c.

Under time reversal, t ~ –t, equation (7) becomes

a,U(x,f)–Caxu(x,t)= +U(x,t) – ~u(x,t), (lo)

the solutions of which have the form U(X,t) =

e-~~’ JJ( V(X + cz, t), with “v(x, /) being a solution of (8)

as well. Hence (5) can have both leftward and right ward
propagating solutions. This symmetry of the continuous
case is reflected in the discrete case by the fact that revers-
ing the sign of s in the A template, i.e., A = [—s p s],
changes the propagation direction (c+ –c ).

Comparing now the diffusion coefficient D = sh2 with
the propagation velocity c = 2 hs, it follows that the rate of
interaction in the symmetric case is slower by a factor of h
than the anti-symmetric case.

Note that by discretizing (4) and (5) we assumed dif-
ferent approximations of the derivative &. In fact, the
centered approximation has an error on the order of 0(h2)
smaller than the forward approximation, where the error is
of the order of O(h). Clearly (4) cannot be derived as the
discrete version of a PDE by using dc, and an attempt to de-
rive (5) from a PDE by means of d~ would imply a higher
approximation error.

3. Stable Equilibria
In this section we investigate the stable equilibria of the sys-
tem (5) for constant boundary values, and in particular for
the values + I . In some cases, as discussed below. this turns
out not to be a severe restriction. A classification of the
equilibria based on approximative methods for the periodic
boundary values is given in [3]. In [4] conditions for ex-
istence of stable equilibria in the case of p > 1 and zero
boundary conditions are considered.

Let N be the length of the CNN array, excluding the
boundary cells, and u = (p – I ) /2s. Further, denote the
boundary values by x; and Xfi+,. We distinguish the fol-
lowing cases in terms of p: “”

,.

Casel: p<O.
Consider the stable equilibria of the linear system,

where

A=

x=–-x+Ax+b,

P —s o 0

s P —s ““.

o . ““. ““. o“.

[’“. s P –s

o Osp

b=

(11)

and b contains the contribution of the constant boundary
cells. The solution of ( 11) for some initial value x(0) is

( )x(f) = e(A–l)’x(0) + e(A-’)’ – 1 A–’b, (12)

with 1 being the identity matrix. Clearly, the stability of the
solutions depends on the eigenvalues of A – 1. To derive
stability conditions, we decompose A into A = p 1 + B,
where B is the anti-symmetric part of A. Due to the com-
mutation of (p– 1)1 with B, i.e., [(p– 1)1, B] = 0+, we

obtain e(A–l)’ = e(p–’)’ eB’. Since the eigenvalues of B are
imaginary, the stability of the equilibrium is guaranteed as
long as p – 1< 0. Note that in contrast to the symmetric
case, the stability condition does not impose any constraints
on IJ in terms of the array size N.

The following theorem can be proved for the equilibria
of the linear system (11). For a partial proof see the Appen-
dix; due to limited space, the full proof will be presented
elsewhere [5].
Theorem: For constant boundary values the stable equilib-
ria of the system (11) are churucterized us fallows. Le~

. 1 ( )S*’-’+’ Al_lx~+l + (–l)’s~A~_lx~ ,
“=G

(13)

with

{

cosh((n + 1)ct) * if ~ even

A. =
cosh(ct) ‘$

(14)
sinh((n + l)cx)s,,

if n odd,
cosh(a)

where sinh(rx) = p and & = 1.

‘The commutator [M, N] of two matrices M and N is defined by [M, N] = MN – NM
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I) If x; =X;.+, = ● 1

1.

2.

II) Ij

1.

2.

For N even, define UC to be the solution of

cosh((N+ l)cx,,) + sinh(Nrxe) – cosh(ue) = O .

If a. < a., then the equilibrium is given by (13). How-
evec if ~ > ct~, then f (Xi) = sign(x~) and the re-
maining cells assume the equilibrium values given by
(13) for an array of length N – 1 and the same cx
and boundary values.

IIEIIEZIIEI
x~=x&+l =–l, Neven, a> a,

For N odd, the stable equilibrium is given by (13} for
all c1 < ().

.
X()= –+1—XL+, —

For N even, and if u < ct., ct. d@ted as above, the
equilibrium is given by (13). Howevec if ci > ctd,
then f (x;) = sign(x~) and the remaining N – 1 cells
assume their equilibrium according to (13), with the
same a and boundary values given by sign (x;).

For N odd, let ct,,i be the solution of

sinh((N + 1) u,,) + cosh(Nct,, ) + cosh(ct,)) = O.

If cx < et,,, then the stable equilibrium is given by

(13). V u > u,,, then f(xi) = f(xfi) = si.gn(x~) and
the remaining cells take on the equilibrium of an ar-

ray of N – 2 cells surrounded by two saturated cells
of the color sign(x~).

m~:<i:!:!m
*

xc= ‘-%+1 ‘+1, ~ odd ~>a<).

Simulations were perforrhed on arrays of length N =
15 and 16, and with x; =xfi+l = –1 and CX>~,. The

(lb) offirst plot in Fig. 1 corresponds to the trajectory of xl
an N = 16 array. The second plot depicts the remaining

trajectories, i.e., .J’6! . . . ,x (16)
,6 , and the third plot shows the

trajectories of an N = 15 array. Observe that at the equilib-

“5) = x~~~, as claimed byrium point f(x~’6)) = – 1 and xl
the theorem.

The generalization of the theorem to the case lx~l =
lx~~, I E R+ is obtained by normalizing the states to
xl/ lx; 1. This reduces the analysis to the previous theorem.
The case lx~l # Ixfi+, I c I?+ is along the same lines.

Case2:O<p<l.
In this region of L, for X; = Xfi+, = +1, the CNN oper-

ates as a connected component detector (CCD)$. Hence,
assuming a bipolar initial state, the corresponding stable

equilibrium is going to be the output of the CCD initialized
with this particular initial configuration. For example, with
x: = xfi+l = – 1 and N = 5, only the following stable equi-
libria exist:

cInnuuB

The generalization to arbitrary N is obvious. A proof of
this result is given in [6].

Case3:~>l.

For Ix; I >1 and lxfi~ 1I z 1 any bipolar sequence of cells is
an equilibrium of the system (11). This easily follows from
the estimate

lxTl=lsf(x;-, )+ Pf(x;)-sf(x;+, )l 2P-2S> I ~

If the magnitude of the boundary values is less than one,
then in order for a bipolar sequence to still be a stable equi-
librium of the system (11), the bound for v must be nmd-
ified to v > (1 +~)/2, where ~ = min{lx~l, lx~~ll}. As-
suming &= lx~l, we then obtain

IXi[ = lSf(X~)+pf(X~) ‘Sf($)l ~ p- (1 +&)S >1.

500 04 : A --------

,“.

,,, , l,, ;. .+-,,, ,,, ,, ,, ,~

,!, ,

?’0’ ‘q’o” ‘&’o’’ e’o’
!+

n TIMF (l IN] .3

Figure I: State trajectories

4. Conclusions
We considered the dynamic behavior and stable equilibria
of the simplest anti-symmetric CNN with fixed boundary
values. Furthermore, we provided a comparison with the
symmetric case. In terms of the dynamics, the symmet-
ric template corresponds to a diffusion process, whereas
the anti-symmetric template corresponds to a propagation
process. The diffusion constant turns out to be smaller than

‘The subscript stands for odd.
#setting tfr~b~undq to + 1 inverts the fk~ output
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the convection (propagation) velocity by a factor on the or-
der of the grid spacing. The stable equilibria of the anti-sym-
metric template can be divided into three classes. In each
case we provided a classification of the equilibria for differ-
ent boundary values. Note that in the anti-symmetric case
it is possible to assign to each initial state its corresponding
output.

Appendix
Proof of Theorem. From (11) it follows that the equilib-
rium is the solution of

x*= Ax=+b,

i.e., x* = –(A– I)–’b. Define M = A– 1. The equilib-
rium can be written as

~ (adj(M)lN, xfii , -adj(M)ll x;) , (15)
‘; = det(M)

where adj(M)i,j = (– I )i+jdet (M(jli)) and M(jli) is the
matrix obtained by removing the j-th row and i-th column
of M. The following two equations can be shown to hold:

det(M( 1II)) = s~-l AN-l

det(M(NIN–f+ 1)) = (–l)~-’s[-l AN_l ,

where An is the determinant of Mn, the n x n-dimensional
version of M, and & = 1. Hence adj(M)ll =

(– I )1- 1$–1 AN_l, and adj(M)~N = #’-’ Al–l , respectively.
Inserting these into (15) implies ( 13).

To determine A,l, the following recursion can be de-
rived:

A,, = (p– l) An-1 +s2An_2 .

By the change of variable s = it, i = ~, we obtain

A,, =(p–l)An-l –12A,1_2, (16)

with t E C\ {O}. By A,, = t“ U,,, itfollows from (16)

un=2gun-, -un_2. (17)

Solutions of ( 17) are Chebyshev polynomials of the second
kind given by

~, (z) = (z+ A=T)”+’ – (z– J7=7)”+l
n

2-
(18)

where z = ~ = –i p. After some calculation, (18) can be
written as

where ~ = sinh(a). Equation ( 14) then follows.
We continue by showing that for N even and

X; = Xfi,+, = + 1 there exists a. below which the equilib-
ria are given by ( 13). For 1 odd, we obtain from (13–14)

,Xj, = lc~sh(~~)xfi+l-shh((N -/+ I)a).$1

cosh((N + 1) Icxl)

_ cosh(la) +sinh((N–f+ 1) Icxl) ~ ,x~,
—

cosh((N + 1) a)

Similarly, for 1 even, it can be shown that lx; I < lx; 1. For
xl to have its equilibrium in the linear region, we require

,Xll = cosh(a) + sinh(N Ictl) < ~

cosh((N+ l)ct) – ‘

which implies the corresponding equation for a, in the the-
orem. Hence, if a < a, the equilibrium is given by (13).
Otherwise, if a > ct. the cell xl saturates with the same
output color as x; and the remaining cells correspond to
an array of length N – I (odd), surrounded by two cells of
the same color. This configuration admits an equilibrium
according to (13) as shown below.

We now consider the case N odd and x; = x;+, = +1,
and show that for all et the equilibrium is given by ( 13).
We consider here only the case of even 1. From ( 13- 14) it
follows that

lx~l =
lsinh(fcx)x~+, +sinh((N - 1+ I)a)x;l

lsinh((N+l)a)l

= sinh(f la])+ sinh((N – 1+ 1) Ictl)

sinh((N+ l)lcxl) “

This and the inequality

sinh(x) + sinh(y) s sinh(x +y) Vx, y >0

imply that lx; I < 1. Similarly, this can be shown for odd 1.
So far, we have only considered the case x; = x;+, =

+1. The proofs for the case x; = –xfi~, = + 1 are omitted

due to space limitation, and can be found in [5].
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